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Abstract 

The purpose of this study was to assess the reliability of a pre-loaded 1500 m treadmill time-

trial, conducted in moderate normobaric hypoxia.  Eight trained runners/ triathletes (24 ± 3 

years, 73.2 ± 8.1 kg, 182.5 ± 6.5 cm, altitude specific V̇O2max: 52.9 ± 5.5 ml·kg-1·min-1) 

completed three trials (the first as a familiarisation), involving two, 15 minute running bouts at 

45 % and 65 % V̇O2max, respectively, and a 1500 m time-trial in moderate normobaric hypoxia 

equivalent to a simulated altitude of 2500 m (FiO2 ~ 15 %).  Heart rate, arterial oxygen 

saturation, skeletal muscle and cerebral tissue oxygenation (StO2), expired gas (V̇O2 and 

V̇CO2), and ratings of perceived exertion were monitored.  Running performance (Trial 1: 

352.7 ± 40; Trial 2: 353.9 ± 38.2 s) demonstrated a low CV (0.9 %) and high ICC (1).  All 

physiological variables demonstrated a global CV ≤ 4.2 %, and ICC ≥ 0.87, with the exception 

of muscle (CV 10.4 %; ICC 0.70) and cerebral (CV 4.1 %; ICC 0.82) StO2.  These data 

demonstrate good reliability of the majority of physiological variables, and indicate that a pre-

loaded 1500 m time-trial conducted in moderate normobaric hypoxia is a highly reliable test 

of performance.   

 

 

  



 

Introduction 

The assessment of exercise performance is central to many investigations in the field of Sport 

and Exercise Science, allowing researchers to monitor the efficacy of a treatment or training 

schedule, compare different populations, and track performance over a particular time period.   

It is important to know the reliability of the performance test being applied, alongside 

accompanying physiological parameters, for similar conditions and participant cohorts, to 

allow accurate interpretation of results. This may include estimating the magnitude of a 

treatment effect, exploring individual differences, and calculating the smallest worthwhile 

effect [14].   Likewise, knowledge of protocol reliability can help inform sample size 

estimations for future investigations [14].   

 

Typically, exercise performance is assessed using a time to exhaustion (TTE) or a time trial 

(TT) exercise test.  The assessment of TTE involves exercise to volitional fatigue at a fixed 

intensity such as a percentage maximal oxygen uptake (V̇O2max), and affords the opportunity 

to monitor steady-state physiology whilst simultaneously providing an indication of 

performance response. However, TTE tests have been criticised for lacking face validity, 

inflicting participant boredom, and demonstrating poor reproducibility [18], with coefficient of 

variation (CV) values often > 25 % [18].  In contrast, TTs, which involve the completion of a 

set distance or amount of work (W) in the shortest possible time, more closely represent ‘real 

world’ competition, and typically demonstrate a coefficient of variation (CV) < 5 % [8].   

 

Exercise testing in a hypoxic (i.e. low oxygen) environment is common across a range of 

research areas.  Notably, exercise physiologists explore the effects of hypoxia on physiological 

functioning and exercise performance, or else evaluate the efficacy of interventions designed 

to mitigate the ergolytic effect of hypoxia.  This has relevance for the thousands of individuals 

ascending to altitude (i.e. hypobaric hypoxia) each year for recreational and sporting purposes.  

However, it is unclear whether protocols predominantly designed for application in normoxia 

(i.e. sea-level) are appropriate for testing unacclimatised individuals exercising in hypoxia.  

Indeed, exposure to even mild hypoxia (≥ 580 m simulated altitude) reduces V̇O2max 

[11,22,24,28] and has a deleterious effect on exercise performance [10,29,35] relative to 

normoxia.  Likewise, it remains to be established whether hypoxic exercise demonstrates 

similar reliability to sea-level tests, given, for example, the hypoxic exercise environment will 

likely be unfamiliar to most participants, and it is possible that individuals may struggle to 

correctly self-regulate their pacing in this environment [13].   

