
Citation:
Chang, V (2015) A cybernetics Social Cloud. Journal of Systems and Software. ISSN 0164-1212
DOI: https://doi.org/10.1016/j.jss.2015.12.031

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/2540/

Document Version:
Article (Updated Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/2540/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

Journal of Systems and Software

A CYBERNETICS SOCIAL CLOUD
Victor Chang

School of Computing, Creative Technologies and Engineering, Leeds Beckett
University, Leeds LS6 3QR, UK.
V.I.Chang@leedsbeckett.ac.uk

Abstract
This paper proposes a Social Cloud, which presents the system design, development and
analysis. The technology is based on the BOINC open source software, our hybrid Cloud,
Facebook Graph API and our development in a new Facebook API, SocialMedia. The
creation of SocialMedia API with its four functions can ensure a smooth delivery of Big Data
processing in the Social Cloud, with four selected examples provided. The proposed solution
is focused on processing the contacts who click like or comment on the author’s posts.
Outputs result in visualization with their core syntax being demonstrated. Four functions in
the SocialMedia API have evaluation test and each client-server API processing can be
completed efficiently and effectively within 1.36 seconds. We demonstrate large scale
simulations involved with 50,000 simulations and all the execution time can be completed
within 70,000 seconds. Cybernetics functions are created to ensure that 100% job completion
rate for Big Data processing. Results support our case for Big Data processing on Social
Cloud with no costs involved. All the steps involved have closely followed system design,
implementation, experiments and validation for Cybernetics to ensure a high quality of
outputs and services at all times. This offers a unique contribution for Cybernetics to meet
Big Data research challenges.

Key Words

SocialMedia API; data visualization; large scale simulations for APIs; Big Data Cybernetics;
Cybernetics for Social Cloud.

1. 1. Introduction
Social networks have been pervasive in our everyday part of many peoples’ lives. There are
social network sites such as Facebook, Twitter and LinkedIn who have huge user
communities, and users are actively engaged with their social activities online. The social
behaviors have been changed as a result of social networks due to the following reasons
(Gross and Acquisti, 2005; Farkas, 2007; Glanz, Rimer and Viswanath, 2008). First, more
online communications are available and interactive on social network sites. Features include
live update, chats and videos allow contacts in the social network to communicate with each
other directly or indirectly. Second, a significantly high volume of information can be shared,
exchanged and read on daily basis. All the contacts in the network can know about the up-to-
date news in a speedy fashion, which supports the Web 2.0 to allow individuals to broadcast
about themselves and news centered around them. Third, an increasing number of people
have used social network site in search of the information they pursuit, and find out what
have happened in the news headline broadcasted by their contacts. For example, the news that
the wedding of Prince and Princess of Cambridge and the birth of their son have created
millions of twitter tweets and Facebook messages (British Council, 2013). In another
example, when the wedding pictures from one of the author’s friends were available on the
social network sites, the bride received more than 200 congratulations from friends around
the world within the first twenty four hours. In comparisons to pre-social network era of early
2000s, this could take months for the brides to receive the same volume of congratulations

1

Journal of Systems and Software

and best wishes due to the barriers of communications caused by long distance and mobility
of people.

Social networks allow people to broadcast their headlines, share any information and interact
with friends easily who can be geographically away (Chard et al., 2010). There are no or
nearly low costs involved. The speed of interactions is almost instantaneous, and allows users
to see pictures or watch videos of places that they have never been, or experienced the
detailed scenes in important events such as wedding. Contacts in the network need not take
part in those events, but they can find out details by being part of the network contacts and
visiting photograph albums and video clicks. In contrast, there are downsides of this
information sharing model. First, not every contact in the network is interested in anything
posted to his or her account. When a particular event happened to the individual contacts that
had an unpleasant experience, messages of sadness and disappointment can be frequently
updated on the website. In another example, individual contacts may share multiple links to
other news, which appear to be uninterested in the majority of their contacts. Second, some
controversial topics such as inequalities in sex and religions, as well as social topics such as
same-sex marriage and benefit reform can spark debates on the social networks. While
negative comments are unavoidable due to conflicts of opinions, friendship can be damaged
to a certain extent of debates becomes viral.

While social networks are influential to our everyday’s lives, they generate billion of data
including chats, posts, photographs, videos, clicks (such as likes), messages and forums.
There are three groups demonstrating their innovative approaches for the social network data
organization and management. Chard et al. (2010, 2012) demonstrate their Social Cloud by
using Facebook APIs and their proposed architecture to effectively manage thousands of
social network data. Facebook introduces their APIs for developers to organize thousands and
millions of user data efficiently (Facebook, 2013). Suh et al (2010) demonstrate how to
manage millions of twitter tweets in the use of Twitter Network. Consequently the amount of
data they received fall into the category of Big Data Science, whereby examples
demonstrated by Chard et al (2010, 2012), Suh et al (2010) can help scientists to manage Big
Data for social networks (BDSN) and support the concept that social networks are part of the
Big Data science. BDSN is an important topic as follows. First, BDSN can provide better
recommendation to manage so much data generated on daily basis. It allows the researchers,
developers and system managers classify the type of data and to design the right types of
algorithms for different purposes. For example, if the focus of a research study is to
investigate the relationship between different contacts, the system can query all the number of
exchanged messages and replies in the selected contacts, rank them in the order. In another
example, if the focus of another research study is to investigate the daily activities on social
networks, archive all these information and present them in analytics form, the emphasis is on
information gathering, retrieval and visualization. This requires multi-disciplinary approach
to understand the complexity, implication and interpretations of Big Data science.

Software Cybernetics (SC) explores the interplay between software engineering theories and
practices. Cai (2002) and Cai et al (2003) demonstrate the control theory and software
engineering. They also define the SC concepts and definitions of SC. However, their
definition is only on software engineering and control engineering. In the era of Cloud
Computing and Big Data, newer definitions, scopes and demonstration should be provided. In
this paper, we demonstrate that SC is an emerging area for processing large amounts of
information and data in the Cloud and it involves integration of different technologies. For
example, there are many people on social networks generating and disseminating a large
amount of information. The relationships, discussion threads and extents of trust,
collaboration and support between individuals on each person’s social network account is
different and varied from time to time. This requires intelligent systems such as BDSN that

2

Journal of Systems and Software

can process a vast amount of data and interpret the complex human relationships and the
topics that people like and support. Fast and innovative methods are thus welcome. However,
they can be expensive and difficult to use, which motivate us to develop an easy-to-use and
cost-effective Social Cloud system.

This paper describes the Social Cloud, a platform based on the adapted BOINC open source
project and our development work that use Cloud Computing and Big Data processing. We
demonstrate how to use Software Cybernetics to govern the construction and running of the
Social Cloud. The structure is as follows. Section 2 presents the BOINC project, its
approaches and architecture. Section 3 demonstrates the development of a SocialMedia API,
which ensure a smooth delivery of Big Data processing in the Social Cloud, with four
examples provided to explain how to analyze and present Big Data analytics for social
networks. Interpretations of outputs in visualization and their core syntax will be explained.
Section 4 describes Social Cloud experiments involved with four API functions, including the
single simulation and large scale simulations on three different types of Clouds. Results
support good performance of our proposed solution for Big Data processing. Cybernetics
with software testing steps and outputs will be presented at the end of Section 3 and Section
4. Section 5 presents four interesting topics of discussion and Section 6 sums up Conclusion
and future work.

2. 2. The Social Cloud based on BOINC project
This section is aimed at describing the Social Cloud based on BOINC (Berkely Open
Infrastructure for Network Computing) project, including approaches, architecture and its
relevance to Software Cybernetics. A Social Cloud is defined as a scalable computing
platform which can be dynamically shared amongst a group of contacts (friends) in a social
network, and resources can be heterogeneously by contacts. A Social Cloud can be benefits
from trusts between contacts and the strengthening in friendships as a result of
communications and sharing (Farkas, 2007). In contrast to Social Cloud, Virtual
Organizations (VOs) have proposed a similar approach, since VOs have policies to define the
type, membership and sharing permissions for the groups involved (Foster, Kesselman and
Tuecke, 2001). However, the Social Cloud is different from VOs in the level of trusts and
mechanism for social correction (identifying advantages and disadvantages for contacts to
participate) between groups (Chard et al., 2010, 2012). Similarly, users can be members of
multiple Social Clouds, and are not restricted to one group like VOs often do.

2.1 The BOINC project: Introduction and Motivation
According to BOINC (2013), there are at least 2.2 million BOINC participants, which are
substantially available for undertaking the Social Cloud experiment. The BOINC project was
first started as a generic volunteer computing middleware. It had over 50 supported projects,
including a few internationally active ones (Anderson and Fedak, 2006, BOINC, 2013). The
BOINC project had huge processing power of 8 petaflops, which included the super-
computer of Tainhe-I of China (Costa, Silva and Dahlin, 2010). There are other active
projects in collaboration with BOINC. GridRepublic is an account management system which
can make multiple project management for volunteers much easier. BOINC has created a
Facebook application called Progress Thru Processors (PTP) with Intel, and both
organizations will demonstrate their prototypes in due course.

Social Cloud computing offers a novel approach for leveraging social network and distributed
computing, and the successful adoption can motivate and facilitate volunteer based sharing.
Motivation for using BOINC project for the Social Cloud can be available for two different
groups, users and researchers, as follows. First, users need to find appropriate projects, decide
which projects suit them the most, set up and maintain required software in the current

3

Journal of Systems and Software

model. This can be a barrier for some users. The Social Cloud approach can remove this
barrier and allows anyone in the contact to join. Second, Social Cloud researchers can
connect to the people that can be helpful or supportive to their research. This can reduce the
amount of time for them to find partners.

