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Abstract. The use of electroencephalograms (EEGs) to diagnose and analyses Alzheimer’s disease (AD) has received much 
attention in recent years. The sample entropy (SE) has been widely applied to the diagnosis of AD. In our study, nine EEGs 
from 21 scalp electrodes in 3 AD patients and 9 EEGs from 3 age-matched controls are recorded. The calculations show that 
the kurtoses of the AD patients’ EEG are positive and much higher than that of the controls. This finding encourages us to 
introduce a kurtosis-based de-noising method. The 21-electrode EEG is first decomposed using independent component 
analysis (ICA), and second sort them using their kurtoses in ascending order. Finally, the subspace of EEG signal using back 
projection of only the last five components is reconstructed. SE will be calculated after the above de-noising preprocess. The 
classifications show that this method can significantly improve the accuracy of SE-based diagnosis. The kurtosis analysis of 
EEG may contribute to increasing the understanding of brain dysfunction in AD in a statistical way. 
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1. Introduction 

Alzheimer’s disease (AD) is the most common cause of dementia in people over the age of 65 years 
[1-4]. It is a neurodegenerative disease characterized by progressive cognitive deterioration, decline in 
the ability to perform daily activities, and behavioral changes. These symptoms are accompanied by 
histological changes in the brain, characterized by the formation of extracellular amyloid plaques and 
the intracellular deposition of neurofibrillary tangles [5]. AD can be difficult to diagnose, particularly 
in the early stages, and definite diagnosis is only possible by necropsy [6]. Consequently, while the 
person is alive, it is only possible to make a diagnosis of ‘possible’ or ‘probable’ AD. It was shown in 
[1] that clinical diagnosis of possible AD has accuracy rates of about 50%. The low diagnosis rate 
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makes it urgent to develop methodologies for accurately diagnosing AD in patients, particularly during 
the early stages when there is the best chance to treat the symptoms of the disease. 

Although a definitive diagnosis can be made after death, in recent decades, the electroencephalo-
gram (EEG), neuroimaging diagnostic tools such as PET, SPECT, and fMRI have proved useful in 
aiding the diagnosis of AD. This paper is focused on EEG. Indeed, several studies have associated 
changes in quantitative spectral electroencephalogram (q-EEG) with cognitive decline in patients with 
AD [7]. AD patients are characterized by EEG abnormalities which shift the power spectrum to the 
lower frequencies and a decrease in coherence amongst the cortical areas [6], although in the early 
stages of the disease, EEG plots may exhibit normal frequencies [8]. So although useful, EEG diagno-
sis can be inconclusive and careful interpretation is required in order to identify AD using this method. 
Indeed, such is the difficulty of accurately diagnosing AD using EEG that it has led researchers to seek 
superior methods for analyzing EEG data. To this end, many statistical, signal processing and nonline-
ar dynamical methods have been used with varying degrees of success. Some of these methods work 
as preprocessing or de-noising, such as blind source separation (BSS) [9, 10]. Some of these methods 
work as feature extraction, such as windowed signal power (WP) [10], bipolarity [11], coherence or 
synchronization [12, 13], even-related potentials (ERP)-based feature [14], power frequency (PF) [15, 
16] and stochastic synchrony [17, 18]. Other methods work as classifier, such as linear discriminant 
analysis (LDA) [9], sample entropy (SE) [5, 6, 19-22].  

Based on above methods, the authors in [23] conducted different methods of the various combina-
tions as: PF+CSP+LDA, WP+CSP+LDA, SE+CSP+LDA, PF+P4+LDA, WP+P4+LDA, SE+P4+LDA, 
where P4 denotes one EEG electrode. The performances of these methods are usually influenced by 
some kind of noise, such as muscle and line noise, and the noise shows different influence in different 
methods, so one tendency is to develop different de-noising method for different classifier. For exam-
ple, LDA classifier is utilized in [9], and the AMUSE-BSS is proposed to help de-noise, where the 
components with the lowest linear predictability are removed from raw data. This paper is focused on 
how to help sample entropy de-noise. 

Sample entropy (i.e. estimation of signal complexity), which was first proposed as a method for in-
vestigating the dynamics of heart rate and other time series [24, 25], has been widely applied to the 
diagnosis of AD [5, 19, 20]. In particular, Abasolo et al. [5, 19] demonstrated that SE could be used to 
discriminate AD patients from normal controls. This approach is based on the hypothesis that EEG 
plots of AD patients exhibit greater regularity than those of age-matched controls. Thus, the EEG en-
tropy exhibited by AD patients should be different from that exhibited by age-matched controls. More 
recent research suggests that the SE approach may be limited due to signal noise [23]. Then it can be 
hypothesized that SE might work better in an AD application if suitable de-noising measures were first 
undertaken. 