At present, the reproducibility of the hypoxic exercise response is poorly understood.  MacNutt 

and others [23] reported good reliability (≤ 10 %) of physiological and metabolic responses 

across five testing sessions involving cycling in hypoxia (FiO2 13.0 %). However, exercise 

performance was not evaluated.  The reliability of other physiological parameter may also be 

relevant during hypoxic exercise testing, yet is presently unclear.  Notably, near-infrared 

spectroscopy (NIRS) has become a popular non-invasive method of assessing tissue 

oxygenation, and has been applied to distinguish between local versus systemic effects of 

hypoxia [30,32]; identify disparate responses to hypoxia between trained and untrained 

individuals [7]; and provide mechanistic information regarding the effect of interventions 



 

designed to offset the decline in exercise performance in hypoxia [25].  Amann and colleagues 

[1] observed a CV of 1.0 % for a 5 km cycle ergometry TT in hypoxia (FiO2 15.0 %), and 

Arnold et al. [2] reported a CV of 3.9 % for a 10 km run TT in hypoxia (FiO2 15.4 %).  The 

CV values suggest similar reliability to sea-level performance tests (i.e. < 5 %) [8]. However, 

in both studies, reliability data was reported secondary to a wider investigation, and only 

involved a sub-group of participants (four and six, respectively). Likewise, reliability of 

physiological variables was not reported, and limited information was provided on participant 

characteristics, making replication difficult. To the best of the authors’ knowledge, no studies 

have assessed the reliability of a pre-loaded treadmill TT in normobaric hypoxia.   

 

Therefore, the aim of this study was to investigate the reliability of a short-duration high-

intensity (1500 m) treadmill TT performed in moderate normobaric hypoxia equivalent to 2500 

m altitude (FiO2 ~15.0 %), and pre-loaded with two, 15 minute bouts of steady-state exercise 

corresponding to low (45 % V̇O2max) and moderate (65 % V̇O2max) exercise intensities.    The 

TT was designed to provide a measure of high-intensity continuous running performance at a 

moderate altitude equivalent to that experienced by athletes on training camps or competing at 

altitude. The pre-load affords the opportunity to monitor important steady-state variables, 

which may provide useful mechanistic information to inform the performance measure.  Such 

a protocol, if sufficiently reproducible, could be used to determine the effect of acclimatisation, 

training, nutritional or other interventions on physiological response and exercise performance 

in moderate normobaric hypoxia.    

 

Methods 

Subjects 

Eight trained male runners / triathletes aged 24 ± 3 years, with a body mass of 73.2 ± 8.1 kg, 

height of 182.5 ± 6.5 cm, and maximal oxygen consumption (V̇O2max) (assessed at a simulated 

altitude of 2500 m) of 52.9 ± 5.5 ml·kg-1·min-1 volunteered to take part in this study.  The study 

received institutional ethical approval and was conducted in line with the journals ethical 

standards [12].   

 

Study overview 

Subjects attended the laboratory on four separate occasions, all of which involved exercise in 

a normobaric hypoxic facility, equivalent to 2500 m altitude (FiO2 ~ 15.0 %).  FiO2 was adjusted 

daily to account for fluctuations in barometric pressure.  The first visit to the laboratory 

involved an incremental running test to volitional exhaustion to determine V̇O2max, whilst the 

second visit involved a familiarisation trial. The third and fourth visits (Trial 1 and Trial 2) 

constituted the experimental trials, comprising a 1500 m treadmill TT preceded by two, 15 

minute steady-state exercise bouts at  45 % and 65 % of altitude V̇O2max, respectively. All 

exercise trials were performed at the same time of day to avoid any influence of circadian 

variance, and were separated by 3 – 10 days, to ensure adequate recovery.  Participants 

completed a 24 hour food diary prior to the first exercise trial, and used this to replicate their 

diet as closely as possible for all subsequent visits.  During this time period, participants 

avoided caffeine, alcohol, and strenuous exercise.  

 



 

Preliminary testing 

A two-part incremental running test was conducted on a motorised treadmill (Woodway, 

Cranlea, Birmingham, UK) [19].  Participants completed five to eight sub-maximal stages of 

three minutes duration, interspersed with one minute recovery periods during which time 

finger-tip blood samples were obtained to determine blood lactate concentrations (YSI 2300 

STAT plus, Yellow Springs, Ohio).  Running speed was increased by 1 km·h-1 each stage. The 

treadmill gradient was set to 1 %, to approximate the energetic demands of outdoor running 

[20]. Exercise was continued until blood lactate concentrations exceeded 4 mM or ratings of 

perceived exertion (RPE) reached 18.   Following approximately 5 minutes recovery, the 

second phase of the test commenced.  Running speed was fixed at the final speed obtained 

during the first part of the test, minus 2 km·h-1. Gradient was increased by 1 % every minute, 

until volitional exhaustion. Expired gas was monitored continuously throughout exercise using 

an online gas analysis system calibrated before each trial according to the manufacturer’s 

instructions (MedGraphics Ultima CPX, MGC Diagnostics, MN, USA).  Gas data was used to 

determine V̇O2max (highest 30 second average in V̇O2), and the required sub-maximal running 

speeds for the experimental trials, via regression analysis of the V̇O2-speed relationship. 

