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This work is concerned with the colour prediction of viscose fibre blends where two 
conventional prediction models (Stearns-Noechel and Friele) and two neural network 
models were compared. A total of 333 blended samples were prepared from eight 
primary colours including two-, three- and four-colour mixtures. The performance of the 
prediction models was evaluated using 60 of the 333 blended samples. The other 273 
samples were used to train the neural networks. It was found that the performance of 
both the neural networks exceeded that of both conventional prediction models. When 
the neural networks were trained using the 273 training samples the average CIELAB 
colour differences (between measured and predicted colour of blends) for the 60 
samples in the test set were close to 1.0 for the neural network models. When the 
number of training samples was reduced to only 100, the performance of the neural 
networks degraded but still gave lower colour differences, between measured and 
predicted colour, than the conventional models. The first neural network was a 
conventional network similar to that which has been used by several other researchers; 
the second neural network was a novel application of a standard neural network where 
rather than using a single network, a set of small neural networks was used, each of 
which predicted reflectance at a single wavelength. The single-wavelength neural 
network was shown to be more robust than the conventional neural network when the 
number of training examples was small. 
 
 
Introduction 
 
There has been a long history of work to 
derive simple models that can accurately 
predict the reflectance factors of mixtures 
of coloured fibres. The simplest model is 
given by Equation 1 whereby the 
reflectance of the mixture RM(λ) at 
wavelength λ is simply the weighted   
average of the reflectance factors of the 
two components R1(λ) and R2(λ), thus 
 

RM(λ) = c1R1(λ) + c2R2(λ) (1) 

 
where c1 and c2 are the fractional amounts 
of the two components and c1 + c2 = 1. 
Equation 1 can easily be extended for 
mixtures of more than two components. 
However, it is commonly acknowledged 
that Equation 1 is a poor predictor of the 
reflectance of a fibre blend and most 
approaches tend to seek functions that 
can transform the reflectance so that an 
additive model (such as Equation 1) can 
be improved.  
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In 1944 an empirical method for 
predicting the colour of wool fibre blends 
was proposed by Stearns and Noechel [1]. 
The reflectance factors were transformed 
using a function fSN which can then be 
used additively to predict blending 
(equation 2). Thus, 
 
fSN(R) = (1-R)/(bR – 0.01b + 0.01) (2) 
 
where the dimensionless constant b was 
found to be 0.15 for fine wool, but was 
expected to vary for different fibre types.  

In 1952 Friele [2] introduced a less 
empirical model using a function fF  that 
was related to the Kubelka-Munk theory, 
thus, 
 

fF(R) = exp(-σ(1-R)2/2R) (3) 
 
where σ is the Friele parameter and R is 
the reflectance factor. According to 
Philips-Invernizzi et al. different values of 
the Friele parameter should be assigned 
for different fibre types and they cite 
example values in the range 0.094 to 
0.300 [3]. In one study of Friele’s 
equation, Philips-Invernizzi et al. used 17 
dyed cotton fibres as primaries and 
attempted to match 28 targets, defined by 
CIELAB values, using three-component 
blends [3]. The average CIELAB error of 
the matches was about 5.7 CIELAB units. 
It is possible that the constraint of using 
only three components in the blends could 
have been a factor in the relatively large 
errors obtained. 

Philips-Invernizzi et al. also explored 
the Stearn-Noechel model [4]. They used 
thirteen coloured fibres as primaries and 
attempted to predict the colour of 234 
two-component blends. For cotton blends 
they recommended a b value of 0.109. In 
this work the coefficient b was also 
optimised in a number of ways. Excellent 
results were reported when b was 
optimised separately for each blend. It 
was noted that this was not a practical 
approach, but it does hint at the 
possibility of improved predictions if b 
could be shown to vary systematically 
with, for example, the CIELAB coordinates 
of the blend so that simple models that 
predict b based on the colour of the blend 

could be derived. Philips-Invernizzi et al. 
also considered an approach where b was 
optimised for each wavelength and this 
produced a systematic dependent of b on 
wavelength [4], thus  
 

b = (0.12λ + 42.75)/1000 (4) 
 

The traditional single-constant 
Kubelka-Munk model has been shown to 
be ineffective for predicting the colour of 
fibre blends [5] but it has been 
demonstrated that a two-constant model 
can be effective [6].  In one study, nine 
coloured fibres were denoted as primaries 
and were used to generate 42 arbitrary 
blends. A two-constant Kubelka-Munk 
model was used to predict formulations 
for each of the 42 blends and the average 
colour difference between the measured 
blends and the predicted formulations 
was 1.6 CIELAB units [5]. Using the same 
data, a Friele model (using a parameter σ 
of 0.22-0.24) exhibited an average colour 
difference of 2.7 CIELAB units and a 
Stearns-Noechel model (using a 
parameter b of 0.09) exhibited an average 
colour difference of 2.4 CIELAB units.   