While a number of de-noising algorithms have been applied to EEG data from AD patients, such as 
the most relevant components algorithm based on AMUSE [9, 26] and common spatial patterns (CSP) 
[23, 27, 28], these appear not to be suitable preprocessing tools of SE. From a nonlinear dynamical 
viewpoint, the regularity of the EEG data collected from AD patients is greater than that from control 
patients.  

When viewed from a statistical signal processing standpoint, the EEG data from controls are so ir-
regular that they can be regarded as near-Gaussian signals, while that from AD patients are so regular 
that they can be regarded as far-Gaussian signals. Therefore, EEG signals can be evaluated in terms of 
their level of “Gaussianity”, which is quantified by their kurtosis value (which is a measure of non-
Gaussianity) [29, 30]. The lower the absolute value of kurtosis, the more near-Gaussian is the signal, 
and vice versa. If it is applied to EEG data from AD patients, the non-Gaussian components can be 
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regarded as useful signals while the near-Gaussian component can be regarded as useless noise. Note 
that the kurtosis is the measure of “Gaussianity”. This motivates us to identify AD sufferers from EEG 
plots using the kurtosis to help denoising.  

In this paper, a modified sample entropy (SE) approach was used to evaluate sample EEG plots and 
found this new methodology to be able to distinguish between patients with and without AD with great 
accuracy. The 21-electrode EEG data were first decomposed using an independent component analysis 
(ICA) method [31-33], and then the data were sorted by their kurtosis value in descending order. Fi-
nally, the subspace of EEG signal was reconstructed using back projection of only the first several 
components with far-Gaussian property. After the de-noising preprocess, the SE approach was applied 
to the EEG data.  

 
Table 1  

Kurtosis of EEGs of controls for all electrodes 

kurtosis EEG1 EEG2 EEG3 EEG4 EEG5 EEG6 EEG7 EEG8 EEG9 

Fp1 0.6828 0.0985 0.8014 0.0680 0.0846 0.0425 11.4655 11.7081 16.1772 

Fp2 4.8635 9.3026 6.1694 0.7516 2.8487 0.7829 0.8904 0.2357 0.9938 

F3 4.5403 8.8131 4.4459 0.5435 1.2553 0.5818 2.7173 1.6430 1.3271 

F4 1.9128 7.6254 4.2684 0.6340 1.3354 2.2668 4.2738 14.1135 3.3162 

C3 2.1537 6.2253 7.1602 0.0848 0.1262 1.4552 7.5946 35.9307 10.9414 

C4 2.9638 1.9331 4.2397 0.0494 0.1701 7.6063 3.6163 10.3625 5.3654 

P3 1.9374 6.0670 8.4925 0.1752 0.4533 0.7876 1.4478 0.8565 2.4335 

P4 2.2931 2.9128 4.6395 0.8932 2.8330 2.3080 0.4756 0.2502 0.6900 

O1 1.3404 1.2470 2.4450 1.3907 1.0204 1.2129 2.7040 0.7212 2.8280 

O2 21.6754 5.0561 4.0545 0.2709 0.3598 0.2957 5.8991 4.3587 5.7090 

F7 1.9853 0.5176 0.7739 0.4236 0.3373 0.4563 2.6497 1.9802 2.1083 

F8 0.3838 0.2931 0.1030 0.2490 0.1514 0.2770 0.6528 1.2226 1.0271 

T7 2.3961 0.5298 2.1150 1.9071 0.8121 0.6395 0.7568 0.7805 0.6437 

T8 4.0216 5.6961 4.0315 0.2212 0.1878 3.4055 0.3872 0.2411 0.4400 

P7 0.9496 0.1995 0.3442 0.0805 0.2841 0.0174 0.3416 0.6345 0.6151 

P8 3.5042 7.4554 9.2163 0.8296 -0.0656 0.1233 2.1008 17.0041 4.9070 

FZ 0.7913 1.9702 1.0507 0.2636 0.3850 0.5184 1.8433 3.0732 2.3913 

CZ 0.2943 0.1514 2.3762 0.0041 -0.0321 -0.1079 2.0886 1.5938 4.5597 

PZ 12.3836 0.3773 221.0881 0.4186 0.2591 0.6007 0.6468 0.3631 1.1326 

FPZ 1.7342 0.7820 15.3238 0.1985 0.1636 0.2011 0.2548 0.3279 0.5295 

OZ 1.0717 0.8227 5.2999 -0.3547 -0.2409 -0.1155 1.2644 1.2625 1.2614 

Means 3.8163 2.9518 6.2992 0.3969 0.8625 1.6798 1.5715 2.3819 2.2331 
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2. Method 