2.2 Related background
This section describes the related work before introducing the approach and architecture
adopted by BOINC project (2013). Users must download the BOINC client software, register
themselves and install on the system before they can contribute. Users can choose to support
more than one project by allocating resource shares for each project. Users can decide the
extent of resource sharing and project selection before they start at their free wills. The
BOINC client downloads work units periodically from their selected projects, and processes
these units, and sends results back to the project servers and obtains credits for work
completed. If the work unit returned is validated, the user receives credit, which is a win-win
situation for both users and projects. Users will not receive credits if result is returned after
deadline or result is inaccurate. The credit system is to discourage cheating and encourage
users to donate more resources by having a sense of competitions around credits earned.

Users can manage multiple projects by using an account management system (AMS, such as
GridRepublic), which allow users to setup a “meta-account” to manage all projects. Users can
direct the BOINC client to connect to the AMS with their credentials, the account manager
works as a proxy between users and projects. To help the process to go on smoothly, BOINC
has published a set of WebRPCs to specify how account management systems and project
servers should communicate. AMS has a limitation which does not have any social features
to bring together with new and existing features. To offset this issue, current work-around is
to introduce Progress Thru Processors (PTP) application to streamline with GridRepublic
account from within the Facebook platform. However, additional work is still required to
ensure a smooth delivery. This is where our research contributions for this area.

2.3 The Architecture
The Social Cloud is a hybrid cloud based on the integration of our private clouds in
Southampton and London, community clouds adopted by BONIC projects and Facebook.
The Social Cloud can be regarded as the AMS from our Cloud resources, volunteer PCs
running BOINC clients and running of Facebook application. An important objective is to
allow users to add and remove projects within Facebook application, which can set resource
shares for projects of their choice. This information is used to communicate with project
servers and control all BOINC clients. Each associated element in the architecture is
presented in Figure 1, with the sequence of events and their explanations as follows.

1) Integrating into then regular Facebook experience.
2) The Social Cloud rendering as a Facebook application within the Facebook interface.
3) Using Facebook APIs to augment the Facebook experience for users and their contacts

with Social Cloud APIs.
4) BOINC WebRPCs communicate with BOINC project servers to create account, query user

credits and so forth.
5) BOINC Account Manager RPCs processes communication with the BOINC clients.
6) Communications between the BOINC servers and clients (not a function of this proposed

Social Cloud)
7) The entire infrastructure and experiments to validate its performance, scalability and

reliability will be presented in Section 4.

4

Journal of Systems and Software

Figure 1: The architecture of deploying the Social Cloud

2.3.1 Additional work required for Facebook

This section describes the additional work required for Facebook, which is used as a platform
to demonstrate the concept of the Social Cloud. Externally-hosted applications can run within
the Facebook User Interface, and the Facebook Graph Application Program Interface (API)
can retrieve and present the social information (Facebook, 2013). Both users and applications
should be authenticated by using the OAuth protocol on the Facebook to access the Graph
API (Facebook, 2013). This allows the Graph API to present an underlying social graph that
contains users and their connections with other nodes in the graph, which mean the
accessibility to the people, photographs, events, videos and pages can be presented in visual
and graphical forms. The combined approach of using the Graph API and the vast number of
users on the Facebook can help demonstrate the concept of the Social Cloud appropriately.

The design of API illustrated in this paper has followed the Software Cybernetics approach.
This is an important step towards Big Data software engineering. The system design includes
the following entities: User, Facebook, Social Cloud, Project Server and BOINC Client. All
these entities have straight forward interpretations. For example, user is the person using this
service. Facebook represents the Facebook API. Social Cloud is the platform provided by this
project. Project server include both BOINC server and additional servers provided by our
project. BOINC client is the client available from the BOINC project. Additional
explanations for BOINC entities are presented as follows.

2.3.2 BOINC Project servers

The Social Cloud can handle the BOINC’s published Web Remote Procedure Calls
(WebRPCs) in order to support the BOINC project. The WebRPC model has the following
assumption. First, every RPC has an HTTP GET transaction. Second, the input parameters
are represented as a set of parameterized GET arguments. As a result, the output is an XML
document which is parsed by the Social Cloud. The aim is to let users monitor their
contributions and feed their defined social engineering algorithms, which will be presented in
Section 3. Since the Social Cloud works as an AMS, its Social Cloud account manager can
support the use of WebRPCs.

2.3.3 BOINC Clients

There are two ways for BOINC clients attach to an AMS. First, data on the account manager
can bundle with the installer. Second, users can specify the AMS URL, which is the URL for
the Social Cloud. In an either way, users should authenticate on their clients to obtain
resource share preferences from the Social Cloud. Similarly, the BOINC clients use AMS
RPC to communicate with the Social Cloud AMS. Once the clients have processed the data,

5

Users Facebook

BOINC
clients

BOINC Project
servers

Social Cloud: 7

1
2

3

4

6

5

Journal of Systems and Software

it attaches itself to each of project servers directly and then pulls information from the server
for processing. Results can be presented on the clients.

2.4 System Design
To demonmstrate cybernetics for testing, UML is a suitable method for system design. Figure
2 shows a UML diagram to help explain the relationship between each entity of the
architecture, how the interactions between each entity takes place and the sequence of events
happened in the architecture. In this example, a user can add Facebook application to the
Social Cloud, permission for the required user data are requested through Facebook. Once
this step is completed, the user can generate their interest signature, which is compared
against project signatures for the user can be authenticated. He can be given suggested
projects that he would like to join.

Figure 2: The UML diagram to explain the interactions in the architecture

The project server responds and grants for credential. The user can install a BOINC client,
and then get an authorized respond to have access to all resources on the server. The user then
gets to the server again to process the request he has sent, and then gets the results. The user’s
credits before approval are sent back to Facebook. The Social Cloud queries and checks the
status, and the user gets the credits from the Social Cloud when job completion is confirmed.
Results are then published on the Facebook. The user’s status is archived in the ranking sites.
As shown in Figure 2, the relationship between all entities (user, facebook, Social Cloud,
project servers and clients) is presented. The request and response model between different
entities is illustrated. Although system design by the UML diagram is common, it does not
show the software cybernetics in system design and development. In order to demonstrate an

6

Journal of Systems and Software

improved prototype, a new cybernetics for Big Data is proposed for the Social Cloud starting
from software design.

2.5 Cybernetics System Design for the Social Cloud
This section describes the system design with cybernetics approach. The use of Facebook
API development can make software design and development relatively more convenient for
developers, but it does not use any cybernetic approach to ensure that the system design and
development being fit for purpose. Adoption of cybernetics can help process a large number
and size of data. When data processing is not going on well by the traditional approach,
problems such as downtime, delay and request failures can be minimized. This motivates us
to develop SocialMedia API, a Facebook API with cybernetics approach. There are four
functions in SocialMedia API that has been developed:

 FriendNetwork: It queries a list of friends, friend IDs and user data of the person
interacting with the Facebook API.

 LikeNetwork: It queries all the data related to “FriendNetwork” and also post data. It
then reads and post data of their friends and queries the number of likes that their
friends have made altogether.

 LikeCommentNetwork: It queries all the data related to “FriendNetwork” and also
post data. It then reads and post data of their friends and queries the number of
comments and likes their friends have made altogether.

 Posts: It queries all the data related to “FriendNetwork” and also post data. The
emphasis is to read all the text strings which display information such as IDs, types of
posts and their date and time of posting.

The first three functions use Facebook Graph API to present data in the form of
visualization. This can ensure that all results can be understood by the users more easily.
While clicking each component in the visualization, the outputs can show the related text
information. For example, if the “FriendNetwork” is used to processe data, the outputs
will display a list of circles (individual friends) and how they are linked to each other.
Each link represents the strength of the friendship. If a “dot” is selected and hovered, a
small window on the top of the particular dot can display who this person is and his ID.

2.5.1 Cybernetic system design for FriendNetwork function

This section shows the system design for FriendNetwork fuction. Figure 3 shows the system
design for FriendNetwork API which includes four stages. The user has to login the
Facebook. The first stage is to query a list of friends and their IDs from the user who has
approved that the SocialMedia API can query all these information. When the approval is
completed, the FriendNetwork function proceeds with data processing to collect and analyze
all the data related to thew user’s friends. While all these information has been collected, they
are all stored in the form of text. Text will need an available Facebook Graph API, which can
transform all the text into visualization. During this stage, however, is not always successful
depending on the number of friends and the quantity of the information the friends have. This
also partly explains why Facebook has limited to 5,000 friends per account or their APIs will
be unable to handle information. In most of circumstances (99% tested in our preliminary
experimental conditions), all the text-based information can be transformed into the graphical
presentation. When this step is successful, outputs can be in the form of visualization. In
other words, the FriendNetwork function displays dots (individual friends) linking to
different dots to represent the strength of human relationship based in the Social Cloud. The
job is completed and results will be discussed in Section 3.2. If some steps are unsuccessful,

7

Journal of Systems and Software

they will be returned to Social Cloud reprocessing of SocialMedia API and start another new
request for data processing and visualization. Cybernetic approach in system design ensures
that Big Data processing can be handled in a more efficient way.

Figure 3: The system design for FriendNetwork function of SocialMedia API

2.5.2 Cybernetic system design for LikeNetwork function

The LikeNetwork function requires all the information collected by the FriendNetwork
function plus collecting additional information that includes the number of likes and who
click likes in all the phographs and status updates posted. shows the system design for
LikeNetwork function. It starts with the same process of FriendNetwork function. If anything
goes worng, it returns Social Cloud reprocessing of SocialMedia API to start all over again.
After the completion of FriendNetwork processing, LikeNetwork function queries the
number of likes and whom have cliked likes in all the photographs and status updates
amongst the user’s list of friends. It then sends all results to Facebook Graph API for
transforming results into visualization. Similar to Section 2.5.1, if transformation is
successful, outputs will be presented in visualization which will display a full relationship
between dots and links and the text information about each dot and link. If unsuccessful, the
request will be returned to Social Cloud reprocessing of SocialMedia API to start the job
again.