Participants were deemed to have obtained V̇O2max when at least two of the following criteria 

were met: A plateau in V̇O2 observed in the last stage [34], RER ≥ 1.15 [17],  heart rate (HR) 

within 10 b·min-1 of age-predicted maximum (220 – age), RPE ≥ 19, and blood lactate 

concentrations ≥ 8 mmol [26].   

 

Experimental protocol  

Participants completed three separate experimental testing sessions, with the first serving as a 

familiarisation trial and the following two sessions used to calculate reliability of the exercise 

protocol.   

 

Participants sat comfortably in a chair in normoxia for 15 minutes on arrival, before entering 

the normobaric hypoxic chamber, where they rested for a further 30 minutes.  The exercise 

protocol then began.  Participants ran on a treadmill for 15 minutes at 45 % V̇O2max. This was 

followed by a 5 minute rest period before a second 15 minute run commenced at 65 % V̇O2max.  

Participants rested for a further 5 minutes, after which they ran a 1500 m TT. Participants ran 

at speed approximating 80 % V̇O2max for 30 seconds, before the TT commenced. This served 

as a rolling start, to limit the time taken to reach running velocity [36].  Participants manipulated 

speed manually using the control buttons on the treadmill unit. Running speed and time were 

not visible during the TT, although feedback on distance covered was given at 200 m intervals.  

A fixed gradient of 1 % was applied throughout the exercise protocol [20].   

 

Measurements 

After entering the normobaric hypoxic chamber, and sitting quietly for 10 minutes, a resting 

expired gas sample was collected.  Expired gas was then continuously monitored throughout 

steady-state exercise via on-line gas-analysis as previously described. Breath by breath data 

obtained during the final 5 minutes of pre-exercise rest and final five minutes of each 15 minute 

steady-state exercise stage was averaged and used for data analysis.  Arterial oxygen saturation 

(SpO2) (Nellcor, Medtronic, Minneapolis, MN) and HR (Polar Electro, Oy, Finland) were 



 

recorded during the final 2 minutes of pre-hypoxic exposure rest and pre-exercise rest, during 

the final 2 minutes of each 15 minute steady-state exercise bout, and immediately post-TT.   

 

Muscle and cerebral tissue oxygenation was monitored continuously throughout the testing 

session using near-infrared spectroscopy (NIRS) (INVOS 5100C, Medtronic, Minneapolis, 

MN).  Prior to analysis, NIRS data was averaged over the final 5 minutes of pre-hypoxic 

exposure rest, pre-exercise rest, and each 15 minute steady-state exercise bout, throughout the 

entire TT, and the first 5 minutes of post-TT recovery.  The INVOS 5100C measures the 

reflection of NIR light to determine the ratio of oxygenated and deoxygenated haemoglobin at 

the measurement site.  Data is expressed as a percentage of regional oxygen saturation (StO2), 

with the measurable range between 15 and 95 %.  Little is known about the reproducibility of 

StO2 measures obtained via this device during running.  A probe was placed in the middle 

portion of the lateral gastrocnemius on the left leg, parallel to the longitudinal axis of the lower 

leg.  A second probe was positioned horizontally on the forehead, approximately 2 cm above 

the left eyebrow to measure oxygenation of the pre-frontal cortex [25].  Probes were held in 

place via elastic non-compressive bandages to prevent displacement and shield from external 

light.  Hair underneath the probes was removed prior to placement via electric clippers, to avoid 

attenuation of the NIR light.   

 

Statistical analysis 

A combined approach to assessing test-retest reliability was applied [14].  Firstly, prior to 

analysis, data was naturally log-transformed to minimise heteroscedasticity [14].  Mean values 

were compared between Trial 1 and Trial 2 to assess systematic changes using a paired t-test 

(TT data) and two-way repeated measures analysis of variance (ANOVA) (all other variables) 

using IMB SPSS Statistics version 21.0.  The degrees of freedom were adjusted in cases of 

asphericity, with the Greenhouse Geisser correction applied for ε < 0.75, and the Huynh-Feldt 

correction was adopted for ε > 0.75.  A significant difference was accepted at an alpha level of 

p < 0.05. A custom made spreadsheet was then used to calculate typical error as a CV (%) and 

intraclass correlation coefficient (ICC) [Hopkins, W.G. Precision of measurement (2011) in 

internet: newstats.org/precision.html; (01/06/2015)].  An ICC > 0.90 was considered as high, 