2.1. EEG data and its kurtosis 

In order to test the algorithm, the EEG data were recorded from three times from 3 AD patients and 
three age-matched controls, respectively. EEGs were collected from the 21 scalp loci of the interna-
tional 10-20 system (electrode Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8 FZ, 
CZ, PZ, FPZ and OZ). A specialist physician to check for eye movement and other artifacts inspected 
all EEGs. Since the EEG data are not stationary, we divided the EEG data from one person into three 
parts and each part contains 10 000 data points where the sample rate was 100 Hz. Thus, the 9 EEGs 
data from AD patients and 9 EEGs data from controls were obtained, and each EEG data have the size 
of 21× 10000. 

Kurtosis measures the relative flatness of a distribution. Distributions with positive kurtosis are 
termed “super-Gaussian”, while those with negative kurtosis are “sub-Gaussian”. If iκ  denotes the 
kurtosis of the output yi ),,2,1( ni �= , iM4  the 4th moment of yi , and iM2  the 2nd moment of yi, then the 
kurtosis can be estimated via the following algorithm [34]:   
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where �(0<<�<1) is a constant.  

Then the kurtosis of the data in each electrode for controls is shown in Table 1 and that of AD pa-
tients is shown in Table 2. It can be seen from the two tables that most of the kurtoses of EEGs of AD 
patients are higher than that of controls. This motivates us to introduce kurtosis-based method to help 
to de-noise the EEG data.  

2.2. ICA for EEG de-noising  

Implicit in the concept of de-noising is the expectation that within a noisy signal exists hidden com-
ponents that impart core information relating to the complex signal under consideration. With respect 
to EEG data, these components are more sensitive in AD patients than in others, and thus can be con-
sidered as useful ‘signals’. By comparison, the other components of the EEG data are ‘noise’ and thus 
can be considered ‘useless signals.’ Thus by de-noising, or improving the signal-to-noise ratio (SNR) 
by filtering off the ‘noise,’ it should be possible to enhance the performance of subsequent feature ex-
traction and data classification. With regard about this, ICA algorithms [26] can be used for the pur-
pose of filtering. ICA is used to extract independent source signals from their linear mixtures without 
knowing the mixing parameters. It is a statistical method and has attracted considerable attention 
amongst the signal processing and neural network community. When applying ICA to EEG analysis, if 
x=(x1, x2, …, xm)T denotes an m-dimension observation vector, and s=(s1, s2, …, sn)T an n-dimension 
hidden independent components (ICs) - some of which may be evident in AD patients, then the linear 
relationship is given by 

 
Asx =                                                                                           (2) 
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where A is an m× n unknown matrix, called the mixing matrix. Here it is assumed that m is equal to n, 
and A is full rank. The basic problem of ICA is then to conduct an n× n full-rank separating matrix B 
given just the observation sequence with the restriction that source elements si are non-Gaussian inde-
pendent components. Thus the output vector  
 

( )1 2  y Bx y T
n, y , y , , y= = �                                                                    (3) 

 
provides the estimates of the sources signals. Due to two kinds of inherent indeterminacies in Eq. (1), 
it is impossible to recover the source signals in exact amplitude or in exact order [26, 30]. Without loss 
of generality, the source signals are assumed to have unit variance with any scaling factors absorbed 
into the mixing matrix A. In other words, when a perfect ICA is performed, the global transfer matrix 
C=BA should be an n× n generalized permutation matrix. Many algorithms designed for ICA have 
been proposed, including those employing high order statistics (HOS), such as fast ICA [30] and flex-
ible ICA [34], and those employing second-order statistics (SOS), such as second order blind identifi 