Recently, Song et al. developed a 
spectrophotometric colour-matching 
algorithm based on the Stearns-Noechel 
model and used it to predict recipes for 48 
viscose blends (36 three-component 
blends and 12 four-component blends). 
The constant b was optimised. For three-
component blends the best performance 
was found when b = 0.09 and the average 
colour difference between the average 
and predicted colours was 0.56 CIELAB 
units. For four-component blends the 
optimum value of b was in the range 0.03 
to 0.06 and the average colour difference 
was 1.02 CIELAB units [7]. 

Within the field of neural networks, 
Thevenet et al. used neural networks to 
model colour changes that take place after 
the spinning process [8], and Furferi and 
Governi used a neural network to correct 
the spectral output from a Stearns-
Noechel model [9]. However, the general 
use of neural networks to model 
transformations between colour spaces is 
more than twenty years old.  
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Most colour applications of neural 
networks are based on multi-layer 
perceptron feed-forward networks. These 
networks are described in detail by 
Shamey and Hussain but essentially map 
an input vector to an output vector via a 
hidden layer of processing units [10]. The 
values of the weights (free parameters) in 
the network are determined by 
optimisation using a training set of input-
output examples. Bishop et al. used a 
neural network to predict dye 
concentrations (for a three-dye system) 
from CIELAB coordinates [11]. However, 
apart from in special cases, it is almost 
always better [12] to use the neural 
network to predict colour from recipes 
(analogous to the way in which Kubelka-
Munk models, for example, operate) 
rather than attempting to predict recipes 
from colour directly.  Westland used a 
neural network to predict spectral 
reflectance for mixtures of six printing 
inks printed on white card [12]. A total of 
123 samples were used to train the neural 
network and the performance of the 
network was then tested on 40 additional 
samples. The network outperformed a 
two-constant Kubelka-Munk model when 
the number of units in the hidden layer 
was 7 and when all of the available 
training data were used. It was shown that 
performance deteriorated as the number 
of training samples was reduced [12].  

One problem with most of this earlier 
work with neural networks is that the 
number of training cases (examples that 
are used to optimise the weights in the 
network) is less than or equal to the 
number of weights (free parameters in the 
network) in the network.  Unless the 
number of training examples is large, the 
network may over-train (this is where it 
fits the training data well but has poor 
generalisation). Sarle recommends that in 
general there should be at least 30 times 
as many training cases as there are 
weights in the network [13]. However, 
Sarle also states that in some cases a ratio 
of 30:1 for training cases to weights may 
not be sufficient but that, in some 
situations, a ratio of 5:1 may suffice. Sarle 
also notes that “training a network with 
20 hidden units will typically require 

anywhere from 150 to 2500 training cases 
if you do not use early stopping or 
regularization” [13]. Consider a network 
that attempts to predict spectral 
reflectance at 31 wavelengths for 
mixtures of eight colorants and which has 
7 units in the hidden layer; the number of 
free parameters in the network would be 
(9 × 7) + (8 × 31) = 311 (each of the 7 
hidden units receives weighted input from 
each of the 9 input units and the bias unit 
and each of the 31 output units receives 
weighted input from each of the 7 hidden 
units and the bias unit). Even using Sarle’s 
lower limit of a ratio of 5:1 this would 
require over 1500 training cases [13].  

The problem of over-training when 
using back-propagation neural networks 
for colour problems has been previously 
noted [14]. Table 1 reviews some colour-
related uses of neural networks and 
shows that the number of training cases is 
almost always inadequate compared with 
the size of the network. Indeed, in only 
three cases [18, 20, 22] did the number of 
training examples exceed the number of 
weights in the network and these were 
both for colorimetric problems rather 
than a spectral problem. When spectral 
data are considered and either the input 
or output layer contains (typically) 31 
units and the number of weights in the 
network is necessarily large, it is very 
difficult to satisfy Sarle’s condition [13] 
that the number of training examples 
should be much larger than the number of 
weights in the network. 