Figure 4: The system design for LikeNetwork function of SocialMedia API

2.5.3 Cybernetic system design for LikeCommentNetwork function

The LikeCommentNetwork function requires all the information collected by the
FriendNetwork API plus number of likes, whom have clicked likes and whom have
comments. It is the same as LikeCommentNetwork function except adding another query for
comments. Figure 5 shows the system design for LikeCommentNetwork function with
identical first two steps as in LikeNetwork function. Upon querying information for likes, the
third step is to query number of comments and whom have entered their comments to the
photographs and status update posted by the user. When all the information have been
collected, Facebook Graph API will transform the text into visualization. Upon successful job
completion, results will show dots, links and all the relationships between dots and links with
textual explanations. If Facebook Graph does not generate successful outputs, then it sends
back to Social Cloud reprocessing of SocialMedia API to start the job request again.

8

Query user
data

Facebook
Graph API

Outputs
(visualizat
ion)

Social Cloud
reprocessing

Job compled.

Proceed to
Section 3.2

Query a list
of friends and
their IDs

Start
design

Query number
of likes and
whom click

Facebook
Graph API

Outputs
(visualizat
ion)

Social Cloud
reprocessing

Job compled.

Proceed to
Section 3.3

FriendNetworkStart
design

Journal of Systems and Software

Figure 5: The system design for LikeCommentNetwork function of SocialMedia API

2.5.4 Cybernetic system design for Post function

The first three functions of the SocialMedia API are focused on querying the required
information on the user’s list of friends and their activities such as involved in likes and
comments. Outputs are presented in the form of visualization upon successful job completion.
The forth function, Post, is focused on querying on the number of people who have posted on
the user’s account and checks on whether the user has posted on his/her own blogs. This is
important since the first three functions are focused on querying on others and Post function
needs to query both on what others did and what the user himself/herself did. The query
information will be focused on the names, links, dates, types of posts (for photos, comments
and so on) and system information. The first step is identical to FriendNetwork function to
query all the friends’ data. The second step is the same as LikeNetwork to query number of
likes and whom have clicked like. The third step is the same as LikeCommentNetwork which
queries number of comments and whom have commented. Unsuccessful outcomes can return
to social cloud reprocessing of SocialMedia API to start the job again. The only difference to
the previous three functions is that no Facebook Graph API is involved. All the outputs upon
successful job completion include strings of text and has an additional feature to summarize
the shorter version of results. See Figure 6.

Figure 6: The system design for Posts function of SocialMedia API

3. 3. Our contribution to the Social Cloud: Development of SocialMedia API
Section 2 explains the background information in regard to the use of BOINC project for our
Social Cloud project, and states that additional work is required for improving the existing
Facebook API. Mislove et al (2009) provide an overview of social network websites and
explain their measurement methodology. They assert that the web crawling technology to
process a large number of data and present them in a form that people can understand, such as
visualization, is a research challenge. They describe their method, experiments, results and
their analyses. However, their work was developed five years ago. While acknowledging
their work that visualization and analytics are challenging, we can develop based on the
Facebook API to allow more software developers to offer services which are easy to use and
redevelop. This motivates us to develop a SocialMedia API whereby the four major functions
have been introduced with their cybernetics approach. SocialMedia API can read all the

9

Query number
of likes and
whom click

Facebook
Graph API

Outputs
(visualizat
ion)

Social Cloud
reprocessing

Job compled.

Proceed to
Section 3.4

FriendNetworkStart
design

Query
comments

Query number
of likes and
whom click

Outputs
(shorter
version)

Social Cloud
reprocessing

Job compled.

Proceed to
Section 3.4

Query friends
and user data

Start
design

Query
comments

Journal of Systems and Software

required information about the user from the Facebook, process all the information on the
BOIC servers and send results back to the Facebook. This section aims to describe the
SocialMedia API, including four inclusive functions and usage scenarios.

3.1 The usage of SocialMedia API
This section describes some of the functions offered by SocialMedia API.

 SocialMedia["name"] which gives information about the social media entity. Most
of the cases, and “name” is usually Facebook by default.

 SocialMedia["name", "property"] which gives the value of the specified property
for the social media entity . This is a commonly used command to retrieve the
information for the user and process on the BOINC servers.

There are additional explanations for Facebook-related properties and they can be used for
“property” in the command including:

 "Friends": list of friends
 "FriendIDs": list of friend IDs
 "UserData": user data
 "Posts": post data
 "Feeds": feed data

Advanced features are available for user-related networks, with vertices corresponding to
users including:

 "FriendNetwork": x is connected to user y if x and y are friends
 "LikeCommentNetwork": x is connected to y if x and y like or comment on the same
post
 "LikeNetwork": x is connected to y if x and y like the same post
 "CommentNetwork": x is connected to y if x and y comment on the same post

All these features can be incorporated into SocialMedia API to instruct the BOINC servers to
retrieve the required information for the user, processes the information and presents results
on the Facebook. Four examples of using SocialMedia API will be illustrated as follows.

3.2 The first example of using SocialMedia API
This section describes results generated by both the BOINC project and the SocialMedia API
developed by us. The author undertook the evaluation process by demonstrating the results of
social network analysis, followed by their explanations. The author is the user himself to
query all the data based on his friends, friends’ IDs and related information for
FriendNetwork function of SocialMedia API. The author has four groups of contacts based in
Taiwan, Singapore, Australia and United Kingdom. This section describes the network
analysis retrieved from the author’s contacts with their explanations. The code syntax will be
explained in Section 4. The author followed the steps described in Section 2 to use BOINC
project for the use of the Social Cloud and use the SocialMedia API to demonstrate the
results. He typed in

SocialMedia [“Facebook”, “FriendNetwork”]

Results and their discussions are presented as follows.

3.2.1 Family and church

The author has the family members based in Taiwan and Singapore presented in Figure 3.
The left half of Figure 3 shows 70% of his family members in Taiwan, and 30% of the rest in
Singapore. The right half of Figure 7 shows his church members base din Singapore. The

10

Journal of Systems and Software

area of the circle shows how frequent the user (the author’s contact) has used the Facebook
application. The bigger the circle, the more frequent the user has used the Facebook. The
links represent the number of contacts between different users in the public domains. The
more links between the circles, the more frequent contacts between the users. However, this
does not include the private messages exchanged between different users due to the
restrictions of the Facebook privacy policy. There are also other contacts between the author
and the family members outside the Facebook domain, and is not recorded here.

Figure 7: Representations of the Social Cloud based on the author’s family and friends

3.2.2 Former classmates in Singapore

The majority of the author’s former classmates are based in Singapore. Figure 8 shows the
results, where the majority of the author’s former classmates uses Facebook frequently.
Despite of the size of Singapore and the ease of communications, most of them have
interacted actively between one another on Facebook. A possible reason might be due to the
availability of Facebook services on the mobile devices and their hectic work life, online
interactions have become the main factor for communications between the former classmates.

Figure 8: Representations of the Social Cloud based on the author’s former classmates

3.2.3 Friends and church members in Australia

The third group of the author’s contacts includes his friends and church members based in
Australia. This group of users is the most frequent users of the Facebook as seen in Figure 9.
Several circles are larger than the circles in other three groups. The number of online
interactions has been so frequent that circles overlap with each other. The reasons are that

11

Journal of Systems and Software

first, friends and church members in Australia have created several online communities, and
they have interacted actively on Facebook. Second, they have e-church services and
activities, which appear successfully to get many of them together. When they posted
missionary calls, it attracted many responses. When they posted the photographs and videos
taken in the church camp, it attracted many members to visit several times, to circulate
amongst their friends, to click ‘likes’ for support and to leave messages on their albums. The
smaller dots mean they are the author’s friends, but are non-Christians. Blue dots means they
are the author’s friends based in Singapore and UK, and only one of his friends in Australia
know them.

Figure 9: Representations of the Social Cloud based on the author’s friends and church
members in Australia

3.2.4 Colleagues and friends based in the United Kingdom

The last group of the author’s contact includes his colleagues and friends based in the UK.
The size of the circles and the intensity of the links vary. The most likely reason is that these
contacts were met mainly in Cambridge, Southampton and London, and at different stages of
the author’s career development. The majority of the contacts in the left half of Figure 10 are
contacts met in Southampton. Most of them have closer interactions on Facebook.

Figure 10: Representations of the Social Cloud based on the author’s colleagues and friends
in the UK

Some distant and smaller circles are contacts based in Cambridge, and the author met them
between 6 and 12 years ago (and hence, there are fewer interactions between them). The right
half of Figure 6 has the author’s contacts met in Southampton and London, and some of them

12

Journal of Systems and Software

have interactions with each other. Additionally, some of them already left Southampton and
London, and are categorized in this group because they are the contacts met in the UK. The
FriendNetwork function of SocialMedia API can query all the four groups of friends and
present them according to the locations, with all results represented by visualization as a
result of cybernetics system design.

