
Citation:
Wu, J and Liao, F and Deng, J (2016) Optimal Preview Control for a Class of Linear Continuous
Stochastic Control Systems in the Infinite Horizon. Mathematical Problems in Engineering, 2016.
ISSN 1024-123X DOI: https://doi.org/10.1155/2016/7679165

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/3326/

Document Version:
Article (Published Version)

Creative Commons: Attribution 4.0

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/3326/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk


Research Article
Optimal Preview Control for a Class of Linear Continuous
Stochastic Control Systems in the Infinite Horizon

Jiang Wu,1 Fucheng Liao,1 and Jiamei Deng2

1School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
2Leeds Sustainability Institute, Leeds Beckett University, Leeds LS2 9EN, UK

Correspondence should be addressed to Fucheng Liao; fcliao@ustb.edu.cn

Received 1 July 2016; Accepted 26 September 2016

Academic Editor: Andrzej Swierniak

Copyright © 2016 Jiang Wu et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper discusses the optimal preview control problem for a class of linear continuous stochastic control systems in the infinite
horizon, based on the augmented error system method. Firstly, an assistant system is designed and the state equation is translated
to the assistant system.Then, an integrator is introduced to construct a stochastic augmented error system. As a result, the tracking
problem is converted to a regulation problem. Secondly, the optimal regulator is solved based on dynamic programming principle
for the stochastic system, and the optimal preview controller of the original system is obtained. Compared with the finite horizon,
we simplify the performance index. We also study the stability of the stochastic augmented error system and design the observer
for the original stochastic system. Finally, the simulation example shows the effectiveness of the conclusion in this paper.

1. Introduction

Future reference signals or disturbance signals are known
in certain circumstances. All the known future information
can be utilized by preview control theory to improve the
performance of the dynamic system. The original idea of
preview control theory is that in order to minimize the error
between the reference signals and the controlled terms, not
only the past and present information but also the future
information should be concentrated on [1–5]. An augmented
error system is constructed while designing the optimal
preview controller for the discrete system.And also a group of
identical equations of future reference signals is added to the
augmented error system [6–9]. Since the continuous system
is of infinite dimensions, the method in dealing with the
discrete condition is no longer useful. In [10], the augmented
error system was constructed by differentiating the state
equation on both sides, combining with the error equation.
According to the maximum principle, the optimal preview
controller was obtained by solving a differential equation
on reference signals backward in time. This method was
extended to systems with previewable disturbance signals
in [11] and to singular continuous systems in [12]. The

application of preview control method to continuous systems
with time delay is studied in [13].

According to automatic control system theory, the con-
trolled systems can be regarded as falling into two categories:
deterministic systems and stochastic systems. Stochastic sys-
tems are a collection of dynamic systems that contain internal
stochastic parameters, external stochastic disturbances, or
observation noises [14]. A typical stochastic system is the
stochastic differential equation. It is a class of differential
equations driven by one or more stochastic processes. There-
fore, the solution of a stochastic differential equation is also a
stochastic process. Up to the present, a phenomenon such as
stockmarket volatility or thermalmotion in a physical system
is usually described by a stochastic differential equation.
Typically, a white noise stochastic variable represented by the
differential form of Brownian motion or Weiner process is
contained in a stochastic differential equation.

In this paper, preview control theory is applied to a class
of linear continuous stochastic control systems in the infinite
horizon. In the finite horizon [15], an assistant system is
designed, and the state equation is translated to the assistant
system. Then an integrator is introduced to construct a
stochastic augmented error system. As a result, the tracking
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problem is converted to a regulation problem. The optimal
regulator is obtained based on the dynamic programming
principle for stochastic systems, which means the optimal
preview controller of the original stochastic system is gained.
For such a system, when the integrator approaches zero
at infinity, the error also approaches zero. Therefore, this
property can be utilized to simplify the performance index
in the infinite horizon. Due to the fact that the relative terms
of reference signals are included in the stochastic augmented
error system, the conclusion in the infinite horizon cannot
be directly employed when solving the optimal regulation
problem in this paper. Firstly, the corresponding optimal
regulation problem is solved in the finite horizon with
the new performance index and then the time was set to
approach infinity. The stability of the stochastic augmented
error system is studied and the sufficient and necessary
criteria which guarantee that there exists a unique semipos-
itive definite solution to the corresponding Riccati equation
have been met. Also an observer for the original stochastic
system is designed. The introduction of the integrator can
eliminate the static error and the simulation example shows
the effectiveness of the conclusion in this paper [16].

Notation. The notations are standard. (Ω, 𝐹, 𝑃) is a complete
probability space. Adaptive procedure 𝐹𝑡 is 𝜎 algebra gener-
ated by {𝐵𝑠 : 𝑠 ≤ 𝑡}, and 𝐵𝑠 denotes Brownian motion of 𝑚
dimensions. 𝐴 ∈ 𝑅𝑚×𝑛 denotes 𝑚 × 𝑛 matrix. 𝑃 > 0 (𝑃 ≥ 0)
denotes a positive definite (semidefinite) matrix. 𝐼 denotes
the unitmatrix.The symbol∗ denotes the symmetric terms in
a symmetric matrix. 𝐸𝑡0 ,𝑥0 denotes the expectation of process(𝑡, 𝑥) with initial time 𝑡0 and state 𝑥0. tr(⋅) denotes the trace
of a matrix.