Another potential problem is that using 
networks to predict spectral data from 
colorant concentrations, whereby the 
network is treated as a ‘black box’, is 
arguably naïve. The reason for this is that 
almost a century of research into colour 
prediction (using, for example, Kubelka-
Munk theory) reveals that the reflectance 
factors at one wavelength can be 
computed independently of those at other 
wavelengths (with notable exceptions 
such as fluorescence). 

The novel feature of the work in this 
paper is to use a separate neural network 
for each wavelength; we will refer to this 
as the single-wavelength neural network 
model. Thus, rather than using a single 



Authors’ Copy 

Coloration Technology 

network to predict 31 outputs, 31 
networks are used to each predict a single 
output. 
 
Table 1 Examples of network sizes (and 
number of training samples) in the literature 
 
Size of 
network 

Number 
of 
weights 

Number 
of 
training 
examples 

Source 

3-8-16-3 227 30 Bishop et al. [11] 

3-41-3 290 1613 Tominaga [18] 

4-10-31 391 283 De M Bezerra  

and Hawkyard [21] 

6-7-31 297 123 Westland [12] 

6-5-31 221 75 Westland et al. [15] 

3-16-16-16-16 880 15 Dupont [19] 

3-18-3 129 166 Cheung et al. [20] 

31-25-31 1606 400 Furferi and  

Governi [9] 

3-5-3 38 300 Jawahar et al. [22] 

31-4-3 143 26 Sennaroglu et  

al. [23] 

8-10-10-4 244 196 Kan and Song [16] 

3-10-15-5 285 130 Hung et al. [17] 

 
 

This representation has a substantial 
impact on the ratio of training examples to 
weights. Consider the simple example 
described earlier where there are 8 
colorants and the spectra are to be 
predicted at 31 wavelengths, and imagine 
that the number of hidden units in the 
network is 7. The number of weights in 
the network is 9 × 7 + 8 × 31 = 311. 
Imagine now that there are 200 training 
examples. It is clear that the number of 
training examples (200) is inadequate for 
the size of the network (311 weights) if 
we accept Sarle’s recommendations. Now 
consider what happens if 31 separate 
networks are used, each one predicting 

the reflectance factor at a single 
wavelength. Assuming that each of the 
small networks will still have 7 hidden 
units, the number of weights in each of the 
networks is now 9 × 7 + 8 × 1 = 71. 
However, each network still has 200 
training examples and therefore the ratio 
of training examples to weights is now 
approximately 3:1. In practice, the benefit 
of predicting reflectance at each 
wavelength separately will be even 
greater than in this example since the 
number of hidden units required to 
predict reflectance at a single wavelength 
is likely to be fewer than those required to 
predict reflectance at 31 wavelengths.  

In this paper, a set of fibre blends of 
known composition and known spectral 
reflectance is used to evaluate this new 
neural approach. For comparison, a 
standard neural network approach and 
variants of the Friele and the Stearns-
Noechel models are also implemented to 
enable direct comparison. 
 
Experimental 
 
Sample Preparation 
 
Pre-coloured spun-dyed viscose staple 
fibre (1.7 dtex with fibre length of 50 mm) 
was provided by Lenzing AG [24]. To 
produce this spun-dyed fibre, mixtures of 
pigments were added to the viscose spin 
solution during the manufacture of the 
fibre to become physically entrapped as 
the fibre is stretched and dried during the 
extrusion process.   

Spun-dyed coloured fibre was 
provided by Lenzing [24] in eight different 
colours which will be referred to in this 
paper as primaries. The number of 
primaries used was somewhat arbitrary 
and was determined by the fibre made 
available for the project. The colours 
chosen were also randomly selected. 
Table 2 shows the CIELAB colour 
coordinates for each of the primaries that 
were used and Figure 1 shows the 
position of these primaries in CIELAB 
colour space. 
 
Table 2 Examples of network sizes (and 
number of training samples) in the literature 
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Primary 
Number 

L* a* b* 

1 95.72 -0.21 1.56 
2 13.87 -0.03 -0.05 
3 71.36 35.82 1.06 
4 74.34 28.66 57.84 
5 82.67 14.42 79.38 
6 87.84 4.50 80.48 
7 70.52 2.13 -23.88 
8 42.48 27.89 -26.90 
 
 

 
Figure 1 The position of the eight primaries in 
CIELAB colour space. The colours of the 
symbols show the approximate colours of the 
primaries. 
 

A total of 333 samples (comprising of 
the 8 primaries and 325 blended viscose 
fibre samples prepared using 
combinations of 2, 3, and 4 primaries) 
were prepared. There were 52 (16%) 2-
primary, 116 (36%) 3-primary and 157 
(48%) 4-primary mixtures.  