3.2.5 The core syntax that presents “FriendNetwork” in the SocialMedia API

This section shows the core syntax that presents the author’s contact in the Social Cloud.
Referring to Table 1, the syntax “author.contact” means all the friends in the author’s
Facebook account. The syntax “contact.groups” has four groups, which were presented in
earlier section in that particular order. The syntax “contact.active” means these friends have
public interactions with the author, which mean they have clicked “likes”, or commented on
the author’s post. The syntax “contact.interact” means that all the friends who posted or
commented on the author’s post, they also interacted between themselves. In other words,
they are the author’s mutual friends. The query shows that both conditions of “contact.active”
and “contact.interact” must be met to satisfy the conditions for SocialMedia API. The order
statement means that all results should be presented in this order from Section 3.2.1 to 3.2.4.
The use of Facebook Graphics API can then present all the results in the visualized form as
presented in the earlier section.

Table 1: The core syntax for SocialMedia [“Facebook”, “FriendNetwork”]

3.3 The second example of using SocialMedia API
This section describes the second example to extract information from the Facebook by the
use of the SocialMedia API developed by the author and the use of a BOINC project. The
second example is to collect the information about the frequency and the people who click
“likes” on Facebook, and present results in the visualized format. The command is as follows:

SocialMedia["Facebook", "LikeNetwork"]

3.3.1 The result of using “LikeNetwork”

Figure 11 shows the result of the author’s contacts who click likes. This command does not
categorize all contacts with different regions but collectively analyze all the contacts who
have clicked likes. Each circle is the representation of the contacts who have clicked likes.
The size of the circle does not matter in this case. The intensity of the links between the
circles indicates the number of times that the contact click likes. Hence, if the author’s
contacts know more people amongst his contact, it can appear to have a high level of
intensity for links. Different groups of contact get together and can link to other posts,
photographs, videos and links. If the author’s contacts are not mutual friends, they are not
counted in this SocialMeida API.

13

Select author.contact from contact.groups

where (contact.active) and (contact.interact)

order by contact.groups

Journal of Systems and Software

Figure 11: Representations of the Social Cloud based on the author’s contacts who click
likes.

3.3.2 The core syntax that presents “LikeNetwork” in the SocialMedia API

Table 2 shows the core syntax behind the “LikeNetwork”. The queries select all the author’s
contacts, with four conditions to be satisfied. First, “contact.active” must be present. Second,
all the contacts should be mutual friends. Third, the syntax “contact.likes” refers to the
contact that clicked the authors’ posts. Fourth, “count” refers to the number of times the
contact have clicked likes, which is presented by the number of links between different
circles. It only queries the head counts and the frequencies of clicking likes, which means
anyone who clicked likes at anytime.

Table 2: The core syntax for SocialMedia [“Facebook”, “LikeNetwork”]

3.4 The third example of using SocialMedia API
This section describes the third example to extract information from the Facebook by the use
of the SocialMedia API developed by the author. The third example is to collect the
information about the frequency and the people who click “like” and also have commented
on Facebook to present results in the visualized format. The command is as follows:

SocialMedia["Facebook", "LikeCommentNetwork"]

3.4.1 The result of using “LikeCommentNetwork”

This command is the same as in Section 3.3 except adding another condition, any contacts
who have commented on the author’s post. The same explanations in Section 3.3.1 applies.
The only difference between Figure 11 and Figure 12 is that Figure 12 include some circles at
a distance from the centre, they are the contacts who have commented. Some contacts have
commented, but not necessarily clicked like, and vice versa. In the author’s contacts, the
majority have clicked like without leaving comments, who have much more than

 Contacts who commented without clicking like

 Contacts who commented and also clicked like

14

Select author.contact from contact.groups

where (contact.active) and (contact.interact) and (contact.likes) and (count)

Journal of Systems and Software

This explains how and why Figure 12 looks different than Figure 11 although the centre part
of the Figure appears to be highly similar. Facebook has collected the information about
whom and when click likes, and whom and when comment, and the use of this API simply
extracts the information and presents them, and the next section explains the core syntax.

Figure 12: Representations of the Social Cloud based on the author’s contacts who click like
or comment.

3.4.2 The core syntax that presents “LikeCommentNetwork” in the SocialMedia API

Table 3 shows the core syntax behind the “LikeCommentNetwork”. The queries select all the
author’s contacts, with four conditions to be satisfied. The first three conditions are identical
to Section 3.3.2. The only difference is the fourth condition, and the queries can accept any
contacts who have clicked like, or any contacts who have commented. Any contacts who
fulfills either condition, is accepted by the queries.

Table 3: The core syntax for SocialMedia [“Facebook”, “LikeCommentNetwork”]

3.5 The forth example of using SocialMedia API
The first three examples are focused on the representation of results by graphical
visualization. The Social Cloud can also provide output as strings of text, as a result of
queries from the author’s Facebook account information. The fourth example is focused on
the text retrieval. The command is SocialMedia["Facebook", "Posts"] // short

This command can query any of the author’s contacts who posted on the author’s Facebook
main page by default. The command displays the author’s basic information such as his IDs,
time of post made, the type of posts and creation time. This is dependent on a few factors:

 Number of people who posted on the author’s account
 Whether the author has posted on his account

The reason is that if there are more posts on the Facebook main page, the first post to be
queries will be the one at the bottom of the main page, without clicking links to retrieve

15

Select author.contact from contact.groups

where (contact.active) and (contact.interact) and (count) and ((contact.likes) or
(contact.comment))

Journal of Systems and Software

archived posts from Facebook and display on the author’s account. For example, if there are
as many posts as 300 and the main page can hold 100 posts (without clicking links to old
posts) by default, and query only works for these 100 posts. The syntax “//short” presents the
first query in the list. So if amongst 100 posts and the first one was posted in December 2012,
the query can retrieve the one posted in December 2012.

3.5.1 The result of using “Posts”

Table 4 shows the results of using “Posts”. The results show the all the information retrieval
from the author’s first 100 posts and display the basic information about the status and type
of his posts, the URI, creation time (for the first post) and update time (when the query was
made). The syntax “author.ID” refers to the author’s account ID on Facebook. Posts that have
either like or comments are all queries. The application is a photograph album, which has an
ID of 2305272732. All photograph albums (which have either likes or comments,
coincidentally the entire author’s photograph albums have either/both likes and comments)
are queried. The creation time for the first post was in October 26, 2012 (US East Time), and
the time for this query was made on December 26, 2014 (US East Time).

Table 4: Results of queries using SocialMedia [“Facebook”, “Posts”] // short

3.5.2 The core syntax that presents “Posts” in the SocialMedia API

Table 5 shows the core syntax behind the “Posts”, and there are four conditions to be met.
The use of the syntax “contact.active” and “((contact.likes) or (contact.comment))” is the
same as Section 3.4.2. The difference is that there are two other syntax used. The syntax
“contact.post” presents the information about which contacts posted on the author’s account.
The syntax “author.information” presents all the related information about the author, with
regard to the posts.

Table 5: The core syntax for SocialMedia [“Facebook”, “Posts”] // short

3.6 Validating four functions of SocialMedia API for Software
Cybernetics

Software validation is an important process for Cybernetics, whereby four functions of the
SocialMedia API require to pass validation. In other words, positive outputs can be produced
by following instructions described between Section 2.4 and 3.5. Figure 13 shows the
Cybernetics validations involved confirming the SocialMedia API can deliver four functions.
How validations have been undertaken and passed for Cybernetics are as follows. First, the
descriptions in Section 3.2 show that “FriendNetwork” of SocialMedia API can illustrate the

16

short[{{Actions->{{Link-
>https://www.facebook.com/author.ID/posts/10152116781813979,Name->Comment},
{Link->https://www.facebook.com/author.ID/posts/10152116781813979,Name-
>Like}},Application->{ID->2305272732,Name->Photos},<<13>>,Type-
>photo,UpdatedTime->2014-12-26T15:58:50+0000},<<459>>,{CreatedTime->2012-10-
26T13:52:47+0000,From->{ID->author.ID,Name->Victor Chang},ID-
>author.ID_10151225731333979,<<3>>,Type->status,UpdatedTime->2012-10-
26T13:52:47+0000}}]

Select author.contact from contact.groups

where (contact.active) and (contact.post) and (author.information) and ((contact.likes) or
(contact.comment))

Journal of Systems and Software

friendship status and strength of connections in the author’s networks, which have been
mainly located in Taiwan, Singapore, Australia and the UK. Second, descriptions in Section
3.3 confirm that the function of “LikeNetwork” works well. Third, descriptions in Section 3.4
assert that “LikeCommentNetwork” illustrate the visualization of the networks who have
commented with or without clicking likes. Last, the descriptions in Section 3.5 explain
positive outputs generated by “Posts”. If any function does not return positive outputs, then
they were returned to Social Cloud validation of SocialMedia API, so that the entire process
can be started again. All these examples can confirm that validations had been undertaken
and positive outcome were demonstrated prior the client-server experiments. The four
functions developed for SocialMedia API have passed the tests and results can be presented
as social network visualization.

Figure 13: SocialMedia API testing for the software Cybernetics

4. 4. The experiments used for the Social Cloud
This section describes the hardware setup to use the Social Cloud which uses the BOINC
architecture and Facebook as described in Section 2 and 3. An objective is to test the
performance of the SocialMedia API running on the Facebook and BOINC servers. Various
simulations and experiments have been performed using a high specification desktop
environment, private and public clouds. The desktop machine has 2.67 GHz Intel Xeon Quad
Core and 4 GB of memory (800 MHz). The private cloud is used and it involves four sites in
total; two in London and two in Southampton. The University of Southampton’s resources
are used for all 3D Visualization, and are also used to connect the author’s home cluster,
Greenwich and University London Computer Centre (ULCC), where hundred of servers have
been hosted. There are reliable computational connections between internal networks.