2. Problem Statement

Consider the following stochastic control system:
𝑑𝑥 (𝑡) = [𝑀𝑥 (𝑡) + 𝑁𝑢 (𝑡)] 𝑑𝑡 + 𝜔 (𝑡) 𝑑𝐵𝑡,
𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑥 (𝑡0) = 𝑥0, 𝑡 ∈ [𝑡0,∞) ,
(1)

where 𝑥(𝑡) is the state vector of 𝑚 dimensions, 𝑦(𝑡) is the
output vector of 𝑝 dimensions, 𝑢(𝑡) is the 𝐹𝑡 adaptive input of𝑛 dimensions, and 𝐵𝑡 is the Brownian motion of 𝐹𝑡 adaptive
of 𝑚 dimensions.𝑀 ∈ 𝑅𝑚×𝑚,𝑁 ∈ 𝑅𝑚×𝑛, and 𝐶 ∈ 𝑅𝑝×𝑚 are
constant matrices. 𝜔(𝑡) ∈ 𝑅𝑚×𝑚 .

First of all, the following assumptions are introduced.

Assumption 1. Suppose the matrices pair (𝑀,𝑁) is stabiliz-
able.

Assumption 2. Suppose thematrices pair (𝐶,𝑀) is detectable
and the matrix 𝐶 is of full row rank.

By denoting the reference signals of 𝑝 dimensions with𝑟(𝑡), another assumption about 𝑟(𝑡) is needed.
Assumption 3. Suppose the reference signal 𝑟(𝑡) is a piecewise
continuously differentiable function defined on (𝑡 ≥ 𝑡0).

Moreover, 𝑟(𝜌) (𝑡 ≤ 𝜌 ≤ 𝑡 + 𝑙𝑟) is available at any moment𝑡 and when 𝜌 > 𝑡 + 𝑙𝑟, 𝑟(𝜌) = 𝑟(𝑡 + 𝑙𝑟); that is, ̇𝑟(𝜌) = 0. 𝑙𝑟 is
the preview length of the reference signal.

Remark 4. Since there are few effects on the system when the
reference signals exceed the previewable range, it is always
assumed that the signals are usually constant [11].

The tracking error signal 𝑒(𝑡) is defined as the difference
between the output vector 𝑦(𝑡) and the reference signal 𝑟(𝑡);
that is,

𝑒 (𝑡) = 𝑦 (𝑡) − 𝑟 (𝑡) . (2)

In this paper, an optimal controller will be designed to
make the output 𝑦(𝑡) in (1) tracking the reference signal 𝑟(𝑡)
as accurately as possible without static error.

Then, an assistant system is defined. The following
assumption is needed.

Assumption 5. Suppose

rank [𝑀 𝑁
𝐶 0 ] = 𝑚 + 𝑝, (full row rank) . (3)

With Assumption 5, the following lemma holds.

Lemma 6 (see [15]). There exist matrices pairs (Γ, 𝛾) which
solve the following:

𝑀Γ +𝑁𝛾 = 0,
𝐶Γ = 𝐼, (4)

if and only if Assumption 5 holds, where Γ ∈ 𝑅𝑚×𝑝 and 𝛾 ∈𝑅𝑛×𝑝.
Definition 7 (see [17]). If matrix 𝐴 ∈ 𝑅𝑚×𝑛 and the rank of𝐴 is equal to 𝑛, then 𝐴 has a left inverse: 𝐵 ∈ 𝑅𝑛×𝑚 such that𝐵𝐴 = 𝐼.
Remark 8. If 𝑝 = 𝑛, there exists unique solution of matrices
pair (Γ, 𝛾), while if 𝑝 < 𝑛, according to Definition 7, any
left inverse of matrix [𝑀 𝑁𝐶 0 ] can be applied to calculate the
solution of (4) and the solutions are infinite. In this paper only
the square full-rank case is used.

Let the state vector and input vector be denoted by 𝑥∗(𝑡)
and 𝑢∗(𝑡), respectively. Let 𝑥∗(𝑡) = Γ𝑟(𝑡 + 𝑙𝑟) and 𝑢∗(𝑡) =𝛾𝑟(𝑡 + 𝑙𝑟). According to Lemma 6, at the moment 𝑠, for any
time 𝑡 (𝑠 ≤ 𝑡 ≤ 𝑡𝜏), 𝑥∗(𝑡)meets

𝑑𝑥∗ (𝑡) = Γ ̇𝑟 (𝑡 + 𝑙𝑟) 𝑑𝑡,
𝐶𝑥∗ (𝑡) = 𝐶Γ𝑟 (𝑡 + 𝑙𝑟) . (5)

Since [𝑀Γ + 𝑁𝛾]𝑟(𝑡 + 𝑙𝑟) = 0 and 𝐶Γ𝑟(𝑡 + 𝑙𝑟) = 𝑟(𝑡 + 𝑙𝑟)
according to (4), substituting these two equations into (5)
yields