0.80 - 0.90 as moderate, and < 0.80 as low. Global data (i.e. reliability of data averaged 

throughout the trial) was calculated alongside time point specific data, which is relevant for 

analyses comparing mean values across an entire trial (e.g. ANOVA treatment effect).  The 

smallest worthwhile change (SWC) (0.3 x within subject SD) was also computed for 

performance data, to determine the minimum effect necessary to represent a ‘real world’ 

change [31].  As the effects of familiarisation on TT reliability are well established [3,8], only 

data from Trial 1 and Trial 2 (i.e. the test-retest) is reported. 

 

Results 

1500 m TT performance 

There was no systematic change (p > 0.05) in 1500 m run time between Trial 1 (352 ± 40 s) 

and Trial 2 (353.9 ± 38.2 s). The mean within-subject CV was 0.9 % (95 % CI: 0.6 – 1.9 %), 

and the ICC was 1.0 (95 % CI: 0.98 – 1.0).  The SWC for performance was calculated as 0.8 



 

s. Fig. 1 shows a spaghetti plot of individual 1500 m TT times and their pattern of change 

between trials.   

 

Physiological variables 

There was no significant difference between any of the physiological variables between trials 

overall or at specific measurement points (Table 1.) (p > 0.05).  Mean HR and SpO2 had the 

lowest CV (≤ 1 %) and ICC (0.98) of measured physiological variables when averaged across 

the different time points (Table 2.).  StO2 measured at the gastrocnemius muscle showed poor 

reliability across the trial (Table 1.). Further, CV increased and ICC decreased for 

gastrocnemius StO2 with running speed (Table 2).   Descriptive data of physiological variables 

are presented in Table 1. The reliability statistics for each measurement time point and global 

data are displayed in Table 2.  

 

Discussion 

Performance 

The main novel finding of the present study was that a pre-loaded 1500 m treadmill TT 

conducted in moderate normobaric hypoxia (FiO2 ~ 15 %) is a highly reliable test of running 

performance in healthy males.  The CV for 1500 m TT performance (0.9 %) is superior to 

values reported for an isolated (i.e. not preceded by a pre-load) 1500 m treadmill TT in well-

trained runners conducted in normoxia (CV: 3.3 %) [21]. Likewise, these results compare 

favourably against other preloaded treadmill TTs conducted in normoxia (CV: 1.0 – 5.0 %) [8].  

When viewed alongside the results of Amann and colleagues [1] who reported a CV of 1.0 % 

for a 5 km treadmill TT in four male runners in hypoxia (FiO2 15 % ) and Arnold et al. [2] who 

observed a CV of 3.9 % for a 10 km treadmill TT in six male runners in hypoxia (FiO2 15.4 

%), it is apparent that the addition of a moderate hypoxic stress does not necessarily affect the 

reproducibility of an endurance running performance test.  The high ICC (1.0) and low SWC 

(0.8 s) also suggest this is an appropriate performance test for intervention studies conducted 

in hypoxia, allowing the detection of small but potentially meaningful performance changes.   

 

Physiological measurements 

Reliability statistics were also calculated for physiological parameters commonly monitored 

during exercise in hypoxia.  There were no systematic changes in physiological variables 

between Trial 1 and Trial 2.  This is perhaps not surprising, as significant adaptation/ 

acclimatisation is unlikely to occur following such a brief period of exercise in moderate 

normobaric hypoxia [23].  Reliability statistics averaged across the whole experimental trial 

for HR, RPE, V̇O2, V̇CO2 and SpO2 are good (CV: ≤ 4.2, ICC: ≥ 0.87), and comparable to 

those reported during cycling (CV: ≤ 6.0 %, ICC: 0.89) [37] and running (CV: < 5.0 %, ICC: 

>0.9) [33] TTs conducted in normoxia.      

 

This is the first study to investigate the reliability of StO2 measures obtained from the INVOS 

5100C during running.   The assessment of StO2 may of value to the researcher or practitioner 

during hypoxic exercise, by helping distinguish between local and systemic oxygen availability 

[30,32].  This parameter may also be useful for comparing tissue oxygenation between different 

populations [7], and evaluating the efficacy of interventions designed to minimise the decline 



 

in exercise performance in hypoxia [25].  The INVOS 5100C was primarily designed for use 

in a clinical environment  [9], but has been used to monitor recovery from a mixed exercise 

protocol [6] and during arterial occlusion, with and without the addition of dorsiflexion 

exercise [27].  Previous investigations conducted in normoxia have reported good reliability 

across a range of resting StO2 values using this device [15,16].   