 
Table 2  

Kurtosis of EEGs of AD patients for all electrodes 

kurtosis EEG1 EEG2 EEG3 EEG4 EEG5 EEG6 EEG7 EEG8 EEG9 

Fp1 25.4143 0.3365 25.3954 0.0950 0.0332 -0.0090 2.6302 0.3716 0.8848 

Fp2 9.9425 2.9189 15.3509 20.8243 13.7805 13.2179 6.8940 8.3364 6.2143 

F3 11.2298 5.6626 3.5790 6.4451 174.1147 6.9603 24.6065 91.9136 15.6406

F4 2.3398 1.3652 14.6675 0.4203 586.1999 0.0696 5.5400 8.5658 2.8525 

C3 15.2431 1.5070 710.9700 5.3769 18.8216 1.8099 5.9622 3.1621 3.9944 

C4 1.7673 0.1861 1.0985 1.1406 0.9838 2.4726 1.3227 0.9336 0.6748 

P3 11.5065 1.1540 3.0467 0.8154 9.7243 2.3595 3.0037 7.9806 3.5677 

P4 4.5861 2.7389 6.3293 4.8936 7.8389 4.2088 2.5446 11.4943 2.8517 

O1 5.2264 0.7323 22.2497 1.1920 59.4170 5.0022 0.9179 0.2470 0.4685 

O2 28.4244 4.0033 21.8968 0.6144 5.1121 0.4355 1.6995 1.0665 1.6507 

F7 11.5029 0.3558 10.9458 0.3430 0.3652 2.7869 3.5040 3.1700 12.3627

F8 0.4262 0.4003 0.9675 0.1333 0.1420 12.2024 1.3489 0.0861 0.8716 

T7 1.0529 0.6289 2.0512 6.7394 2.1853 25.8189 1.6907 1.4805 1.6151 

T8 2.7040 1.3900 23.7984 8.9052 3.1716 21.9267 2.2837 0.6258 0.7632 

P7 4.8916 2.7803 22.9866 27.2410 21.9844 56.3523 0.5131 0.2897 0.3514 

P8 27.4883 0.3791 28.5912 1.0208 0.0693 0.0041 23.7412 9.3029 4.6342 

FZ 22.5844 1.3900 36.6615 1.3416 -0.0949 -0.0784 3.3059 0.8454 0.5356 

CZ 2.7989 1.2735 51.6157 2.2172 1.5684 19.0611 10.6106 1.7113 1.5719 

PZ 5.5300 0.1359 11.0895 1.4354 10.4328 6.5352 1.9583 1.1752 0.3318 

FPZ 15.2469 1.1504 28.3517 0.2694 1.2227 29.6515 4.7314 1.5520 0.7005 

OZ 28.9541 0.1200 15.2411 0.1499 -0.0240 -0.0222 4.6474 2.3591 1.2358 

Means 11.0842 2.4350 30.3846 2.3811 136.8885 2.9083 3.2937 3.4279 3.1594
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(SOBI) [35], the AMUSE algorithm [26] and mean square cross prediction error (MSCPE) algorithm 
[8, 31]. Generally speaking, the HOS algorithms are more time-consuming than SOS, therefore in or-
der to save time AMUSE, one of the SOS algorithms, was used in the experiments below.  

AMUSE algorithm is similar to PCA or singular vale decomposition (SVD). AMUSE utilizes 
PCA/SVD two times. In the first step, PCA/SVD can be applied for whitening. Whitening removes the 
second-order dependence among the observations x. If the autocorrelation matrix Rx = E {xxT} has the 
SVD, Rx = PDPT, where D=diag (d1, d2, …, dn) is a diagonal matrix of corresponding eigenvalues, the 
suitable whitening matrix will be W = PD-1/2PT. Then x~ = Wx is a standardized vector satisfy-
ing Ixx T =}~~{E . In the second step, SVD/PCA is utilized as 

 
( ) ( ) ( ){ }1 1R x E x x U VT Tk k Σ= − =� �                                                                 (4) 

 
where Σ is diagonal matrix, and U, V are orthogonal matrices. Then, a global separating matrix is es-
timated as B= UTW [26]. 
 

( )1 2

y Bx U Wx

y

T

T
ny , y , , y

= =

= �
(5)

              
where the kurtosis of iy is sort as follows for simplicity:  
 

1 2 nκ κ κ> > >�                                                                                (6) 
 
As for the separated signal space, it can be divided into near-Gaussian and far-Gaussian subspaces 

according to the kurtosis of separated signals. Denote by yICA the subspace spanned by the far-
Gaussian components 

 
( )1 2ICAy T

dy , y , , y= �                                                                           (7) 
 
where d is the number of the far Gaussian components. Then the near-Gaussian noise can be filtered 
by back projecting observation x onto the far-Gaussian subspace 
 

T
ICA ICA ICAx y y x=                                                                                (8) 

 
In this experiment, the far-Gaussian subspace containing five components with highest positive kur-

tosis has been selected: 
 

21
5

m = n
d

=
=               (9)

 
As for the selection of the number of the far Gaussian components (d), when d is less than two or 

more than eight, worse performance will be achieved than in the case of raw data. When d is ranged 
from four to six, the results of classification will be better. In this paper, the number of the far Gaussi-
an components is adopt as d=5. 
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2.3. Calculation of SE  

In the detection and diagnosis of AD,  the nonlinear characteristics of the EEG time series has been 
used for some time, such as the correlation dimension (D2) of the EEG time series [36], the first Lya-
punov exponent (L1) to distinguish between probable AD and control subjects [20] and SE. However, 
SE can work well instead of D2 and L1. This point has been proven by [5] and [19]. Moreover, the 
results of [5] indicate that SE is a useful feature for discriminating between AD subjects and controls.  