𝑑𝑥∗ (𝑡) = {[𝑀Γ + 𝑁𝛾] 𝑟 (𝑡 + 𝑙𝑟) + Γ ̇𝑟 (𝑡 + 𝑙𝑟)} 𝑑𝑡,
𝑟 (𝑡 + 𝑙𝑟) = 𝐶𝑥∗ (𝑡) ; (6)
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that is,

𝑑𝑥∗ (𝑡) = {[𝑀𝑥∗ (𝑡) + 𝑁𝑢∗ (𝑡)] + Γ ̇𝑟 (𝑡 + 𝑙𝑟)} 𝑑𝑡,
𝑟 (𝑡 + 𝑙𝑟) = 𝐶𝑥∗ (𝑡) . (7)

Define
�̃� (𝑡) = 𝑥 (𝑡) − 𝑥∗ (𝑡) ,
�̃� (𝑡) = 𝑢 (𝑡) − 𝑢∗ (𝑡) ,
�̃� (𝑡) = 𝑦 (𝑡) − 𝐶𝑥∗ (𝑡) ,
�̃� (𝑡) = 𝑟 (𝑡) − 𝑟 (𝑡 + 𝑙𝑟) .

(8)

Subtracting (7) by (1) from both sides, the following could be
obtained:
𝑑�̃� (𝑡) = [𝑀�̃� (𝑡) + 𝑁�̃� (𝑡) + (−Γ) ̇𝑟 (𝑡 + 𝑙𝑟)] 𝑑𝑡

+ 𝜔 (𝑡) 𝑑𝐵𝑡,
�̃� (𝑡) = 𝐶�̃� (𝑡) ,

�̃� (𝑡0) = 𝑥0 − 𝑥∗ (𝑡0) , 𝑡 ∈ [𝑡0,∞) .
(9)

Now an integrator is introduced. Integrating the tracking
error signal 𝑒(𝑡) in the interval of 𝑡0 to 𝑡 yields

𝑞 (𝑡) = ∫𝑡
𝑡0

𝑒 (𝑠) 𝑑𝑠 = ∫𝑡
𝑡0

[𝑦 (𝑠) − 𝑟 (𝑠)] 𝑑𝑠. (10)

Obviously 𝑞(𝑡0) = 0. Let 𝑞∗(𝑡) = ∫𝑡𝑡0[𝐶𝑥∗(𝑠) − 𝑟(𝑠 + 𝑙𝑟)]𝑑𝑠, and
then 𝑞∗(𝑡) = 0 holds. Define �̃�(𝑡) = 𝑞(𝑡)−𝑞∗(𝑡) and the differ-
ential form of �̃�(𝑡) becomes

𝑑�̃� (𝑡) = 𝑒 (𝑡) 𝑑𝑡 = [𝐶�̃� (𝑡) − �̃� (𝑡)] 𝑑𝑡. (11)

Remark 9. According to Assumption 3, the term �̃�(𝑡) in (11)
is also previewable while �̃�(𝜌) (𝑡 ≤ 𝜌 ≤ 𝑡 + 𝑙𝑟). In particular,
while 𝜌 ≥ 𝑡 + 𝑙𝑟, �̃�(𝜌) = 0.

In order to make the output 𝑦(𝑡) tracking the reference
signal 𝑟(𝑡) as accurately as possible, the performance index 𝐽
is designed as

𝐽 (𝑡0, 𝑥0; �̃� (⋅))
= 𝐸𝑡0 ,𝑥0 {12 ∫

∞

𝑡0

[�̃�𝑇 (𝑡) 𝑄�̃��̃� (𝑡) + �̃�𝑇 (𝑡) 𝑅�̃� (𝑡)] 𝑑𝑡} , (12)

where 𝑄�̃� = 𝑄𝑇�̃� > 0 and 𝑅 = 𝑅𝑇 > 0 are matrices of proper
dimensions.

Remark 10. Compared with the finite horizon, lim𝑡→∞𝑒(𝑡) =0 can also be obtained in the infinite horizon while
lim𝑡→∞𝑞(𝑡) = 0. Therefore, the term 𝑒𝑇(𝑡)𝑄𝑒𝑒(𝑡) in the
performance index of [15] can be replaced by �̃�𝑇(𝑡)𝑄�̃��̃�(𝑡)
in (12). Furthermore, since there exists unique semipositive
definite solution of the corresponding Riccati equation when𝑄�̃� > 0, no other terms need to be included in the perform-
ance index, which simplifies the calculation.

To solve the optimal control problem of (9) with the per-
formance index (12), the augmented error systemmethod can
be employed.

3. Construction of the Stochastic Augmented
Error System

Combining (9) and (11), the following holds:

𝑑𝑧 (𝑡) = [�̃�𝑧 (𝑡) + �̃��̃� (𝑡) + �̃��̃� (𝑡) + Γ̃ ̇𝑟 (𝑡 + 𝑙𝑟)] 𝑑𝑡
+ 𝜔 (𝑡) 𝑑𝐵𝑡,

(13)

where

𝑧 (𝑡) = [�̃� (𝑡)�̃� (𝑡)] ,

�̃� = [0 𝐶
0 𝑀] ,

�̃� = [ 0𝑁] ,

�̃� = [−𝐼0 ] ,

Γ̃ = [ 0−Γ] .

