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ABSTRACT 

The pre-emption procedure is an important part of the radio resource management when 

dealing with the emergency traffic. It allows resources to be allocated to higher priority 

connections by pre-empting lower priority connections. The provision of the pre-emption 

mechanism becomes much more important in the case of satellite systems such as the 

Inmarsat Broadband Global Area Network system, which aids in providing the 

communication during a catastrophe. This paper focuses on the pre-emption framework 

for a Universal Mobile Telecommunications System-based satellite systems. Three 

algorithms have been proposed, Greedy, SubsetSum and Fuzzy pre-emption algorithm. 

Extensive simulations are carried out for the three algorithms and their performances 

are compared against each other. Simulation results show that the Fuzzy pre-emption 

algorithm performs better than the other two algorithms. 
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1. INTRODUCTION 

In general, networks are designed in a way such that the performance of a system can be 

maintained under specified maximum traffic load conditions. However, beyond the 

maximum load, the system performance starts to deteriorate and eventually leads to 

network failure. Under a highly congested state irrespective of the cause, whether 

expected or unexpected, it is necessary to minimize network failure [1]. In order to 

achieve such an objective, the network should alter the normal resource management 

procedures, in particular admission control by including pre-emption measures. A pre-

emption control mechanism is based on the priorities assigned to all connections using a 

predetermined criteria set by the system and can be triggered to prematurely stop one or 

more existing connections in order to admit a new connection.  

Several schemes have been proposed in the literature for pre-emption control in different 

networks [2-6]. A priority scaled pre-emption scheme Third Generation Partnership 

Project Long Term Evolution (LTE) networks using allocation and retention priority 

(ARP) has been proposed in [2]. This paper assumes that each bearer is mapped to a single 

service data flow and that the resource requirement of each bearer is fixed. The proposed 

technique suggested the pre-emption of the resources up to minimum QoS level from all 

lower priority bearers. The priority scaled pre-emption allowed the amount of resources 

pre-empted from the lower priority bearers to be proportional to their priorities. This 
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method was compared to the conventional pre-emption technique where the pre-emption 

of the resources up to minimum QoS level from all lower priority bearers is performed 

starting with the  lowest priority bearer. The priority scaled pre-emption was shown to 

perform better than the conventional method in terms of the number of dropped and 

blocked active bearers. Although, the proposed technique has shown to outperform the 

conventional method under the given assumptions, the applicability of such scheme does 

not apply to a satellite system where several connections are tuned to one bearer along 

with the capability of the system supporting multimedia traffic with different QoS 

requirements.   

In [3, 4], the pre-emption control was shown as one of the component of an adaptive 

bandwidth borrowing admission control scheme for cellular networks. In this scheme, the 

pre-emption control mechanism was triggered during the admission of the handoff calls 

if there was not sufficient bandwidth to borrow from the lower priority active calls. The 

pre-emption policy applied call pre-emption on one or more active calls in decreasing 

order of their allocated bandwidth, until the resource needed to admit an incoming 

handoff call could be satisfied.  

The authors in [5] proposed two pre-emption based resource allocation schemes, last-

come-first-pre-empted (LCFP) and path-prediction-based-pre-emption (PPBP); that 

could efficiently support multiple traffic types such as voice, video, data in an integrated 

heterogeneous wireless and mobile network. The authors assumed K different types of 

wireless and mobile networks out of which one network covers the entire service area 

consisting of many homogenous cells with lower bandwidth service. The remaining 

networks have limited coverage with one cell randomly distributed in each cell of the 

single wide coverage network. These networks were assumed to provide higher 

bandwidth service. Two types of traffic were considered: delay sensitive real-time traffic, 

such as voice and video, and delay tolerant non-real time traffic. An incoming real-time 

call, either new or handoff call could pre-empt ongoing non-real-time calls in the same 

cell of the network. A higher priority real-time call could be accepted in the network if 

there were enough resource for the call else the non-real time calls would be checked for 

pre-emption. In the LCFP scheme, the order of pre-emption was based on the descending 

order of time when ongoing non-real-time calls were accepted by the system. Therefore, 

the last accepted non-real-time call would be pre-empted first which allowed the earlier 

accepted calls to finish their service time so that the occupied bandwidth can be released 

more quickly. However, this scheme is not appropriate for the connections with different 

holding time which indicates the time the connection is in the system. An earlier accepted 

call may have much longer holding time than the last accepted call. On the other hand, in 

the PPBP scheme, the location information of the mobile user was known which was used 

to calculate the time, T, it took an active non-real time mobile user to reach a network 

providing higher bandwidth service before it moves out of the current cell. The non-real 

time call with the smallest value of T was pre-empted first. Such a scheme is only suitable 

to the given system architecture.  