Formally, given N data points form a time series ( ) ( ) ( ) ( )1 2x x x xn , , , N= � , the basic idea of SE is 
to approximate the following statistic [5, 23]: 

 

( )
( )( )
( )( )

1 1Pr , ( )

Pr , ( )
m+ m+

m m

d x i x j r
SE m,r ln

d x i x j r

� �≤� �� �� �= −
� �≤� �� �� �

(10)

 
where ( ) m

mx i R∈ is the vector extracted from the time series x(t) as follows: 
 

( ) ( ) ( ) ( ), 1 , , 1xm i x i x i x i m= + + −� �� ��                                                             (11) 
 
and ( ) ( )m md x i ,x j� �� �  is defined as: 
 

( ) ( )
[ ]

( ) ( )( )
1

1 1
k mm m ,

d x i ,x j max x i+k- - x j+k-
=

=� �� �                                                (12) 

 
In practice, the probability values in expression (10) were approximated by averaging over the en-

tire time series. Because of the nonlinear character of EEG signal, SE can be utilized as a powerful 
tool to measure the regularity of AD patients’ EEG. Furthermore, The Matlab tools for calculating 
sample entropy provided at http://www.physionet.org/physiotools/sampen/matlab/ are used in the ex-
periments. The calculation of Eq. (10) including the approximation of the probability values are per-
formed through the Matlab codes in the above website. 

2.4. Testing for difference between two means  

It is frequently in biology that analysis is undertaken of two populations whose distributions overlap, 
and statistics is used to determine if the populations are significantly different from each other. In situ-
ations like this useful technique that can be applied is the t-test, which can be used to evaluate the sta-
tistical difference between AD patients and the controls, after the SE values have first been obtained 
from the EEG signals. 

If Z1 denotes the set of SE values from one electrode in AD patients and Z2 denotes the set of SE 
values from the controls, the null hypothesis in this case will be: “Z1 and Z2 are equal on average”. 
The t-test therefore allows us to assign a probability level to the likelihood that the null hypothesis is 
true. The calculation is straightforward, requiring us to calculate both the mean of each set and a 
measure of the variation of each mean. Here is the formula for calculating t-value 
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where operator mean() denotes the means of the sets, Var() denotes the sample variances of the two 
groups, and n1 and n2 are the sample sizes of each set.  

After getting the t-value, the p-value can be further calculated. In the experiment, the threshold of p-
value as [5], i.e. 0.01, was selected. If the p-value was lower than 0.01ct the null hypothesis of no dif-
ference would be rejected, and infer that the differences between the mean values were considered 
significant. The calculation of the p-value, refer to as the website: 
http://www.danielsoper.com/statcalc/calc08.aspx, where the degrees of freedom for our experiments 
are 16 (9 samples for AD + 9 samples for controls - 2).  

Combining the kurtosis, AMUSE, SE algorithm and t-value test, the new EEG analysis method can 
be summarized as follows: 

Step 1: Each EEG expressed as x was decomposed into 21 independent components by AMUSE al-
gorithm using Eq. (5). 

Step 2: Calculate the kurtoses of the separated components, and sort them in descending order as Eq. 
(6).   