(14)

Referring to the output equation of (9) and the reference
signal, the output of (13) can be defined as

�̃� (𝑡) = �̃�𝑧 (𝑡) , (15)

where �̃� = [𝐼 0]. Joining (13) and (15) together, the following
hold:

𝑑𝑧 (𝑡) = [�̃�𝑧 (𝑡) + �̃��̃� (𝑡) + �̃��̃� (𝑡) + Γ̃ ̇𝑟 (𝑡 + 𝑙𝑟)] 𝑑𝑡
+ 𝜔 (𝑡) 𝑑𝐵𝑡,

�̃� (𝑡) = �̃�𝑧 (𝑡) ,
𝑧 (𝑡0) = [ �̃� (𝑡0)�̃�0 (𝑡0)] = 𝑧0.

(16)

Equation (16) is the needed stochastic augmented error
system.

4. Design of the Optimal Controller for
the Stochastic System

Denoting the performance index (12) with the related vari-
ables in (16) yields

�̃� (𝑡0, 𝑧0; �̃� (⋅)) = 𝐸𝑡0,𝑧0 {12
⋅ ∫∞
𝑡0

[𝑧𝑇 (𝑡) (�̃�𝑇𝑄�̃��̃�) 𝑧 (𝑡) + �̃�𝑇 (𝑡) 𝑅�̃� (𝑡)] 𝑑𝑡} .
(17)

Due to the existence of the term �̃��̃�(𝑡) + Γ̃ ̇𝑟(𝑡 + 𝑙𝑟) in
(16), the conclusion of the optimal regulation problem in
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dealingwith the infinite horizon cannot be directly employed.
Therefore, similar to the condition in deterministic systems
[11], the optimal regulator of the stochastic augmented error
system (16) can be obtained through the following three steps.

Firstly, (17) is revised to

�̃� = lim
𝑡𝜏→∞

𝐸𝑡0,𝑧0 {12
⋅ ∫𝑡𝜏
𝑡0

[𝑧𝑇 (𝑡) �̃�𝑇𝑄�̃��̃�𝑧 (𝑡) + �̃�𝑇 (𝑡) 𝑅�̃� (𝑡)] 𝑑𝑡} .
(18)

Secondly, the finite-time horizon optimal regulation
problem with the performance index

̃̃𝐽 = 𝐸𝑡0 ,𝑧0 {12
⋅ ∫𝑡𝜏
𝑡0

[𝑧𝑇 (𝑡) �̃�𝑇𝑄�̃��̃�𝑧 (𝑡) + �̃�𝑇 (𝑡) 𝑅�̃� (𝑡)] 𝑑𝑡}
(19)

is solved, where 𝑡𝜏 is the terminal time.
Compared with the performance index in [15], the two

terms 𝑒𝑇(𝑡)𝑄𝑒𝑒(𝑡) and 𝑒𝑇(𝑡𝜏)𝑄𝑒(𝑡𝜏)𝑒(𝑡𝜏) are removed in (19).
Therefore, according to the dynamic programming principle
for stochastic systems [16, 18], the following lemma about the
finite horizon optimal control problemwith the terminal time𝑡𝜏 can be obtained by letting 𝑄𝑒 = 𝑄𝑒(𝑡𝜏) = 0 in Theorem 1 in
[15].

Lemma 11 (see [15]). If Assumptions 3 and 5 hold, the optimal
controller of (16), with the performance index (19), is

�̃� (𝑡) = −𝑅−1�̃�𝑇1 {𝑃 (𝑡) 𝑧 (𝑡) + 𝜃 (𝑡)} , (20)

where 𝑃(𝑡) ≥ 0 ∈ 𝑅(𝑚+𝑝)×(𝑚+𝑝) satisfies the Riccati differential
equation

−�̇� (𝑡) = �̃�𝑇𝑃 (𝑡) + 𝑃 (𝑡) �̃� − 𝑃 (𝑡) �̃�𝑅−1�̃�𝑇𝑃𝑇 (𝑡)
+ �̃�𝑇𝑄�̃��̃�.

(21)

With the terminal condition 𝑃(𝑡𝜏) = 0 and 𝜃(𝑡) the differential
equation is obtained:

�̇� (𝑡) + (�̃�𝑇 − 𝑃 (𝑡) �̃�𝑅−1�̃�𝑇) 𝜃 (𝑡)
+ (𝑃 (𝑡) �̃��̃� (𝑡) + 𝑃 (𝑡) Γ̃ ̇𝑟 (𝑡 + 𝑙𝑟)) = 0,

(22)

with the terminal condition 𝜃(𝑡𝜏) = 0.
Thirdly, Theorem 12 is received by letting 𝑡𝜏 →∞.