4.1 Hardware set up and experiments
The ULCC has advanced Cloud and parallel computing infrastructure with network attached
storage (NAS) service. In total it has CPUs totaling 30 GHz, 60 GB of RAM and 24 TB of
disk space in place. Experiments performed in this environment can get the better sides of
optical fiber network with 10 Gbps speed. There are two servers at London Greenwich, with
a total of 9 GHz CPU and 20 GB RAM. The two servers at University of Southampton both
have 6.0 GHz and 16 GB RAM. For the home cluster in Southampton, the total hardware
capability is 24.2 GHz CPU and 32 GB RAM. Simulations and experiments on a desktop and
two private clouds (one in Southampton and one in London) get the same results. Thus, the
execution time to complete all simulations is the benchmark to differentiate their performance
on different platforms.

4.1.1 The execution time for running the Social Cloud in the local environment

This section describes the execution time for using the Social Cloud, with the objective to
demonstrate that the Social Cloud is efficient, quick and accurate to produce good-quality
results. This is also part of cybernetic validations to ensure that all services can work well

17

LikeNetwork LikeComment
Network

Posts

Social Cloud
validation

Proceed
to
Section 4

FriendNetw
ork

Start
test

Journal of Systems and Software

following strategies from the closed-loop feedback system. The first step is to test the
execution time in each process of the SocialMedia API in the local environment. It can be
done on either server 2 at the University of Southampton or 1 of HPC servers at ULCC.
Results are running one hundred times to get the average execution time. The aim is to ensure
the cybernetic validation is robust and not affected by the distance between client-server
requests. The standard deviation is always 0.05 seconds and below and p value is less than
0.005 presented in Table 6. When p value is under 0.005, which then support the case that all
software cybernetic tests are in the controlled state, whereby the expected outcomes match
with the theories that all functions in SocialMedia API can be completed in a short period of
time with a very small error percentage. Another important experiment is to verify that all
results are repeatable. All experimental results get the same outputs as presented in Section 3.

Table 6: Execution time for each API to process in the local environment (p < 0.005)
Process within the
SocialMedia API

Average execution
time (sec)

Standard
deviation (sec)

Same results?

FriendsNetwork 1.15 0.02 Yes. As in Section 3.2.
LikeNetwork 1.03 0.02 Yes. As in Section 3.3.
LikeCommentNetwork 1.10 0.02 Yes. As in Section 3.4.
Posts 1.05 0.02 Yes. As in Section 3.5.

4.1.2 The execution time for running the Social Cloud between Southampton clusters

There are two sites that can process the Social Cloud fully, and one site is located at the
University of the Southampton (server 2) and one site is at ULCC (HPC servers). There are
two additional experiments required. The first experiment is to make a request from server 1
to server 2 within the University of Southampton. The physical location between server 1 and
2 is about 100 meters and the network upload speed is 1 Gbps during the time experiments
took place. The second experiment is to make a request in Southampton and process in
ULCC in London and will be presented in the next section. The aim is to test the execution
time while network speed becomes an influential factor. This is to ensure that when one
factor may change, it will not affect the outcome of the closed-loop feedback system, since it
has a self-rectifying system that can adjust to necessary changes to the system to obtain the
expected results. Results are running one hundred times to get the average execution time.
The standard deviation is always 0.02 seconds and p value is less than 0.005 presented in
Table 7, which confirm that all cybernetic validations are in the controlled state. Another
supporting evidence is that the results of standard deviation are identical.

Table 7: Execution time for each API to process between Southampton clusters (p < 0.005)
Process within the
SocialMedia API

Average execution
time (sec)

Standard
deviation (sec)

Same results?

FreindsNetwork 1.17 0.02 Yes. As in Section 3.2.
LikeNetwork 1.05 0.02 Yes. As in Section 3.3.
LikeCommentNetwork 1.12 0.02 Yes. As in Section 3.4.
Posts 1.07 0.02 Yes. As in Section 3.5.

4.1.3 The execution time for running the Social Cloud between Southampton and ULCC
London clusters

This experiment is to make a request in Southampton and process in ULCC in London. The
physical location between servers in Southampton and ULCC is 100 miles and the network
upload speed is 100 Mbps during the time experiments took place. Results are running one

18

Journal of Systems and Software

hundred times to get the average execution time. The standard deviation is always 0.03 and
below and p value is less than 0.005. See Table 8.

Table 8: Execution time for each API to process between Southampton and ULCC London
clusters (p < 0.005)
Process within the
SocialMedia API

Average execution
time (sec)

Standard
deviation (sec)

Same results?

FreindsNetwork 1.26 0.03 Yes. As in Section 3.2.
LikeNetwork 1.24 0.03 Yes. As in Section 3.3.
LikeCommentNetwork 1.31 0.03 Yes. As in Section 3.4.
Posts 1.36 0.03 Yes. As in Section 3.5.

Results show that despite of the network speed and physical distance difference, the
difference in execution time is still small comparing execution time in Table 8. Four
functions of SocialMedia API are designed not entirely to rely on network speed for service
delivery, since network speed is useful to send back results from the server to the client.

4.2 Large scale simulations
Experiments conducted between Section 4.1 and 4.3 represent the execution time taken per
simulation. To demonstrate the capacity and capability to handle Big Data for Software
Cybernetics (SC), large scale experiments involved with 50,000 simulations per attempt are
necessary. The objective is to simulate whether our hybrid Social Cloud can handle large
number of users simultaneously and can be scaled up easily. Four functions in SocialMedia
API can accommodate large-scale simulations simultaneously by typing

SocialMedia [“Facebook”, “FriendNetwork”, “50000”]

SocialMedia["Facebook", "LikeNetwork", “50000”]

SocialMedia["Facebook", "LikeCommentNetwork", “50000”]

This allows our APIs to simulate Social network analysis 50,000 times as if there are 50,000
users in the Social Cloud. We can start off from 5,000 simulations. Each time we perform
50,000 simulations more for four API functions: FriendsNetwork, LikeNetwork,
LikeCommentNetwork and Posts until we reach out 50,000 simulations.

4.2.1 Software Cybernetics validation for large scale simulations

This section presents the Cybernetics validation involved with large scale simulations.
Examples described in Section 2 and 3 are focused on a single job request that can
demonstrate four functions. In the real use case scenario, Facebook always processes a large
scale processing at all times while dealing with client-server requests from billions of users in
the world. The purpose of this validation is to ensure that SocialMedia API can handle a large
number of simulations at all times. The aim is to identify the maximum capacity that the large
scale simulations of the SocialMedia API can offer, which is useful for capacity testing to
know the maximum number of users can the system handle.

Figure 14 shows Software Cybernetics validation, whereby each time an increase of 10,000
simulations are used for capacity testing. All the tests will be undertaken at three times to
determine the maximum capacity. All the four functions of the SocialMedioa API can
perform up to 50,000 simulations per attempt. The four functions of SocialMedia cannot
guarantee the simulations can be successfully when over 50,000 simulations have been used.
As a result, the maximum recommended capacity is 50,000 simulations. Detailed experiments
will be presented and the execution time will be recorded in Section 4.2.3.

19

Journal of Systems and Software

Figure 14: The Software Cybernetics validation for large scale simulations

4.2.2 The MapReduce framework

This section describes the MapReduce framework used to optimize the performance of
running 50,000 simulations. As presented in Section 3, each API requires SQL queries to
make FriendsNetwork, LikeNetwork and LikeCommentNetwork functional. In other words,
SQL queries need to perform 50,000 times. If there are 50,000 operations without proper
structuring, this will make processing and networking speed slow to respond. MapReduce
framework itself has also adopted cybernetic approach. It splits the Big Data processing into
Map and Reduce. In the Map step, it collects all the data and categorizes all of them together
based on the common features. In the Reduce step, it processes the data from the Map step
and presents the final output. See Figure 15 for the illustration of MapReduce approach.

Figure 15: A MapReduce illustration for Social Cloud Big Data processing

To optimize the performance, MapReduce framework is used. Each query has a job ID and
each job ID is equally distributed to each node of the hybrid cloud, being processed and
results returned to the central node. The algorithm for our MapReduce is divided into “Map”
and “Reduce” function. By having two main processes, it speeds up the distribution of
resources and computation of Big Data processing. All the Map and Reduce steps have been
written, created and presented as map() and reduce(). This allows the ease of use since it can
save architect a significant amount of time writing code, defining libraries and compiling all
software resources each time. In summary, the Map function can read the datasets from the
social data through Facebook. Additionally, it can calculate the nearest class center to the
input data point. The output is presented by <key, value>, which includes <cluster category
ID, record at attribute vector>. We assign each query as a cluster ID. The reasons to do so is
to support the handling of data processing which is involved with thousands of records <key
j, value j> produced in Map process. The Reduce function is to calculate the new clusterID
associated with the Map function and is useful for the next round of MapReduce job. The
form of the input data <key, value> is <cluster category ID, {record}>. However, the existing
problem is that there are no considerations for software cybernetics while implementing
MapReduce framework. It is important to do so, so that errors can be rectified at the earlier
stage. Additionally, when tasks at one stage are completed, it can send back to the required
stage to check and feedback any useful information. For example, if stage 3 of the tasks are

20

Social Cloud
validation

Maximum
capacity
identified

10,000
simulations

Start
test

20,000
simulations

30,000
simulations

40,000
simulations

50,000
simulations

60,000
simulations

Journal of Systems and Software

completed and required to informed stage 4 and even stage 2 about completion of tasks, such
as ‘job’ in HPC or Cloud Computing, software cybernetics approach will have the edge over
traditional MapReduce, since there is no need to perform jobs again and find out where the
problems are. The cybernetics approach can intelligently go to the job that has failed and start
again. If this rectification process is successful, there is no need to run the entire jobs or run
batch of jobs to complete the required task. In order to demonstrate this, two functions,
cybernetics-1() and cybernetics-2() are developed. The function for cybernetics-1() is
similar to map(), with the difference in that it can do self-rectification when spotting errors
or informing to the next stage when the jobs at the current stage are completed. The function
for cybernetics-2() is similar to reduce(), with the similar aims like cybernetics-2(). Table 9
show the algorithm for both cybernetics-1 and cybernetics-2.