 
Table 3  

Average kurtosis of EEGs for AD patients and controls for all channels 

 AD Patients Controls Statistical Analysis 
 Mean STD Mean STD t_value P_value 
Fp1 3.074 5.1475 2.088 3.0492 0.4945 0.628 
Fp2 20.40 22.71 3.196 2.478 2.259 0.0382 
F3 72.44 174.7 3.661 2.695 1.181 0.255 
F4 149.5 431.9 5.480 4.537 0.9998   0.332 
C3 66.56 139.3 4.217 4.093 1.342 0.198 
C4 5.949 5.442 5.957 5.127 0.0031 0.998 
P3 9.058 17.00 3.039 3.806 1.037 0.315 
P4 6.579 8.009 3.575 3.536 1.029 0.319 
O1 18.19 43.26 1.136 0.7301 1.182 0.254 
O2 6.755 9.679 2.469 1.941 1.302 0.211 
F7 4.310 5.629 0.827 0.7421 1.840 0.0843 
F8 4.680 9.663 0.4192 0.3787    1.321 0.205 
T7 3.531 4.816 0.4702 0.368 1.901 0.0755 
T8 7.163 29.25 0.9911 1.151 1.051 0.309 
P7 39.41 110.8 0.6218 0.6416 1.050 0.309 
P8 7.163 1.516 1.490 11.28   1.469 0.161 
FZ 8.009 17.33 0.8348 0.5256 1.241 0.232 
CZ 5.578 6.669 10.51 0.5327 2.273 0.0371 
PZ 7.240 16.23 9.192 18.24 0.2399 0.813 
FPZ 3.578 3.917 1.014 1.760 1.791 0.0923 
OZ 4.049 7.718 0.5978 0.5997 1.337 0.200 
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Step 3: Select the first five components for the far-Gaussian subspace ICAy as Eq. (7), project the 
EEG x onto this subspace as Eq. (8), and obtain xICA . 

Step 4: Calculate the SE of the 21 electrodes ( xICA ). 
Step 5: Calculate the p-value between two means 

3. Experiments  

The kurtoses for the 21 electrodes Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8 
FZ, CZ, PZ, FPZ and OZ were first estimated. Secondly, the SE (m=1, r=0.25 times the standard devi-
ation of the data) for all 21 electrode under different conditions (i.e. without de-noising, relevant de-
noising and kurtosis-based de-noising) were calculated. Finally, the receiver operating characteristic 
(ROC) curves for the different conditions were plotted. 

3.1. The kurtoses of the EEG from AD patients and controls  

Table 3 summarized the average kurtosis of EEGs for the AD patients and controls for all channels. 
The mean values of almost all electrodes except C4 and PZ are much higher than that of normal con-
trols. However, the standard deviation (STD) of AD EEG’s kurtosis is very high, and none of the p-
values in 21 electrodes are lower than 0.01. Thus, their mean values might be not so significantly dif-  

 
Table 4 

Average SE (m=1, r=0.25) of EEGs for AD patients and controls for all channels without denosing 

                 AD Patients  Controls                             Statistical Analysis 
                 Mean          STD      Mean         STD     t_value     p_value 
          Fp1 1.8583    0.0862  1.891    0.0839  0.8164 0.426 
          Fp2 1.4919    0.1823  1.6727    0.3242  1.4583 0.164 
          F3 1.5156    0.1956   1.6663    0.3152  1.2188 0.241 
          F4 1.7575    0.1398  1.6395    0.2115  1.3961 0.182 
          C3    1.744    0.2131  1.6741    0.2436  0.6484 0.526 
          C4    1.8112    0.1299  1.6651    0.2116  1.7641 0.968 
          P3 1.8373    0.0886  1.8233    0.1371  0.2562 0.801 
          P4 1.7805    0.0676  1.7914    0.1744  0.1747 0.864 
          O1 1.8558    0.1652  1.8993    0.0353  0.7719 0.451 
          O2 1.8157    0.1516  1.8272    0.133      0.1712 0.866 
          F7 1.8551    0.1367  1.9181    0.0259  1.3582 0.193 
          F8    1.8989    0.0823  1.9416    0.0243  1.4951 0.154 
          T7    1.8699    0.0808  1.9388    0.0192  2.4902 0.0241 
          T8 1.884    0.0661  1.9184    0.0581  1.1724 0.258 
          P7 1.9057        0.0661  1.9207    0.034     0.6083 0.552 
          P8 1.9197        0.2339  1.9211    0.0325  0.0172 0.986 
          FZ    1.7689       0.4489  1.9146 0.0271 0.9719     0.346 
          CZ    1.7997    0.1751  1.9306    0.0375  2.1927 0.0435 
          PZ 1.8918    0.092      1.7882    0.3886  0.7783 0.448 
          FPZ 1.8678    0.1114      1.915    0.0492  1.1625 0.262 
          OZ 1.8207    0.1606  1.9269    0.0318  1.9466 0.0693 
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ferent as to be used to a classification. This shows on the viewpoint of statistical signal processing that 
the regularity of AD seems more like super-Gaussian than normal controls. 