Theorem 12. If Assumptions 1 to 5 hold, the optimal controller�̃�(𝑡) of (16) with the performance index (17) can be expressed
as

�̃� (𝑡) = −𝑅−1�̃�𝑇𝑃𝑧 (𝑡)
− 𝑅−1�̃�𝑇∫𝑡+𝑙𝑟

𝑡
exp [(𝑡0 − 𝑡) (�̃� − �̃�𝑅−1�̃�𝑇𝑃)𝑇]

⋅ (𝑃�̃��̃� (𝑠) + 𝑃Γ̃ ̇𝑟 (𝑠 + 𝑙𝑟)) 𝑑𝑠,
(23)

where 𝑃 ∈ 𝑅�̃�×�̃� is the unique semipositive definite solution of
Riccati differential equation

�̃�𝑇𝑃 + 𝑃�̃� − 𝑃�̃�𝑅−1�̃�𝑇𝑃 + �̃�𝑇𝑄�̃��̃� = 0. (24)

Proof. In terms of the performance index (17), if (�̃�, �̃�) is
stabilizable and (𝑄1/2

�̃�
�̃�, �̃�) is detectable, according to the

known conclusion, there exists a unique semipositive definite
solution 𝑃 of Riccati algebra equation

�̃�𝑇𝑃 + 𝑃�̃� − 𝑃�̃�𝑅−1�̃�𝑇𝑃 + �̃�𝑇𝑄�̃��̃� = 0. (25)

And when 𝑡 → ∞,

lim
𝑡→∞

𝑃 (𝑡) = 𝑃. (26)

As a result, the solving of 𝜃(𝑡) in (22) is also simplified.
Denote𝑀𝑐 = �̃�−�̃�𝑅−1�̃�𝑇𝑃. Equation (22) and its term-

inal condition can be expressed as

�̇� (𝑡) + 𝑀𝑇𝑐 𝜃 (𝑡) + (𝑃�̃��̃� (𝑡) + 𝑃Γ̃ ̇𝑟 (𝑡 + 𝑙𝑟)) = 0,
𝜃 (𝑡𝜏) = 0.

(27)

Based on linear system theory [19], the fundamental solution
matrix of the homogeneous system corresponding to (27) is

Φ̃ (𝑡, 𝑡0) = exp [−∫𝑡
𝑡0

𝑀𝑇𝑐 𝑑𝑡] = exp [(𝑡0 − 𝑡)𝑀𝑇𝑐 ] , (28)

with the property

Φ̃−1 (𝑡0, 𝑡) = Φ̃ (𝑡, 𝑡0) ,
Φ̃ (𝑡, 𝑡0) = Φ̃ (𝑡, 𝑡𝑠) Φ̃ (𝑡𝑠, 𝑡0) ,

𝑡0 ≤ 𝑠 ≤ 𝑡.
(29)

Therefore, the solution of (27) is

𝜃 (𝑡) = Φ̃ (𝑡, 𝑡0) 𝜃 (𝑡0)
− ∫𝑡
𝑡0

Φ̃ (𝑡, 𝑠) (𝑃�̃��̃� (𝑡) + 𝑃Γ̃ ̇𝑟 (𝑡 + 𝑙𝑟)) 𝑑𝑠, (30)

and the backward form is

𝜃 (𝑡𝜏) = Φ̃ (𝑡𝜏, 𝑡) 𝜃 (𝑡)
− ∫𝑡𝜏
𝑡
Φ̃ (𝑡𝜏, 𝑠) (𝑃�̃��̃� (𝑠) + 𝑃Γ̃ ̇𝑟 (𝑠 + 𝑙𝑟)) 𝑑𝑠.

(31)

With the terminal condition 𝜃(𝑡𝜏) = 0, the following will be
obtained:

𝜃 (𝑡)
= Φ̃−1 (𝑡𝜏, 𝑡) ∫𝑡𝜏

𝑡
Φ̃ (𝑡𝜏, 𝑠) (𝑃�̃��̃� (𝑠) + 𝑃Γ̃ ̇𝑟 (𝑠 + 𝑙𝑟)) 𝑑𝑠. (32)
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According to the property of the reference signals in Assump-
tion 3, 𝜃(𝑡) can be expressed as

𝜃 (𝑡) = Φ̃−1 (𝑡𝜏, 𝑡)
⋅ ∫𝑡𝜏∧(𝑡+𝑙𝑟)
𝑡

Φ̃ (𝑡𝜏, 𝑠) (𝑃�̃��̃� (𝑠) + 𝑃Γ̃ ̇𝑟 (𝑠 + 𝑙𝑟)) 𝑑𝑠
= Φ̃ (𝑡, 𝑡𝜏)
⋅ ∫𝑡𝜏∧(𝑡+𝑙𝑟)
𝑡

Φ̃ (𝑡𝜏, 𝑠) (𝑃�̃��̃� (𝑠) + 𝑃Γ̃ ̇𝑟 (𝑠 + 𝑙𝑟)) 𝑑𝑠
= ∫𝑡𝜏∧(𝑡+𝑙𝑟)
𝑡

Φ̃ (𝑡, 𝑠) (𝑃�̃��̃� (𝑠) + 𝑃Γ̃ ̇𝑟 (𝑠 + 𝑙𝑟)) 𝑑𝑠.