In making the fibre blends, careful 
preparation and handling was essential 
for accurate colour measurement [6, 25]. 
The fibre was first conditioned (room 
temperature of 20°C and relative humidity 
of 65 ± 5 %) for 48 hours and was then 
weighed to 2 decimal places. The fibre 
was then opened by hand, taking care to 
distribute the different colours of the 
blend evenly, in a sample area of 210 mm 
x 148 mm before being passed three times 
through a Tathams small-sample carding 
machine. After the first and second pass 
through, the parallel batt was rotated 90°. 
The carding machine was cleaned of loose 
fibre between every sample in order to 
minimise fibre cross-contamination 
between samples.  
 

After carding, the spectral reflectance 
of each blended sample was measured 
using a Spectraflash® 600 PLUS 
spectrophotometer (100% UV, specular 
component excluded, large aperture view, 
optical geometry of d/8°). Reflectance 
factors at 35 wavelengths (10-nm 
intervals between 360 nm and 700 nm) 
were then exported into MATLAB for data 
analysis, comparison and conversion to 
CIELAB (D65 illuminant, 1964 CIE 
standard observer) coordinates. Figure 2 
shows the positions of the 333 samples in 
the a*-b* plane of CIELAB colour space 
(the colours of the data points represent 
sRGB values of the samples). 
 
 

 
Figure 2 The position of the 333 samples in 
the a*-b* plane of CIELAB colour space. The 
colours of the symbols show the approximate 
colours of the samples.  
 
Evaluation of models 
The 333 samples were randomly split into 
two sets, a training set (273) and a test set 
(60). The training set was used to 
determine the parameters of the Stearns-
Noechel and the Friele models and to 
optimise the weights in the artificial 
neural networks. Therefore, the same set 
of the samples (the test set) was used to 
evaluate performance of all of the models. 

The Stearns-Noechel model was 
implemented using Equation 2 and the 
value of b was optimized to give the 
smallest value of CIELAB ∆E for the 
training set.  The Friele model was 
implemented using Equation 3 and the 
value of σ was also optimised to give the 
smallest value of CIELAB ∆E for the 
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training set. Optimisation was performed 
by exhaustive search over the range 0.01-
0.4 in steps of 0.01 for both parameters.  

The neural network architecture used 
in this study is known as a multi-layer 
perceptron (MLP) network and was 
implemented using MATLAB (2012a) and 
its associated neural network toolbox 
[27]. This architecture has an input layer 
of processing units, a hidden layer of 
processing units, and an output layer of 
processing units. The number of units in 
the input layer was determined by the 
dimensionality of the input vector (in this 
case it is 8 since there are 8 primaries). 
The sum of the input vector in every case 
was 1 because the input unit for each 
primary was the proportional amount of 
that primary in the blend.  The number of 
units in the output layer was determined 
by the dimensionality of the output vector 
(this was 35 in the case of the standard 
neural network and 1 in the case of the 
singe-wavelength neural network). The 
reflectance factors at each wavelength 
were represented in the range 0-1. The 
number of units (N) in the hidden layer 
was varied. The standard neural network 
attempted to find a relationship between 
the 8-dimensional vector of colorant 
proportions (input) and the 35-
dimensional vector of corresponding 
reflectance factors (output). The single-
wavelength neural network used 35 
separate networks, each one predicting a 
single output corresponding to one of the 
35 wavelengths for the reflectance 
factors; each single-wavelength network 
therefore had 8 input units, N hidden 
units, and 1 output unit.  

In an MLP network each of the units of 
a layer performs a transfer function on its 
input to achieve an output.  The input to 
each unit in a layer is the weighted sum of 
the outputs of the units in the previous 
layer. The transfer function for the hidden 
units was the tan-sigmoid function. 
Specifically, for an input value x, the 
output O(x) is given by the following 
expression: 
 

O(x) = (ex – e-x)/(ex + e-x) (5) 
 

The transfer function of the input layer 
and the output layer is a linear identity 
function thus: 
 

O(x) = x   (6) 
 

When each network is created the 
values of the weights are initially set to be 
random numbers. The weights are 
changed during the training process to 
reduce the error between the target 
output vectors and the actual output 
vectors. In this paper the Levenberg-
Marquardt training method [26] was used 
and the network was trained until one of 
the progress parameters was fulfilled 
(Table 3). The initial settings for the 
adaption rate (MU) was 0.001 (the default 
setting in the MATLAB toolbox).  
 
