

Citation:

Hinde, K and Lloyd, R and Cooke, CB (2015) Effects of increasing cold exposure on the oxygen uptake of walking unloaded and loaded. Extreme Physiology & Medicine, 4 (S1). A56. ISSN 2046-7648 DOI: https://doi.org/10.1186/2046-7648-4-S1-A56

Link to Leeds Beckett Repository record: https://eprints.leedsbeckett.ac.uk/id/eprint/3113/

Document Version: Article (Published Version)

Creative Commons: Attribution 4.0

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been checked for copyright and the relevant embargo period has been applied by the Research Services team.

We operate on a standard take-down policy. If you are the author or publisher of an output and you would like it removed from the repository, please contact us and we will investigate on a case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party copyright. If you would like a thesis to be removed from the repository or believe there is an issue with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a case-by-case basis.

MEETING ABSTRACT

Open Access

Effects of increasing cold exposure on the oxygen uptake of walking unloaded and loaded

Katrina Hinde^{1*}, Carlton Cooke¹, Ray Lloyd²

From 15th International Conference on Environmental Ergonomics (ICEE XV) Portsmouth, UK. 28 June - 3 July 2015

Introduction

Cold exposure and load carriage is an understudied area. Most research shows that VO_{2max} is generally unaffected by cold exposure, however the majority of research suggests that sub-maximal O_2 consumption increases for a given workload [1]. This pilot study assessed the effects of cold on load carriage.

Methods

4 male participants (age: 21.8 ± 3.4 years, height: 182.5 ± 5.0 cm, weight: 77.8 ± 13.5 kg) completed a walking protocol of ~1 hour in a range of different ambient temperatures within an environmental chamber (20 °C, 10 °C, 5 °C, 0 °C, -5 °C and -10 °C). Humidity was controlled at ~50% while altitude was 0 m (20.95% FiO₂). Participants wore shorts and t-shirt for all trials. The protocol included a 15 minute rest period, unloaded walking at 4 km.hr⁻¹ for 4 minutes at 0% and 10% gradient. The same workloads were repeated loaded (18 kg) after a 5 minute rest. Heart rate returned to resting levels before each exercise section to ensure prior activity did not influence findings. Unloaded walking was then repeated. Expired air was collected and analysed using a Cortex 3B Metalyzer (Germany). Statistical analysis was performed using SPSS version 22, with significance denoted by p < 0.05.

Results

Table 1 shows a significant increase in VO_2 with load (p = 0.019). At all workloads, significant increases in VO_2 were associated with decreasing temperature (p = 0.048). ΔVO_2 values suggest that the effect of loading was consistent, regardless of ambient temperature (p = 0.997). When comparing the first unloaded exercise

bout with the second, VO_2 for 20 °C, 10 °C and 5 °C was similar, whereas at 0 °C and below, VO_2 was higher in the second unloaded bout, but this interaction was not significant (p = 0.158).

Discussion

The effect of ambient temperature on loading was not significant, however a decrease in temperature generally increased oxygen uptake. Reasons for a higher VO₂ response during cold exposure could be due to shivering in an attempt to maintain core temperature [2]. However, the exercise intensity was above the estimated 1.5 L.min⁻¹ threshold for the shivering response, therefore it is unlikely that this was the sole reason [3]. VO₂ can be increased by non-shivering thermogenesis [4], this is heat production from sources excluding muscle contraction and involves calorigenic hormones and brown fat metabolism. Muscle strength has also been seen to decrease in cold environments through a decrease in contractile force [1,5]. More motor units are therefore recruited to meet the exercise demands, thus increasing VO_2

Authors' details

¹School of Sport, Carnegie Faculty, Leeds Beckett University, Leeds, UK. ²Leeds Trinity University, Leeds, UK.

Published: 14 September 2015

References

- 1. Oksa J, et al: Journal of Thermal Biology 2004, 29(7-8):815-818.
- 2. Tharion W, et al: Appetite 2005, 44(1):47-65.
- Sandsund M, et al: European Journal Of Applied Physiology And Occupational Physiology 1998, 77:297-304.
- 4. Ito R, et al: Effects if rain on energy metabolism while running in a cold environment. International Journal of Sports Medicine 2013, 34(8):707-711.
- 5. Doubt TJ: Sports Medicine (auckland, n.z.) 1991, 11(6):367-381.

¹School of Sport, Carnegie Faculty, Leeds Beckett University, Leeds, UK Full list of author information is available at the end of the article

^{*} Correspondence: k.hinde@leedsbeckett.ac.uk

Table 1. Mean ± SD VO₂ responses (ml.kg⁻¹.min⁻¹) averaged across 0% and 10% gradient

	20 °C	10 ℃	5 ℃	0 °C	-5	°C	-10 °C
Unloaded 1	18.69 ± 1.4	3 18.99 ± 1.52	16.84	± 4.42	19.30 ± 2.38	22.16 ± 1.50	22.99 ± 1.09
Loaded	21.66 ± 2.3	3 23.76 ± 0.41	20.41	± 5.99	24.43 ± 4.06	24.68 ± 1.64	27.44 ± 4.13
ΔVO_2	2.98 ± 1.5	5 4.78 ± 1.26	3.58	± 2.06	5.13 ± 3.84	2.51 ± 2.71	4.45 ± 4.55
Unloaded 2	18.73 ± 1.5	2 19.03 ± 0.66	17.89	± 5.73	23.41 ± 7.72	29.15 ± 5.91	28.25 ± 5.53

doi:10.1186/2046-7648-4-S1-A56

Cite this article as: Hinde *et al.*: Effects of increasing cold exposure on the oxygen uptake of walking unloaded and loaded. *Extreme Physiology & Medicine* 2015 4(Suppl 1):A56.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