(33)

Substituting (33) into (20) yields

�̃� (𝑡) = −𝑅−1�̃�𝑇𝑃𝑧 (𝑡) − 𝑅−1�̃�𝑇1 ∫𝑡𝜏∧(𝑡+𝑙𝑟)
𝑡

Φ̃ (𝑡, 𝑠)
⋅ (𝑃�̃��̃� (𝑠) + 𝑃Γ̃ ̇𝑟 (𝑠 + 𝑙𝑟)) 𝑑𝑠,

(34)

where 𝑡𝜏 ∧ (𝑡 + 𝑙𝑟) = min{𝑡𝜏, 𝑡 + 𝑙𝑟}.
The conclusion is that when 𝑡𝜏 →∞, the following theo-

rem can be obtained.

Theorem 13. If Assumptions 1 to 5 hold, the optimal controller�̃�(𝑡) of (16) with the performance index (17) can be expressed
as

�̃� (𝑡)
= −𝑅−1�̃�𝑇𝑃𝑧 (𝑡)
− 𝑅−1�̃�𝑇∫𝑡+𝑙𝑟

𝑡
Φ̃ (𝑡, 𝑠) (𝑃�̃��̃� (𝑠) + 𝑃Γ̃ ̇𝑟 (𝑠 + 𝑙𝑟)) 𝑑𝑠,

(35)

where 𝑃 ∈ 𝑅�̃�×�̃� is the unique semipositive definite solution of
Riccati differential equation

�̃�𝑇𝑃 + 𝑃�̃� − 𝑃�̃�𝑅−1�̃�𝑇𝑃 + �̃�𝑇𝑄�̃��̃� = 0. (36)

Then, let the matrix 𝑃 be separated into

𝑃 = [𝑃1 𝑃2] , (37)

where 𝑃1 and 𝑃2 are matrices of �̃�×𝑝 and �̃�×𝑚. According to
(8), (35), 𝑧(𝑡) = [ �̃�(𝑡)

�̃�(𝑡)
], and ∫𝑡+𝑙𝑟

𝑡
Φ̃(𝑡, 𝑠)𝑃Γ̃ ̇𝑟(𝑠 + 𝑙𝑟)𝑑𝑠 = 0, the

following will be obtained:

𝑢 (𝑡) = −𝑅−1�̃�𝑇𝑃1𝑞 (𝑡) − 𝑅−1�̃�𝑇𝑃2𝑥 (𝑡)
− 𝑅−1�̃�𝑇∫𝑡+𝑙𝑟

𝑡
Φ̃ (𝑡, 𝑠) 𝑃�̃��̃� (𝑠) 𝑑𝑠 + 𝑢∗ (𝑡)

+ 𝑅−1�̃�𝑇𝑃2𝑞∗ (𝑡) + 𝑅−1�̃�𝑇𝑃2𝑥∗ (𝑡) ,
(38)

where𝑃 ≥ 0 ∈ 𝑅�̃�×�̃� satisfies Riccati differential equation (24).

Due to the fact that 𝑥∗(𝑡) = Γ𝑟∗(𝑡+ 𝑙𝑟), 𝑢∗(𝑡) = 𝛾𝑟∗(𝑡+ 𝑙𝑟),
and 𝑞∗(𝑡) = 0, the following corollary is obtained.
Corollary 14. If Assumptions 1 to 5 hold, the optimal preview
controller 𝑢(𝑡) of (1) with the performance index (12) can be
expressed as

𝑢 (𝑡) = −𝑅−1�̃�𝑇𝑃1𝑞 (𝑡) − 𝑅−1�̃�𝑇𝑃2𝑥 (𝑡)
− 𝑅−1�̃�𝑇∫𝑡+𝑙𝑟

𝑡
Φ̃ (𝑡, 𝑠) 𝑃�̃��̃� (𝑠) 𝑑𝑠

+ [𝛾 + 𝑅−1�̃�𝑇𝑃2Γ] 𝑟 (𝑡 + 𝑙𝑟) .
(39)

From (39) it can be seen that there are four parts con-
tained in the preview controller of (1): the first part is the inte-
gral of tracking error term −𝑅−1�̃�𝑇𝑃1𝑞(𝑡), stemmed from the
inducing of the integrator. The second part is the state feed-
back −𝑅−1�̃�𝑇𝑃2𝑥(𝑡). The third one −𝑅−1�̃�𝑇 ∫𝑡+𝑙𝑟

𝑡
Φ̃(𝑡,

𝑠)𝑃�̃��̃�(𝑠)𝑑𝑠 is the reference preview compensation. The last
one [𝛾 + 𝑅−1�̃�𝑇𝑃2Γ]𝑟(𝑡 + 𝑙𝑟) is the previewable complement
of the assistant system.

5. Stability of Closed-Loop System

With 𝜔(𝑡)𝑑𝐵𝑡 being an external disturbance, the stability and
detectability of system (16) are studied only when 𝜔(𝑡) = 0.
Here, (16) becomes the deterministic system

𝑑𝑧 (𝑡) = [�̃�𝑧 (𝑡) + �̃��̃� (𝑡) + �̃��̃� (𝑡) + Γ̃ ̇𝑟 (𝑡 + 𝑙𝑟)] 𝑑𝑡. (40)

As a result, the sufficient and necessary criteria which guar-
antee that there exists a unique semipositive definite solution
to the Riccati equation (24) can be gained by the known con-
clusion, as follows.