Table 3 The progress parameters for the 
standard neural network using the built-in 
MATLAB toolbox settings 
 
Progress parameter Stopping Criteria 

 
Epoch Maximum of 1000 
Time Unlimited 
Performance Unlimited 
Gradient Minimum of 1×e-5 
MU Maximum of 1×e10 
Validation checks  Maximum of 6 
 
 

The networks were trained with 1, 3, 5, 
7, 9, 10, 15, 20, 25, 30, 35 and 40 hidden 
units. Although there were several criteria 
for the training (weight optimisation) of 
the network to stop, generally, the 
training would most commonly stop when 
the minimum gradient (1×e-05) was 
reached.  

The single-wavelength neural network 
used 35 separate networks, each one 
predicting a single output corresponding 
to one of the 35 wavelengths for the 
reflectance factors. Each network 
therefore had 8 input units, N hidden 
units, and 1 output unit and was 
implemented using MATLAB’s ‘Neural 
Network Toolbox™’ [27]. Figure 3 
illustrates the network topography with 2 
hidden units for one particular 
wavelength (in this case 360 nm).  
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Figure 3 Schematic diagram to show the 
single-wavelength network structure (in this 
case for 360 nm) 
 

The performance of all of the models 
was evaluated by calculating mean 
CIELAB colour differences. When this was 
done for the training set of samples it is 
referred to as a training error and when 
this was done for the test set of samples it 
is referred to as a testing error. 
 
Results 
Figure 4 shows how the training error 
changed with variation in the parameter b 
for the Stearns-Noechel model. Optimal 
performance (mean CIELAB ΔE = 2.92) 
was obtained with b = 0.10. When the 
Stearns-Noechel model (b = 0.10) was run 
with the testing samples the testing error 
was 3.05 CIELAB ΔE. 

Figure 5 shows how the training error 
changed with variation in the parameter σ 
for the Friele model. Optimal performance 
(mean CIELAB ΔE = 2.13) was obtained 
with σ  = 0.23. When the Friele model (σ = 
0.23) was run with the testing samples the 
testing error was 2.42 CIELAB ΔE. 
 
 

 
Figure 4 The training error for the changed 
Stearns-Noechel model with variation in the 
parameter b. Optimal performance was  
obtained with a v alue b  = 0.10 (mean CIELAB 
ΔE = 2.92).  

 
 

 
Figure 5 Training error for the Friele model 
with variation in the parameter σ. Optimal 
performance was obtained with a value σ  = 
0.23 (mean CIELAB ΔE = 2.13).  
 

Figures 6 and 7 show the training and 
testing error for the standard and the 
single-wavelength neural network 
respectively. In each case the network was 
trained using the full 273 set of training 
data available and tested using the 60 
samples of the test set; the errors 
reported are the mean CIELAB ∆E values. 
The training error reduces in each case as 
the number of hidden units is increased; 
however, the testing error reaches a 
minimum and after this increasing the 
number of hidden units tends to increase 
the testing error. This behaviour is typical 
of neural networks and indicates that 
above the optimal performance the 
network is being over-trained, resulting in 
poorer generalisation. The optimal testing 
error for the networks was 1.10 (with 15 
hidden units) and 1.05 (with 3 hidden 
units in each of the 35 networks) for the 
standard and single-wavelength networks 
respectively.   
 

 
Figure 6 Mean CIELAB training error (blue 
diamonds) and testing error (red squares) for 
the standard ANN with different numbers of 
hidden units  
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Figure 7 Mean CIELAB training error (blue 
diamonds) and testing error (red squares) for 
the single-wavelength ANN with different 
numbers of hidden units  
 

Table 4 shows the optimal results 
(CIELAB error) for each of the systems 
that were investigated.  
 
Table 4 Training and Test results – CIELAB 
colour differences  
 
 Training Testing 
 average 

∆E 
max 
∆E 

average 
∆E 

max 
∆E 

Friele 2.13 6.08 2.42 6.05 
Stearns-
Noechel  

2.92 7.08 3.05 6.55 

Standard 
ANN 

0.88 5.39 1.10 4.44 

Single-
wavelength 
ANN 

0.80 6.66 1.05 3.52 

 
In the context of the earlier comments 

about the impact of the number of 
training examples for a neural network, it 
is interesting to consider how the 
networks would perform if fewer training 
samples were available.  The training set 
was randomly sub-sampled to reduce it to 
100 but the test set was not changed. 
Standard and single-wavelength networks 
were trained with varying numbers of 
hidden units, as before, and the 
performance of the best-performing 
networks is summarised in Table 5. 