Table 9: The algorithm for cybernetics-1 and cybernetics-2 function

MapReduce is focused on the handling of jobs and is not designed to check and rerun any
incomplete or failed jobs. Thus, additional work is required to achieve it. This motivates us to
design a new function called “cybernetics”, which checks all incomplete and failed job and
ensure they can be processed by MapReduce. The cyberbetic step can combine the
advantages from both the Map and Reduce steps. In Table 11, the variable “whereareyou” is
to check that all job IDs have been looked after and then processed by Map step. What would
then happen if the value is equal or larger than “whereareyou”, then a rectification process,
cybernetics-1, is required to ensure all incomplete or failed jobs are processed. Table 10
demonstrate Reduce function that processes the outputs from Table 9. The main code can be
reused and is called cybernetics-2, since it only deals with the incomplete and failed jobs. To
perform job submission and completion in the cybernetics social Cloud, Table 10 shows the
core algorithms, which reduce the length of code and any unnecessary complexity involved.

21

void cybernetics-1 {

for(i = 0;i < k;i++){

if (dis(point, cluster [i]) >= whereareyou){

whereareyou = dis(point, cluster[i]);

current cluster ID = i;}}

output (current clusterID, point);}

end;

void cybernetics-2 {

while (points. Has Next()){

Point Writable current point = points. next();

Num + =current point. get num();

for(i = 0;i < reducer;i++){

sum[i] + =current point. point [i];}

for(i = 0;i < reducer;i++)

mean[i] = sum[i]/num;

out(key, mean);}

end;

Journal of Systems and Software

The main advantage includes the improvement of execution time to complete all the jobs
since less time is required to run the code before starting any job submission till the job
completion. Two additional functions, cybernetics-1 and cybernetics-2 can help processing
Big Data for social network applications. To demonstrate the performance, additional
experiments have been designed. Results will be presented in Section 4.2.

Table 10: Job submission and completing while using cybernetics approach

4.2.3 Experiments on four API functions and MapReduce for running up to 50,000
simulations

This section is focused on the performance of the four API functions between Section 3.2 and
3.5 and the MapReduce framework in Section 4.2.2. The execution time was taken three
times to get the mean values and standard deviations. This includes performing simulations
on the local environment (either one Private Cloud in Southampton, one Private Cloud in
London), between Southampton Private Cloud clusters and between Southampton and
London Private Cloud clusters in Section 4.1. We present results as follows.

Experiments of running up to 50,000 simulations

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10

No of simulations (1 unit = 5,000 simulations)

E
x

e
c

u
ti

o
n

 t
im

e
 (

S
e

c
o

n
d

s
)

FriendNetwor
k
LikeNetwork

LikeCommen
tNetwork
Posts

Figure 16: Experiments of four API functions
in the local environment

Experim ents of running up to 50,000 sim ulations

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10
No. of simulations (1 unit=5,000 simulations)

E
xe

cu
ti

o
n

 t
im

e
(S

ec
o

n
d

s)

FriendNetwork

LikeNetwork

LikeComment
Network
Posts

Figure 17: Experiments of four API functions
between Southampton clusters

Figure 16 and Figure 17 show experiment results of four API functions in the local
environment and Southampton cluster respectively. Each unit in the figure represents 50,000
simulations. All the execution time were completed under 60,000 seconds, or 16 hours and 40
minutes, for 50,000 simulations. “FriendNetwork” function took the longest and
“LikeNetwork” function took the shortest execution time in both experiments, although their
differences were within 5%. Our setup can cope with a large number of queries and data
processing.

22

void job {

cybernetics-1()

cybernetics-2()

}

end;

Journal of Systems and Software

Experiment of running up to 50,000 simulations

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10

No. of simulations (1 unit=5,000 simulations)

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d
s

)

FriendNetwork

LikeNetwork

LikeComment
Network
Posts

Figure 18: Experiments of four API functions
between Southampton and ULCC London
clusters

The percentage of delay due to latency each day

0

2

4

6

8

10

12

14

16

12-2
am

2-4 am 4-6 am 6-8 am 8-10
am

10-12
nm

12-2
pm

2-4 pm 4-6 pm 6-8 pm 8-10
pm

10-12
pm

Tim e scale

p
er

ce
n

ta
g

e
o

f
d

el
ay

 d
u

e
to

 la
te

n
cy

 (
%

)

percentage
of delay
due to
latency

Figure 19: The percentage of delay due to
latency each day

Figure 18 shows experiment results of processing four API functions between Southampton
and ULCC London clusters. Due to the distance involved, the network latency was expected
resulting in longer execution time, all of which were completed within 70,000 seconds, or
within 19 hours and 26 minutes. The network latency experiment were conducted and tested
while in the process of completing our previous project in Chang (2014). Network latency
depends on the demands on the network resources. It has the lowest points in off-peak hours
and can reach as high as 15% in peak hours as shown in Figure 19. During the peak hours,
the demands on the network requirement remain high and may affect the overall processing
speed, which explain the additional 10,000 seconds in the execution time. Additionally, all of
50,000 simulations can be processed successfully. All results have been produced and
experiments demonstrate a high level of reliability.

The next section is to present the percentage of incomplete and failed jobs with and without
the use of cybernetics-1 and cybernetics-2 functions. Incomplete or failed jobs means they are
required to be run again, resulting in a longer execution time. Results in Figure 20 show the
percentage of jobs completed for the first time with the cybernetics-1 and cybernetics-2, With
cybernetics functions, all the job stayed with 100% all the ways to 50,000 simulations. On the
other hand, the percentage of job completed for the first time dropped while the number of
simulations increased and the rate of drop was more than a linear regression. In the
experiment, 96.4% of all jobs were completed successfully for the first time, meaning that an
additional 3.6% of time was required, if the modified MapReduce could already identify
where the failed or incomplete jobs were. Assuming this was the case and the longest time to
complete 50,000 simulation was 68,801 seconds in our experimental results under repeated
tests. It means that at least 68801 x 0.0036 = 233.9 seconds would be require to run failed or
incomplete jobs should the job IDs and locations of the failed/incomplete jobs were found.

23

Journal of Systems and Software

94

95

96

97

98

99

100

101

1 2 3 4 5 6 7 8 9 10
No. of simulations (1 unit=5,000 simulations)

P
er

ce
n

ta
g

e
%

With cybernetics-
1 & 2
Without
cybernetics-1 & 2

Percentage of jobs completed with the first tim e

Figure 20: Percentage of jobs completed for the first time.

4.3 Client-server experiments for Software Cybernetics
Referring to Section 2.5 and Figure 13 in Section 3.6, this section discusses whether four
main functions of SocialMedia API have passed the client-server tests. Figure 21 shows
Software Cybernetics tests inclue the single and large-scale client-server tests for all the
functions. Single client-server tests were involved with tests in the localhost, between
Southampton clusters and between London and Southampton cluster, where all the results
could confirm the positive outcome. The large-scale simulations could use MapReduce
framework, in which the API could accommodate 50,000 simulations for all the four
functions of the SocialMedia API. Results could assert all the experiments could pass the
tests and could successfully complete Cybernetics validation for social network analyses.

Figure 21: Client-server experiments of SocialMedia API testing for Software Cybernetics

5. 5. Discussion
The Social Cloud presented in this paper can deal with the Big Data associated with social
network and also presents a way to process and present all the data. There are four topics of
discussion to support the validity of our Social Cloud.

5.1 Summary of the Social Cloud and key lessons learned
While following the steps described in Section 2 and 3, the Big Data can be managed more
easily and presented in a way that can be more easily understood by the public, without the
need to go through threads of text and a huge number of test queries undertaken by the

24

Cybernetic
validation

Successful
completion

Start

Single client-server tests for all functions Large scale simulations

Localhost Southam
pton

London &
Southampton

MapReduce 50,000
simulations

Journal of Systems and Software

BOINC servers. The use of visualization can ease the complexity to understand the
relationship and the extent of interactions between different contacts in the social network.

Section 2 describes the architecture and a solution for a low-cost yet effective way of
demonstrating the effective use of the Social Network. Our contribution is demonstrated in
Section 3 and 4 in the use of the SocialMedia API, which can present the massive and
complex data collected on the Facebook. Section 3 describes the use of the core syntax, and
there are four examples using the author’s account to illustrate. The first three examples can
query the required information and present the outputs as visualization, which also represent
the number of contacts, the frequencies they click like or comment on the author’s posts, and
their relationship between one another. The last example can query and analyze the text-
based information about the posts. All their core syntax was explained. Section 4
demonstrates the experiments focusing on the performance of running the Social Cloud, and
all API syntax can complete the processing within 1.36 seconds.

Section 4 also present experiments of running up to 50,000 simulations in which each
simulation included queries and data processing on the APIs. Four API functions:
FriendsNetwork, LikeNetwork, LikeCommentNetwork and Posts were thoroughly tested in
the local environment, between Southampton clusters and between Southampton and London
ULCC clusters. Results were recorded and showed that all the execution time was completed
in less than 70,000 seconds. “LikeNetwork” took the shortest execution time and
“FriendsNetwork” took the longest execution time in the first two large scale simulations and
“LikeNetwork” took the shortest execution time and “Posts” took the longest execution time
in the final large scale simulations. Impacts due to network latency have been explained.