Lemma 15 (see [11]). Suppose the following conditions are
satisfied:

(1) The matrices 𝑄�̃� and 𝑅 are both positive definite.

(2) The matrix

Π = [
[
𝑀 𝑁
𝐶 0]]

(41)

is of full row rank.

(3) The matrices pair (𝑀,𝑁) is stabilizable.
(4) The matrices pair (𝐶,𝑀) is detectable.
Then there exists unique semipositive definite solution in

the Riccati equation (24), and there exists the asymptotically
stable coefficient matrix𝑀𝑐 in the closed-loop system (27).

Therefore, the following theorem can be received.
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Theorem 16. If 𝑄�̃� and 𝑅 are both positive definite matrices
and Assumptions 1 to 5 hold, the full regulation is achieved in
the closed-loop system:

𝑑𝑧 (𝑡)
= [�̃�𝑧 (𝑡) + �̃��̃� (𝑡) + �̃��̃� (𝑡) + Γ̃ ̇𝑟 (𝑡 + 𝑙𝑟)] 𝑑𝑡
+ 𝜔 (𝑡) 𝑑𝐵𝑡,

�̃� (𝑡)
= −𝑅−1�̃�𝑇𝑃𝑧 (𝑡)
− 𝑅−1�̃�𝑇∫𝑡+𝑙𝑟

𝑡
Φ̃ (𝑡, 𝑠) (𝑃�̃��̃� (𝑠) + 𝑃Γ̃ ̇𝑟 (𝑠 + 𝑙𝑟)) 𝑑𝑠,

�̃� (𝑡) = �̃�𝑧 (𝑡)
𝑧 (𝑡0) = [ �̃� (𝑡0)�̃�0 (𝑡0)] = 𝑧0;

(42)

namely,

lim
𝑡→∞

�̃� (𝑡) = 0. (43)

Furthermore, the following will be obtained:

lim
𝑡→∞

𝑒 (𝑡) = 0. (44)

6. State Observer

If the state vector 𝑥(𝑡) in (1) cannot be measured directly, the
optimal preview controller (39) cannot be realized. In order
to solve this problem, the state observer

𝑑�̂� (𝑡) = [𝑀�̂� (𝑡) + 𝑁𝑢 (𝑡) + 𝐿 (𝑦 (𝑡) − 𝐶�̂� (𝑡))] 𝑑𝑡
+ 𝜔 (𝑡) 𝑑𝐵𝑡, 𝑥 (𝑡0) = 𝑥0, 𝑡 ∈ [𝑡0,∞) (45)

could be designed.
Subtracting (45) from (1) on both sides yields

𝑑𝑥 (𝑡) = [(𝑀 − 𝐿𝐶) 𝑥 (𝑡)] 𝑑𝑡, (46)

where 𝑥(𝑡) = 𝑥(𝑡) − �̂�(𝑡).
So, if (𝑀 − 𝐿𝐶) is stable, the following will hold:

lim
𝑡→∞

𝑥 (𝑡) = 0, (47)

which means that the state vector �̂�(𝑡) in the observer
equation (45) approximates the state vector 𝑥(𝑡) in (1) when𝑡 → ∞. Based on linear system theory [19], it is known that
if (𝐶, 𝐴) is detectable, (𝑀 − 𝐿𝐶) is stable. Then the following
will be obtained.

Theorem 17. If the conditions in Theorem 16 hold, the closed-
loop system can be received:

𝑑𝑥 (𝑡) = [𝑀𝑥 (𝑡) + 𝑁𝑢 (𝑡)] 𝑑𝑡 + 𝜔 (𝑡) 𝑑𝐵𝑡,
𝑑�̂� (𝑡) = [𝑀�̂� (𝑡) + 𝑁𝑢 (𝑡) + 𝐿 (𝑦 (𝑡) − 𝐶�̂� (𝑡))] 𝑑𝑡

+ 𝜔 (𝑡) 𝑑𝐵𝑡,
𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,
𝑢 (𝑡) = −𝑅−1�̃�𝑇𝑃1 ∫𝑡

𝑡0

(𝐶�̂� (𝑠) − 𝑟 (𝑠)) 𝑑𝑠
− 𝑅−1�̃�𝑇𝑃2�̂� (𝑡)
− 𝑅−1�̃�𝑇∫𝑡+𝑙𝑟

𝑡
Φ̃ (𝑡, 𝑠) 𝑃�̃��̃� (𝑠) 𝑑𝑠

+ [𝛾 + 𝑅−1�̃�𝑇𝑃2Γ] 𝑟 (𝑡 + 𝑙𝑟) ,

(48)

where (𝑀 − 𝐿𝐶) is stable and (48) achieve the complete
regulation.