3.2. SE under different conditions 

Tables 4-6 summarized the average SE values of EEGs for AD patients and controls for all channels 
under no de-noising, relevant de-noising and kurtosis de-noising conditions, respectively. From the 
data in these tables, it can be seen that for most of the electrodes p-value>0.05, with the lowest p-value 
in Table 4 being only 0.0241 (i.e. for electrode T7), and 0.0246 for electrode F3 in Table 5. This indi-
cates that the relevant denoising method made no improvement, and there are no significantly different 
mean values in all the electrodes for the two methods. If the accuracy for classification using P4 elec-
trode as [5, 23] under this circumstance is calculated, the accuracy will be about 67%, which although 
consistent with that reported in [23] is not a good result. However, as can be seen in Table 7, if T7 
from Table 4, or F3 from Table 5 are selected, then the accuracy of the diagnosis improves to around 
80%.  

Comparison of the data in Table 6 with that in Table 4 and Table 5 reveals that the kurtosis-based 
de-noising method resulted in a significant improvement in performance. The lowest p-value in Table 
6 reached 0.000074, which indicates significant differences between the mean SE values of AD pa-
tients and normal controls. Table 7 summarizes the accuracies of different methods, and shows that the 
accuracy of kurtosis de-noising method is improved from about 80% to almost 95%.  

 
Table 5  

Average SE (m=1, r=0.25) of EEGs for AD patients and controls for all channels after relevant denosing [9] 

                AD Patients                 Controls                             Statistical Analysis 
                 Mean          STD      Mean          STD     t_value     p_value  
          Fp1 1.8652    0.1143  1.9118    0.0408  1.1536 0.266 
          Fp2 1.5331    0.2352  1.7254    0.2059  1.8458 0.0835 
          F3 1.5028    0.1801  1.7221    0.1948  2.4803 0.0246 
          F4 1.7668    0.1503  1.6690    0.1693  1.2961 0.213 
          C3 1.7199    0.1942  1.6915    0.2564  0.2654 0.794 
          C4 1.7585    0.2253  1.6952    0.2298  0.5904 0.563 
          P3 1.7667    0.1202  1.8294    0.1133  1.1396 0.271 
          P4 1.7317    0.1117   1.7979    0.1376  1.1203 0.279 
          O1 1.8591    0.1791  1.8691    0.0915  0.1490 0.883 
          O2 1.8751    0.1336  1.8255    0.1170  0.8374 0.414 
          F7 1.8839    0.1501  1.9094    0.0567  0.4764 0.640 
          F8 1.8866    0.1489  1.9193    0.0435  0.6326 0.536 
          T7 1.8281    0.1905  1.9200        0.0323  1.4273 0.173 
          T8 1.8864    0.0818  1.9044    0.0472  0.5706 0.576 
          P7 1.9016        0.0908  1.8981    0.0472  0.1018 0.920 
          P8 1.9142        0.0735  1.9289    0.0348  0.5442 0.594 
          FZ 1.7463    0.4002  1.9246    0.0324  1.3319 0.202 
          CZ 1.8077    0.1723  1.9305    0.0441  2.0709 0.549 
          PZ 1.8819    0.0947  1.7842    0.3953  0.7218 0.481 
          FPZ 1.8790    0.1431  1.9149    0.0645  0.6867 0.502 
          OZ 1.8603    0.2092  1.9141    0.0652  0.7368 0.472 
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Furthermore, the ROC curves were plot for the no de-noising, relevant de-noising and kurtosis de-
noising methods in Figure 1. ROC curves were obtained by plotting the sensitivity values on the y-axis 
against their equivalent {1-specificity} values for all the available cut-off points (in this case, the kur-
toses or SE values) on the x-axis. The sensitivity value represents the percentage of patients with a di-
agnosis of AD who are tested as positive, or the true positive rate. The specificity means the propor-
tion of controls correctly recognized, or the true negative rate [5]. Figure 1 reveals that there are no 
significant differences between the no de-noising method and relevant de-noising method, and that the 
area under ROC curve of our proposed method (kurtosis de-noising) is much larger than those of the 
other two methods. Table 7 summarized the corresponding values under ROC curves, where the accu-
racy of the proposed method is more than 90%. 

Generally speaking, the larger the area under ROC curve, the better the performance [5]. With val-
ues between 0.90 and 1, the precision of the diagnostic test is considered to be excellent, good for val-
ues between 0.80 and 0.89, fair for values between 0.70 and 0.79, poor for values between 0.60 and 
0.69, and bad for values between 0.50 and 0.59. As a result, the kurtosis-based de-noising method can 
be considered excellent for electrode F3, the relevant de-noising method can be good for F3, the SE 
method without de-noising can be good for T7 and poor for P4. 