The same principle can be applied to other individuals who wish to know their status and
strength of their relationship between their peers, colleagues, collaborators and suppliers.
Additionally, companies can get potential benefits from further redevelopment of this service.
Companies can learn how people like, react and comment on their latest products and
services. They can write APIs to understand the number of views, hours and other implicit
information (such as whether their allies recommend to their networks and frequency of
doing so). This may offer incentives to firms that try to apply the benefits of market research.

5.2 Cybernetics for Social Cloud and Big Data
Section 2.5 described the system design in SocialMedia API with its four functions and
explained each function, steps involved and system design diagrams. Section 3 demonstrated
how to use these four API functions with outputs in visualization and the code syntax
presented. Results support the Social Cloud and Big Data processing since thousands of
information can be processed and presented in ways that users could understood easily
without the need for further programming. Visualization was also focused on the relationship
between people with regard to the strength of friendship, likes, comments and posts given. It
showed the dynamic interactions between people without revealing the underlying complex
information but pinpointing the facts between the relationship with other networks.
Experiments in Section 4 were used to support the effectiveness of the Social Cloud. All the
execution time for single client-server requests at the local environment, between
Southampton clusters and between Southampton and ULCC clusters took 1.36 seconds and
below. Large scale simulations had been performed. To demonstrate that, Cybernetics
validation system diagram was presented to demonstrate all verification was done step by
step. MapReduce framework was the one that can process large amount of data an optimize
performance for large scale simulations upon receiving jobs to process data. But the current
MapReduce framework did no specifically deal with incomplete or failed jobs. Hence, two

25

Journal of Systems and Software

additional functions, cybernetics-1 and cybernetics-2 were designed for this purpose. The
experimental results showed that both cybernetics functions could support Big Data
processing with a low execution time and a good performance. The maximum capacity of
50,000 simulations can be identified. In other words, our API can handle 50,000 client-server
requests in real time. Experimental results also confirmed that there was an excellent
performance (low execution time) for all client-server tests.

Figure 22 shows the Software Cybernetics for validating our proposed Social Cloud and the
sequence of presenting the work in this paper. All the work presented in this paper can
support Cybernetics for Big Data as follows. Section 2 discusses the Social cloud design
illustrated by the BIONIC architecture and UML. The working design will lead to the
development of APIs. Each of the API will be tested to show whether there is a consistency
for each function such as retrieving and interpreting the data in the social network, whereby
Section 3 will present functions of each developed API and results of the API outputs.
Testing will be required for this stage and if APIs do not produce the expected output,
redesign of the Social Cloud prototype will be required. Since APIs require the client-server
experiments to validate satisfactory outputs, experiments with single client-server request and
large scale client-server requests will be used to demonstrate which will be presented in
Section 4. At this stage, external disturbances may happen, which include the interruptions of
network or failures of large scale simulations which may interrupt the entire experiments.
Vigorous tests will be required to ensure that all client-server experiments provide
satisfactory outputs. If there are, then the Social Cloud can be successfully validated. If not,
the Social Cloud will be re-investigated in the previous stages to find out the sources of
problems or reasons that can cause failures.

Figure 22: The Cybernetics for the Social Cloud

5.3 Comparison with other approaches
Comparison with related work is relevant for research and development. With regard to
Mislove et al (2009)’s view that visualization offers a research challenge, there are recent
work based on the API development to process a large number of data and present analyses in
visualization like our paper does. The aim is to simplify the process of software development
since the emphasis is on the API in the Cloud rather than software development on the
desktop connecting to the Cloud. Khalid et al (2014) propose their Mobile Social Network
systems and explain their architecture. They describe the major components and propose their
recommended framework. They introduce the rank system, explain the related algorithms and
illustrate an example. They explain their strategies and have their performance evaluation.
However, their work is on Mobile Social Networks and is not a generic model. They do not
mention any types of Mobile platforms and networks to evaluate their work, assuming their
work is relevant to the Mobile networks in the US. Canton et al (2014) explain sharing their

26

Social Cloud
Design

APIs Client-
server
experiments

Satisfactory
Outputs

Cybernetics
validation

External disturbances

Start
test

Journal of Systems and Software

infrastructure resources via Social Networks. They describe their model, architecture,
evaluation and their solution to resolve existing challenges. Experiments are based on the
number of ranked users and event number. However, they do not describe whether these
users are simulated agents or real users, although they imply they are agents. There are no
enough technical details to determine the novelty of the research, if this work is based on the
continuation of their previous research (Chard et al., 2010, 2012). Klein et al (2013) do not
work on Social Cloud but they present an interesting approach relevant to this. They develop
five algorithms known as “simulateExecution”, “initialOpProbs”, “distributeTotalProbs”,
“distributeTypeProbs” and “distributeProbs”. However, such an approach regards each query
as first-come-first-serve basis. The Social Cloud has the freedom to allow different people to
simultaneously post comments in different blogs. Although first-come-first-serve basis is a
popular option, another algorithm can be developed to determine the sequence and status of
posting, which may include rank in the community, priority and strength of friendship. All
the literatures above do not use comprehensive Cybernetics for software design,
implementation, Social Cloud Big Data processing and experiments. Results from the
experiments support that Cybernetics can be used for Social cloud and Big Data processing.
The adoption of Software Cybernetics approach illustrated in this paper can help improve the
quality of outputs since all the work recommend to use Cybernetics approach with step-by-
step approaches.

5.4 Security
We adopt the Cloud Computing Adoption Framework (CCAF) multi-layered security service,
developed in another research project, which include the combined uses of three major
security solutions: (1) access control and firewall; (2) an identity management and (3)
encryption (Chang and Ramachandran, 2016). The use of CCAF multi-layered security
services can ensure users in a secure and protected environment supported by a large number
of experiments, penetration and user testing. Additionally, all the queries and temporary files
are deleted at the end of each service to ensure the user security and prevent any data leak.
There is also a surveillance and tracking system to monitor any unusual activities and report
to the user instantly while detecting any viruses, trojans and risks that can post a threat to the
users. The use of CCAF multi-layered security to ensure all the data are protected against the
threats and alerted to the system manager for enforced protection when detecting
unauthorized attempts to gain access.

5.5 Contributions to the Big Data processing for Software Cybernetics
Social network sites generate a massive amount of data and the Big Data processing becomes
challenging as follows. First, the amount of the data collected can be huge and requires
petabytes (Bryant, Katz and Lazowska, 2010). Second, the quality of the data is important
because only useful data should be processed and analyzed (Quackenbush, 2002; Chang et
al., 2011; Chang, 2014). Third, data processing should be fast and the steps involved should
be efficient, effective and easy to handle (Han, Kamber and Pei, 2006; Cohen et al., 2009).
Fourth, the costs of processing Big Data should be as low as possible (Jacobs, 2009; BOINC,
2013). All these contribute to the requirements of modern Software Cybernetics. This paper
can demonstrate meeting four core requirements confirmed as follows.

1. The proposed solution uses the BOINC servers and Facebook (particularly the latter)
to process the Big Data, so that scientists need not manage petabytes of data directly.

2. The proposed solution is focused on processing the contacts who click like or
comment on the author’s posts. Results in visualization and core syntax have been
presented.

27

Journal of Systems and Software

3. All data processing of a single client-server request can be completed within 1.36
seconds.

4. Large scale simulations can be tested thoroughly to ensure the Social Cloud service
can accommodate a large number of requests and data processing of the user’s own
networks.

5. There is no cost involved due to the benefits of volunteer computing and Facebook.

Big Data has five characteristics: volume, velocity, variety, veracity and value (Chen et al.,
2012). Our work has clearly demonstrates velocity and variety as follows. First, the data
generates by the researcher can be in different forms and can grow significantly over a period
of time. For example, when the researcher publicized his first international workshop on
Emerging Software as a Service and Analytics 2014 (ESaaSA 2014), it generated thousands
of viewings on social network. These includes 20 clicked likes, 7 left comments, 150 views
from the network and 2,070 views from friend’s networks or strangers who have seen the
posts advertised by the researcher. Second, there are a different variety of data being posted.
This includes pictures taken during the leisure, visits and work; discussion about work,
interests, plans, opinions, religious belief, events and news; the author’s network news such
as wedding, passing PhDs, getting funding, plans, personal views and holidays. A variety of
data in different file formats has been read, processed and presented in visualization as
discussed in Section 3 and 4. The APIs in the Social Cloud should be intelligent enough to
understand the differences and make the best sense from the data, so that anyone without
technical knowledge can understand.

6. 6. Conclusion and Future Work
This paper presents our solution for the Social Cloud. We present the combined approach of
using BOINC and Facebook, where all data processing takes place. The architecture and the
related information of the BOINC project have been discussed. The creation of SocialMedia
API can ensure a smooth delivery of Big Data processing in the Social Cloud. Four examples
based on our experience are given to support the validity of Big Data processing. The first
example is focused on presenting the demographics of the author’s contacts, of who have also
interacted with one another as the author’s mutual friends. The second example is focused on
retrieving and displaying the contacts who have clicked likes on the authors’ posts and they
are mutual friends. The third example is focused on retrieving and displaying on the contacts
who have either clicked like or have left comments on the author’s posts. The fourth example
is focused on the retrieving the text-based information for those who have either clicked like
or commented. These examples are supported by the use of the core syntax presented for each
case. These four functions of the SocialMedia API have undertaken experiments to test on its
performance. Three environments were set up: the local environment, between the
Southampton clusters and between ULCC London and Southampton clusters. All processes
in SocialMedia API can be completed very efficiently within 1.36 seconds. Up to large scale
of 50,000 simulations were undertaken for four API functions. “LikeNetwork” took the
shortest execution time in three large scale simulations. “FriendsNetwork” took the longest
execution time in the first two large scale simulations and “Posts” took the longest execution
time in the final large scale simulations. Our APIs have been thoroughly tested to ensure that
large scale data processing can be completed smoothly. The proposed solution presented in
this paper can also meet the four challenges for Big Data research as presented in the
Discussion section. Our proposed solution is easy to use, being able to handle large scale
simulations and cost-free.