7. Numerical Simulation

Example 1. Consider the stochastic control system

𝑑[𝑥1 (𝑡)𝑥2 (𝑡)] = [[
0 1
−1 −1][

𝑥1 (𝑡)
𝑥2 (𝑡)] + [

0
1] 𝑢 (𝑡)] 𝑑𝑡

+ 0.1 𝑑𝐵𝑡,
𝑦 (𝑡) = [1 0] [𝑥1 (𝑡)𝑥2 (𝑡)] ,

(49)

where the coefficient matrices are

𝑀 = [ 0 1
−1 −1] ,

𝑁 = [01] ,
𝐶 = [1 0] ,

𝜔 (𝑡) = [0.10.1] ,

(50)

respectively. Therefore, the coefficient matrices in (16) are

�̃� = [[
[

0 1 0
0 0 1
0 −1 −1

]]
]
,

�̃� = [[
[

0
0
1
]]
]
,
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Reference signal: r(t)
lr = 0 s, output: y(t)

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y
 &

 r

5 10 15 20 25 30 35 400
t (s)

Figure 1: Closed-loop output response with nonpreview and refer-
ence signal 𝑟(𝑡).

�̃� = [[
[

−1 0
0 −1
0 0

]]
]

(51)

and Brownian motion 𝐵𝑡 satisfies
𝐵𝑡 ∼ 𝑁 (0, 0.01) . (52)

Let the initial state of (1) be

𝑥 (0) = [00] , (53)

where 𝑥1 and 𝑥2 are mutually independent. The preview
lengths of the reference signals are 𝑙𝑖𝑟 = 0, 0.5, 0.75 s (𝑖 =1, 2, 3), respectively. The weight matrices of the performance
index are

𝑄�̃� = 1,
𝑅 = 1, (54)

and the solution of Riccati equation

�̃�𝑇𝑃 + 𝑃�̃� − 𝑃�̃�𝑅−1�̃�𝑇𝑃 + �̃�𝑇𝑄�̃��̃� = 0 (55)

is

𝑃 = [[
[

2.1533 1.8184 1.000
1.8184 1.9157 1.153
1.000 1.153 0.818

]]
]
, (56)

which is a positive definite matrix. The coefficient matrix𝑀𝑐
in (25) is

𝑀𝑐 = �̃� − �̃�𝑅−1�̃�𝑇𝑃 = [[
[

0 1 0
0 0 1
−1 −2.153 −1.818

]]
]
. (57)

Reference signal: r(t)
lr = 0.5 s, output: y(t)
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Figure 2: Closed-loop output response with 𝑙𝑟 = 0.5 s preview and
reference signal.

Reference signal: r(t)
lr = 0.75 s, output: y(t)
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Figure 3: Closed-loop output response with 𝑙𝑟 = 0.75 s preview and
reference signal 𝑟(𝑡).

When the reference signal is

𝑟 (𝑡) =
{{{{{{{{{

0, 0 ≤ 𝑡 ≤ 5,
0.2 (𝑡 − 5) , 5 < 𝑡 ≤ 10,
1, 𝑡 > 10,

(58)

Figures 1–3 can be obtained.
Figure 1 shows the tracking controller with nonpreview.

Figure 2 shows the tracking controller with 𝑙𝑟 = 0.5 s preview.
Figure 3 shows the tracking controller with 𝑙𝑟 = 0.75 s pre-
view. Comparing the above three figures, it can be seen that
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Reference signal: r(t)
lr = 0 s, output: y(t)

5 10 15 20 25 30 35 400
t (s)

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

y
 &

 r

Figure 4: Closed-loop output response with nonpreview and
reference signal 𝑟(𝑡).
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Reference signal: r(t)
lr = 0.5 s, output: y(t)

Figure 5: Closed-loop output response with 𝑙𝑟 = 0.5 s preview and
reference signal.

based on the preview controller, the output signals can track
the reference signals much faster and with less tracking error.

When the reference signal is

𝑟 (𝑡) =
{{{{{{{{{

0, 0 < 𝑡 ≤ 5,
0.1 sin 0.5 (𝑡 − 5) , 5 < 𝑡 ≤ 5 + 5𝜋,
0, 𝑡 > 5 + 5𝜋,

(59)

Figures 4–6 can be obtained.
Figure 4 shows the tracking controller with nonpreview.

Figure 5 shows the tracking controller with 𝑙𝑟 = 0.5 s preview.

Reference signal: r(t)
lr = 0.75 s, output: y(t)
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Figure 6: Closed-loop output response with 𝑙𝑟 = 0.75 s preview and
reference signal 𝑟(𝑡).

Figure 6 shows the tracking controller with 𝑙𝑟 = 0.75 s pre-
view. Comparing the above three figures, it can be seen that
based on the preview controller, the output signals can track
the reference signals much faster and with less tracking error.

8. Conclusion

This paper has studied the optimal preview control problem
for a class of continuous stochastic system in the infinite
horizon. By introducing the integrator and the assistant
system, the stochastic augmented error system is constructed.
Compared with the finite horizon, the performance index
is simplified. The stability of the stochastic augmented error
system is also studied and the observer for the original
stochastic system is designed. Finally, the simulation example
shows the effectiveness of the conclusion in this paper.
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