In Table 5 it is evident that the testing 
performance of both networks degrades 
as the number of training samples is 
reduced; however, the single-wavelength 
neural network is more robust and the 
mean CIELAB testing error rises from 1.05 
to 1.39 whereas for the standard neural 

network the testing error rises from 1.10 
to 1.86. 
 
Table 5 Training and Test results (CIELAB 
colour differences) for the neural networks  
when only 100 training sampl es were used.  
The optimal performance shown was obtained 
with 15 hidden units for the standard ANN 
and 2 hidden units for the single-wavelength 
ANN. 
 
 Training Testing 
 mean 

∆E 
max 
∆E 

mean 
∆E 

max 
∆E 

Standard ANN 0.70 1.88 1.86 23.06 
Single-
wavelength 
ANN 

0.94 5.77 1.39 9.44 

 
 
Conclusions 
This work has compared the performance 
of two conventional models (Stearns-
Noechel model and Friele model) for the 
prediction of the colour of fibre blends 
and also two neural network models 
(standard and single-wavelength neural 
networks). The performance of both the 
neural networks exceeded that of both 
conventional models. The average ∆E 
(between predicted and measured 
spectra) for the test set of data was 3.05, 
2.42, 1.10 and 1.05 for the Stearns-
Noechel, Friele, standard neural network 
and single-wavelength neural network 
respectively. Note that the Stearns-
Noechel and Friele models were fully 
optimised (to give b = 0.10 for the 
Stearns-Noechel model and σ = 0.23 for 
the Friele model). The neural network 
methods, however, were not fully 
optimised in the sense that not all possible 
configurations of the networks and their 
training parameters were explored; 
nevertheless the neural networks gave 
much lower error scores (between 
predicted and measured spectra) than 
either of the two conventional models.    

The performance of the two neural 
network models was similar but the mean 
∆E on the test set of data was 1.10 for the 
standard neural network and 1.05 for the 
single-wavelength neural network. Note 
that the best performance for the 
standard neural network was for a 
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structure with 15 hidden units (693 
weights) and the best performance for the 
single-wavelength neural network was 
with a population of networks each with 3 
hidden units (each with 31 weights). The 
ratio of training samples to weights was 
therefore 273/693 and 273/31 for the 
two network models respectively.  

The above results were all obtained 
using 273 training samples. When the 
training set was sub-sampled to produce a 
smaller training set with only 100 samples 
in it, the differential in performance 
between the standard neural network and 
the single-wavelength neural network 
increased. Now, the mean E error on the 
test set was 1.86 for the standard neural 
network and 1.39 for the single-
wavelength neural network. The 
maximum error score on the test set was 
almost three times larger for the standard 
neural network than for the single-
wavelength neural network. Note that in 
this condition, the ratio of training 
samples to weights was 100/693 for the 
standard neural networks and 100/31 for 
the single-wavelength neural network. 

These results support the notion that 
the ratio of training samples to weights in 
a neural network is a key factor in their 
performance. It is not entirely clear 
whether the ratio of training samples to 
weights needs to be greater than one, or 
greater than five, or some other number 
in order to produce acceptable results. 
Nevertheless, this paper has shown than 
the larger this ratio is, in general the 
better the generalisation performance of 
the neural networks. When the number of 
training samples available for a problem is 
very large, it may be that the single-
wavelength network may offer no 
significant advantage over the standard 
neural network. However, as has been 
discussed earlier, in many cases the 
number of training samples is limited and 
may be insufficient to allow a high-enough 
ratio of training samples to weights; this 
may be especially true when the problem 
is spectral rather than colorimetric 
(because when data are being predicted at 
many wavelengths the networks become 
necessarily large). In such cases, the 
single-wavelength neural network 

approach is advantageous because each 
network has many fewer weights than in 
the standard network. As Anderson and 
Rosenfeld [28] put it: “A good 
representation does most of the work.” 

Whilst all of this work has been carried 
out using a set of eight primary colours it 
is likely that similar findings would result 
if a greater number (or indeed a smaller 
number) of primaries was used. However, 
further work is required to extend this 
analysis to larger scale problems. The 
work was also conducted with viscose 
fibre blends but since the neural network 
models are non-parametric there is no 
reason to doubt that similar performance 
for the neural network models would be 
achievable with other fibre types.  
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