A comprehensive Cybernetics for Social Cloud and Big Data processing has been fully
illustrated. The four functions in SocialMedia API had followed Cybernetics for system

28

Journal of Systems and Software

design and implementation. Following MapReduce framework with the improved
“cybernetics” functions, single client-server requests and large scale simulations had low
execution time. Results demonstrated an excellent performance and 100% job completion
rate for 50,000 simulations. The benefits of doing so can ensure a high quality of outputs and
standards to be maintained, which are better off than the existing literature that do not employ
Cybernetics approach for Social Cloud and Big Data processing.

Future work may contain two streams of concurrent development. The first stream is focused
on the development of more processes offered by SocialMedia, so that it can take on more
types of data processing. Advanced mathematical models will be investigated to study how to
process more complex data, and the possibility of introducing neutral network or business
intelligence systems for our proposed Social Cloud. The second stream is focused on the
development of analyzing other social network websites such as Twitter and LinkedIn, so that
our future work can handle Big Data processing on the major social network websites. The
four functions of SocialMedia API will increase up to 200,000 simulations per attempt to
improve on the capacity management. More research and development will be continued to
ensure better algorithms can be fully incorporated with visualization and data processing
techniques.

References

Anderson, D. P., Fedak, G., 2006. The Computational and Storage Potential of Volunteer Computing,
Cluster, Cloud and Grid Computing (CCGrid), Vol. 1, May, pp 73-80.

Bai, X., Chen, Y., & Shao, Z., 2007. Adaptive web services testing. In IEEE 31st Annual International
Conference on Computer Software and Applications, COMPSAC 2007, July, Vol. 2, pp. 233-236.
British Council, 2013. Welcome to the World: Royal birth at the age of social media, article, Turkey,

July 26.
BOINC project, 2013. Online doumentation and statistics, http://boinc.berkeley.edu/, based on the

latest update on Dec. 28.
Bryant, R., Katz, R. H., Lazowska, E. D., 2010. Big-Data Computing: Creating Revolutionary

Breakthroughs in Commerce, Science and Society, technical paper, pp 1-15.
Cai, K. Y., 2002. Optimal software testing and adaptive software testing in the context of software

cybernetics. Information and Software Technology, 44(14), 841-855.
Cai, K. Y., Cangussu, J. W., DeCarlo, R. A., & Mathur, A. P., 2003. An overview of software

cybernetics. In the Eleventh Annual IEEE International Workshop on Software Technology and
Engineering Practice, September, pp. 77-86.

Canton, S., Haas, C., Chard, K., Bubendorfer, K., & Rana, O., 2014. A Social Compute Cloud:
Allocating and Sharing Infrastructure Resources via Social Networks. IEEE Transactions on
Services Computing, 7(3).

Chang, V., De Roure, D., Wills, G., John Walters, R., Barry, T., 2011. Organisational Sustainability
Modelling for Return on Investment (ROI): Case Studies Presented by a National Health Service
(NHS) Trust UK. Journal of Computing and Information Technology, 19(3), 177-192.

Chang, V., 2014. A proposed model to analyse risk and return for Cloud adoption, ISBNs:
9783659587696 (print), Lambert

Chang, V. and Ramachandran, M. 2016. Towards achieving Big Data Security with the Cloud
Computing Adoption Framework, IEEE Transactions of Services Computing, forthcoming.

 Chard, K., Caton, S., Rana, O., Bubendorfer, K., 2010. Social Cloud: Cloud Computing in Social
Networks, The IEEE 3rd International Conference on Cloud Computing, Miami, USA, 5-10 July.

Chard, K., Bubendorfer, K., Caton, S., Rana, O. F., 2012. Social cloud computing: A vision for
socially motivated resource sharing. IEEE Transactions on Services Computing 5(4), pp. 551-563.

Chen, H., Chiang, R. H., & Storey, V. C., 2012. Business Intelligence and Analytics: From Big Data
to Big Impact. MIS quarterly, 36(4), 1165-1188.

29

Journal of Systems and Software

Chen, J., Zhang, Q., & Bruda, S. D., 2009. Cybernetics in Software System Verification. In IEEE
International Conference on Intelligent Human-Machine Systems and Cybernetics, 2009.
IHMSC'09, Aug. Vol. 2, pp. 274-277.

Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., Welton, C., 2009. MAD skills: new analysis
practices for big data. Proceedings of the VLDB Endowment, 2(2), 1481-1492.

Costa, F., Silva, L., Dahlin, M., 2011. Volunteer Cloud Computing: MapReduce over the Internet,
2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd
Forum (IPDPSW), Shanghai, China, 16-20 May.

Facebook, 2013. Graph API for Developers, https://developers.facebook.com/docs/graph-api/ and
statistics, http://newsroom.fb.com/, based on the latest update on Dec. 20.

Farkas, M. G., 2007. Social Software in Libraries: Building Collaboration and Communication
Online, Information Today Inc, ISBN 978-1-57387-275-1.

Foster, I., Kesselman, C., and Tuecke, S., 2001. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations, International Journal of High Performance Computing Applications Fall 2001
15(3), pp 200-222.

Glanz, K., Rimer, B. K., Viswanath, K., 2008. Health Behavior and Health Education: Theory,
Research, and Practice, Wiley Publishers, ISBN 978-0-7879-9614-7.

Gross, R., Acquisti, A, 2005. Information Revelation and Privacy in Online Social Networks (The
Facebook case), ACM Workshop on Privacy in the Electronic Society (WPES), Alexandria, VA,
USA, Nov 7.

Han, J., Kamber, M., Pei, J., 2006. Data mining: concepts and techniques, Morgan kaufmann, ISBN
978-1-55860-901-3.

Jacobs, A, 2009. The pathologies of big data. Communications of the ACM, 52(8), 36-44.
Khalid, O., Khan, M., Khan, S., & Zomaya, A., 2014. Omnisuggest: a ubiquitous cloud based context

aware recommendation system for mobile social networks, IEEE Transactions on Services
Computing, 7(3).

Klein, A., Fuyuki, I., & Honiden, S., 2013. SanGA: A self-adaptive network-aware approach to
service composition. Services Computing, IEEE Transactions on, vol. PP, (99), 1-1.

Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., & Bhattacharjee, B., 2007. Measurement and
analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, October, pp. 29-42.

Quackenbush, J., 2002. Microarray data normalization and transformation. Nature genetics, 32, 496-
501.

Suh, B., Hong, L.C, Pirolli, P., Chi, E. H., 2010. Want to be Retweeted? Large Scale Analytics on
Factors Impacting Retweet in Twitter Network, The IEEE Second International Conference on
Social Computing (SocialCom), Minneapolis, MN, USA, 20-22 Aug.

30

	A Cybernetics Social Cloud
	Abstract
	1. 1. Introduction
	2. 2. The Social Cloud based on BOINC project
	2.1 The BOINC project: Introduction and Motivation
	2.2 Related background
	2.3 The Architecture
	2.3.1 Additional work required for Facebook
	2.3.2 BOINC Project servers
	2.3.3 BOINC Clients

	2.4 System Design
	2.5 Cybernetics System Design for the Social Cloud
	2.5.1 Cybernetic system design for FriendNetwork function
	2.5.2 Cybernetic system design for LikeNetwork function
	2.5.3 Cybernetic system design for LikeCommentNetwork function
	2.5.4 Cybernetic system design for Post function

	3. 3. Our contribution to the Social Cloud: Development of SocialMedia API
	3.1 The usage of SocialMedia API
	3.2 The first example of using SocialMedia API
	3.2.1 Family and church
	3.2.2 Former classmates in Singapore
	3.2.3 Friends and church members in Australia
	3.2.4 Colleagues and friends based in the United Kingdom
	3.2.5 The core syntax that presents “FriendNetwork” in the SocialMedia API

	3.3 The second example of using SocialMedia API
	3.3.1 The result of using “LikeNetwork”
	3.3.2 The core syntax that presents “LikeNetwork” in the SocialMedia API

	3.4 The third example of using SocialMedia API
	3.4.1 The result of using “LikeCommentNetwork”
	3.4.2 The core syntax that presents “LikeCommentNetwork” in the SocialMedia API

	3.5 The forth example of using SocialMedia API
	3.5.1 The result of using “Posts”
	3.5.2 The core syntax that presents “Posts” in the SocialMedia API

	3.6 Validating four functions of SocialMedia API for Software Cybernetics

	4. 4. The experiments used for the Social Cloud
	4.1 Hardware set up and experiments
	4.1.1 The execution time for running the Social Cloud in the local environment
	4.1.2 The execution time for running the Social Cloud between Southampton clusters
	4.1.3 The execution time for running the Social Cloud between Southampton and ULCC London clusters

	4.2 Large scale simulations
	4.2.1 Software Cybernetics validation for large scale simulations
	4.2.2 The MapReduce framework
	4.2.3 Experiments on four API functions and MapReduce for running up to 50,000 simulations

	4.3 Client-server experiments for Software Cybernetics

	5. 5. Discussion
	5.1 Summary of the Social Cloud and key lessons learned
	5.2 Cybernetics for Social Cloud and Big Data
	5.3 Comparison with other approaches
	5.4 Security
	5.5 Contributions to the Big Data processing for Software Cybernetics

	6. 6. Conclusion and Future Work
	References