 

Average CV for cerebral tissue StO2 across the experimental trial was good (4.5 %) and at 

specific time-points (< 7.0 %), although ICC ranged from low to moderate (0.66 – 0.85).  There 

was no apparent decrement in reliability statistics for cerebral tissue StO2 measurements during 

exercise (Table 2.). In contrast, the reliability of StO2 at the gastrocnemius was highly variable.  

During low intensity exercise (45 % V̇O2max) (CV: 5.0 %, ICC: 0.96), gastrocnemius StO2 

showed superior reliability to that previously reported for running at lactate threshold (ICC: 

0.87) and V̇O2max (ICC: 0.88) [4], and comparable to during a 5 km TT (CV: 3 %, ICC: 0.94) 

[33] in other NIRS devices.  However, variability increased during moderate intensity exercise 

(CV: 10.9 %, ICC: 0.88) and TT (CV: 28.8 %, ICC: -0.18), suggesting decreasing reliability at 

faster running speeds. Considerable muscle deformation during high-intensity running likely 

changed the pathlength of NIR light through the muscle, leading to motion artefacts which may 

have been misinterpreted as alterations in the relevant chromophore (i.e. oxyhaemoglobin and 

deoxyhaemoglobin) concentrations [5].  Anecdotally, there was also regular loss of signal 

during high-intensity running, probably due to separation of the NIRS probe and skin, which 

may have introduced further variability into the NIRS signal.  This suggests an unsuitability of 

this device during high-intensity running, when trying to measure StO2 at the gastrocnemius, 

as considerable measurement variability would likely mask any changes in StO2 subsequent to 

an intervention.  Whether there would be improved reliability at a different muscle group or 

non-exercising muscle is yet to be established. There may be a viable role for this device in 

monitoring changes in cerebral tissue StO2, and gastrocnemius StO2 during resting/ low-

intensity exercise.   

 

Interestingly, reliability appeared to be better for both resting cerebral and gastrocnemius tissue 

StO2 in hypoxia relative to normoxia (Table 2).  This is puzzling, but may be related to the 

duration of rest prior to measurement.  Pre-exposure measurements were taken after 10 minute 

of rest, which was assumed to be sufficient to provide a consistent baseline value.  Conversely, 

pre-exercise measurements were preceded by 25 minutes of rest in hypoxia, deemed necessary 

to elicit a physiological response to the low oxygen environment.  The longer period of rest 

may have allowed a more consistent resting value to be obtained. 

 

Conclusion 

The current research suggests that a pre-loaded 1500 m treadmill TT conducted in moderate 

normobaric hypoxia is a highly reliable test of running performance in trained men.  The 

majority of physiological variables demonstrated good reliability.  Caution is advised when 

applying the INVOS 5100C to monitor StO2 at the gastrocnemius during higher-intensity 

running, given the large measurement variability observed in this study.  Together with the data 

of other investigations, this study suggests that the addition of a hypoxic stimulus does not 

necessarily compromise the reliability of physiological and performance measures obtained 



 

from a pre-loaded TT.  Therefore, this protocol is suitable for use in studies evaluating the 

effects of acclimatisation, training, nutritional or other similar interventions on physiological 

responses and exercise performance conducted in trained men exercising in moderate 

normobaric hypoxia.  
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Table 1. Descriptive statistics of physiological variables calculated at individual time points and globally throughout the experimental trials. 

Data is presented as Mean ± SD.  

 Pre-exposure Pre-exercise 45 % V̇O2max 65 % V̇O2max TT Post-exercise Global data 

 Trial 1 

 

Trial 2 Trial 1 

 

Trial 2 Trial 1 

 

Trial 2 Trial 1 

 

Trial 2 Trial 1 

 

Trial 2 Trial 1 

 

Trial 2 Trial 1 

 

Trial 2 

HR  

(b·min-1) 

62 ± 8 62 ± 7 63 ± 8 65 ± 8 105 ± 

14 

104 ± 

13 

147 ± 

17 

148 ± 

15 

180 ± 

11 

182 ± 

9 

- - 112 ± 

49 

112 ± 

49 

RPE  

(AU) 