As for the classification, the simple threshold method was adopted. The classifications were depict-
ed in Figure 2, where ‘o’ denotes normal controls, ‘*’ denotes AD patients, and ‘-’ denotes threshold. 
The corresponding accuracies were shown in Table 7. Both visual detections in Figure 2 and accura-
cies in Table 7 show that the proposed method performs better than the others. 

 
Table 6  

Average SE (m=1, r=0.25) of EEGs for AD patients and controls for all channels after kurtosis denosing 

                AD Patients  Controls                              Statistical Analysis 
                 Mean        STD     Mean          STD     t_value     p_value  
          Fp1 1.6623   0.1788      1.8403    0.064      2.8113 0.0125 
          Fp2 1.6371   0.1269      1.7537    0.172      1.6375 0.121 

               F3 1.5376   0.1414      1.8096    0.0616  5.2874 0.000074 
          F4 1.7002   0.1198      1.6677    0.2032  0.4138 0.685 
          C3 1.7048   0.1758      1.6915    0.249      0.1307 0.898 
          C4 1.6363   0.1991      1.6664    0.2183  0.3061 0.763 

               P3 1.7359   0.1191      1.8161    0.1333  1.3459 0.197 
          P4 1.7037   0.1123      1.7672    0.1386  1.0669 0.302 
          O1 1.6983   0.1412      1.8551    0.0755  2.9385 0.00964 
          O2 1.7346   0.145      1.7494    0.1522  0.2122 0.835 
          F7 1.7548   0.1159      1.7695    0.1443  0.2382 0.915 
          F8 1.6894   0.1555      1.8018    0.1432  1.5957 0.13 
          T7 1.7833   0.1166      1.7565    0.1973  0.3505 0.731 
          T8 1.7327   0.1563      1.8602    0.1062  2.0242 0.06 
          P7 1.6797   0.1836      1.8269    0.094      2.14 0.0481 
          P8 1.7158   0.1305      1.8048    0.101      1.6172 0.125 
          FZ 1.668   0.3549      1.8112    0.0911  1.1731 0.258 
          CZ 1.7156   0.1597      1.8157    0.1683  1.294 0.214 
          PZ 1.7274   0.1247      1.6477    0.4114  0.556 0.586 
          FPZ 1.7128   0.1597      1.8566    0.0649  2.5023 0.0236 
          OZ 1.719   0.1909      1.8201    0.1257  1.3259 0.203 
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Table 7  

Accuracy results under three different conditions  

            Method                           Electrode       Threshold     Accuracy         Area under ROC curve 
           No de-noising               P4               1.800        66.7%              63.6% 
 No de-noising               T7               1.904        83.3%              81.5% 
           Relevant de-noising        F3               1.700    77.8%            80.2% 
           Kurtosis de-noising        F3               1.700    94.4%              97.5% 
 
Furthermore, the comparisons were done with other de-noising algorithms, ASUME [9] and com-

mon spatial patterns (CSP) [27], in Table 8, which shows that the proposed algorithm (Kurtosis de-
noising) works better than the other two methods. 

4. Conclusions 

In this study, the Gaussianity of the EEG signal from a number of AD patients and normal controls 
using kurtosis methods were analyzed. The average kurtosis of the EEG signals from the AD patients 
was found to be much higher than that of the controls. This implies that the EEG signals from individ-
uals with AD contain different information, which if identified could prove useful in diagnosing the 
condition. The SE approach is based on the hypothesis that the regularity of EEG signals form AD 
patients is higher than that of age-matched controls, with the result that the entropy of this group’s 
EEG signals is lower than that of age-matched controls - indicating an abnormal dynamic within the 
AD group. However, given that the SE approach appears to be limited by signal noise [23], a kurtosis-
based de-noising method was used as a preprocessing step of SE for AD diagnosis. The regularity 
achieved appeared to be super-Gaussian. The statistical analysis was consistent with the nonlinear dy-
namic study, suggesting that both embodied the property found in the AD EEG signals. Classification 
of the results verified the efficacy of the approach and it may be that the new method has great poten-
tial in the early diagnosis and prediction of AD. 

 

 

Fig. 1. Receiver operating characteristic (ROC) curves dif-
ferent methods. 

Fig. 2. Threshold classification for the SE values with for the 
SE values for different methods in Table 7.  
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Table 8  
Comparison results with ASUME [9] and CSP [27] 

               Method        Electrode        Accuracy     
              AMUSE [9]         F3        78.7%        

     CSP [27]       F3       75.5% 
           Kurtosis de-noising  F3        94.4%       
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