- - - - 10 ± 2 10 ± 1 13 ± 2 12 ± 1 - - 19 ± 2 19 ± 2 14 ± 4 14 ± 4 

V̇O2  

(ml·kg-1·min-1) 

- - 5.0 ± 

0.5 

5.0 ± 

0.8 

19.4 ± 

5.8 

19.4 ± 

5.7 

34.8 ± 

2.6 

35.2 ± 

2.9 

- - - - 19.7 ± 

12.9 

19.9 ± 

13.1 

V̇CO2  

(ml·kg-1·min-1) 

- - 5.0 ± 

0.7 

5.0 ± 

0.7 

19.0 ± 

6.6 

18.8 ± 

7.0 

35.0 ± 

3.1 

34.6 ± 

2.7 

- - - - 19.7 ± 

13.2 

19.4 ± 

13.0 

SpO2  

(%) 

97 ± 1 98 ± 1 91 ± 2 91 ± 2 85 ± 5 85 ± 5 83 ± 3 82 ± 4 - - 78 ± 3 78 ± 3 87 ± 7 87 ± 8 

Gastroc StO2  

(%) 

68 ± 8 66 ± 

10 

65 ± 8 65 ± 9 63 ± 

12 

63 ± 

12 

54 ± 

13  

52 ± 

12 

51 ± 8 53 ± 

16 

72 ± 

10 

73 ± 

10 

62 ± 

11  

60 ± 

12 

Cerebral StO2  

(%) 

72 ± 7 71 ± 6 63 ± 5 66 ± 6 59 ± 4 62 ± 5 59 ± 5 60 ± 5 52 ± 7 54 ± 6 63 ± 7 63 ± 7 61 ± 8 63 ± 8 

s = seconds, b·min-1 = beats per minute, AU = arbitrary units, SpO2 = arterial oxygen saturation, RPE = ratings of perceived exertion, V̇O2 = oxygen consumption, V̇CO2 = expired carbon dioxide, Gastroc StO2 = 

regional oxygen saturation of the gastrocnemius, Cerebral StO2 = regional oxygen saturation of the pre-frontal cortex, CV = coefficient of variation, ICC = intraclass correlation coefficient, TT = time-trial. 

  



 

Table 2. Reliability statistics of physiological variables calculated at individual time points and globally throughout the experimental trials. 

 Pre-exposure Pre-exercise 45 % V̇O2max 65 % V̇O2max TT Post-exercise Global data 

 CV  

(%) 

ICC CV  

(%) 

ICC CV  

(%) 

ICC CV  

(%) 

ICC CV  

(%) 

ICC CV  

(%) 

ICC CV  

(%) 

ICC 

HR  

(b·min-1) 

3.5 0.95 3.8 0.95 1.5 0.99 1.4 0.99 - - 1.2 0.97 1.0  

 

0.98  

 

RPE  

(AU) 

- - - - 12.9 0.58 5.0 0.89 - - 3.6 0.91 4.2  

 

0.87  

 

V̇O2  

(ml·kg-1·min-1) 

- - 9.2 0.70 6.0 0.97 4.1 0.80 - - - - 4.0  

 

0.93  

 

V̇CO2  

(ml·kg-1·min-1) 

- - 10.2 0.62 4.4 0.99 4.4 0.80 - - - - 4.0  

 

0.96  

 

SpO2  

(%) 

0.8 0.51 0.7 0.95 0.6 1.0 2.2 0.81 - - 1.3 0.95 0.5  

 

0.98  

 

Gastroc StO2  

(%) 

9.4 0.58 5.3 0.89 5.0 0.96 10.9 0.88 28.8 -0.18 3.3 0.97 10.1 0.71  

 

Cerebral StO2  

(%) 

6.2 0.66 4.2 0.85 4.3 0.75 5.2 0.71 6.6 0.79 6.9 0.74 4.5  

 

0.80  

 
s = seconds, b·min-1 = beats per minute, AU = arbitrary units, SpO2 = arterial oxygen saturation, RPE = ratings of perceived exertion, V̇O2 = oxygen consumption, V̇CO2 = expired carbon dioxide, Gastroc StO2 = 

regional oxygen saturation of the gastrocnemius, Cerebral StO2 = regional oxygen saturation of the pre-frontal cortex, CV = coefficient of variation, ICC = intraclass correlation coefficient, TT = time-trial.   

 



 

 

Figure 1. Spaghetti plot of individual performance times (dashed lines) and mean TT time 

(solid line) for 2 repeat pre-loaded 1500 m running TTs.  
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