A threshold based pre-emption scheme for cellular network was presented in [6] . The 

purpose of this scheme was to guarantee a certain amount of resources to lower priority 

calls while allowing a higher priority call such as emergency calls an immediate access 

to the network. The amount of pre-emption was decided by a pre-emption threshold value 

which could be tuned according to the channel occupancy rate and traffic rate. If the 

number of channels occupied by the higher priority calls was less than the threshold, pre-



emption was allowed otherwise the higher priority call would be blocked. Hence, the 

higher the threshold, the higher the resources used by the higher priority calls. However, 

the pre-emption decisions of the schemes presented above were only based on a single 

criterion, which might not be able to provide an optimum solution.  

This paper presents three pre-emption algorithms incorporated in the connection 

admission control (CAC) framework, namely Greedy, SubSetSum, and Fuzzy, based on 

different pre-emption policies for a Universal Mobile Telecommunications System 

(UMTS)-based satellite system. The Greedy and the SubSetSum pre-emption algorithms 

are single-criterion algorithms using the resource utilization of a connection as the pre-

emption criteria and differ in the order in which the connections are pre-empted. The 

Fuzzy pre-emption algorithm uses an intelligent algorithm based on fuzzy logic that 

considers multiple criteria: priority, resources utilization and the remaining time of the 

connection to be pre-empted in the system.  

Figure 1 shows the UMTS satellite network architecture used for the implementation of 

the CAC framework. 
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Figure 1 UMTS Satellite Network Architecture 

The architecture is divided into three segments:  

 User equipment (UE) segment consists of a transportable satellite modem, the 

mobile terminal (MT) connecting to a terminal equipment such as a personal 

computer or a PDA, allowing users access to UMTS services. Multiple terminal 

equipment can be connected to one MT such that multiple data connections can 

belong to one MT;  

 Satellite segment consists of a multi-beam geostationary satellite system that 

provides a transparent link between the user equipment and the radio network 

controller (RNC). Multi-Frequency, Time Division Multiplex and Multi-

Frequency, Time Division Multiple Access are adopted in the forward (satellite-

to-user) and the reverse (user-to-satellite) links, respectively. In the forward 

direction, each satellite channel has a bandwidth of 200 kHz, which is termed as 

forward subbands.; 

 Ground segment consists of the radio access network and the core network (CN). 

The radio access network, which handles all radio-related aspects of the ground 

network, consists of a number of radio network subsystems. Each radio network 

subsystem consists of a RNC and a radio frequency subsystem. The CAC 



controller resides in the RNC. The RNC interfaces to the CN for switching and 

routing data connections to and from external network. The CN consists of the 

packet switched elements such as the serving general packet radio service (GPRS) 

support node and the gateway GPRS support node in the packet switching domain 

and the multicast switched elements such as broadcast multicast service node and 

broadcast multicast service centre in the broadcast multicast domain. However, 

only packet switching domain has been considered for this study. 

The proposed CAC framework focuses on the resource availability in the forward 

direction using a fixed number of forward subbands to admit data connections. Each MT 

is tuned to a particular forward subband and therefore, all the data connections associated 

with that MT are transmitted on one forward subband. The system supports different MT 

classes pertaining to the size of their antennas and operating scenario of the MT such as 

portable, land-vehicular, maritime or aeronautical. 

The rest of the paper is organised as follows. Section 2 describes the extension of the 

work presented in [7-9] for adaptive admission control to support the pre-emption control. 

A brief description of the CAC Processor is presented followed by the detailed flowchart 

of the pre-emption algorithms. The simulation parameters used to analyse the system 

performance are presented in Section 3. Section 4 compares the three pre-emption 

schemes, and in Section 5, the paper is concluded. 

2. CAC FRAMEWORK FUNCTIONAL MODEL 

 

Figure 2 CAC Framework Functional Model 

Figure 2 shows the CAC framework consisting of 2 different functional entities, the CAC 

processor and pre-emption controller. The CAC processor is central to the CAC 

framework. It runs an adaptive admission control algorithm when triggered by a new 

connection request and decides whether the new connection can be admitted. The 

adaptive CAC algorithm takes into account the link condition and the class of the MT 

while calculating the resources used by the connections on a forward subband. The link 

condition may vary depending on the weather condition, user mobility etc. The MT 

classes are categorised according to the data transfer capabilities of the MTs depending, 

on the size of the antenna. The pre-emption controller will be triggered by the CAC 

processor if all the available subbands cannot accommodate any new connection request. 

Based on the pre-emption policy used, one or more lower precedence ongoing 

connections are pre-empted in order to admit the higher precedence new connection.  

2.1 Connection request generator 

The Connection request generator is responsible for generating new connection requests. 

Three UMTS traffic classes are supported: the streaming class, the interactive class and 
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the background class [10,11]. For the interactive traffic class, a UMTS QoS attribute 

known as Traffic Handling Priority (THP) is used to identify the priority of the 

connections within the interactive class. The THP parameter is only applicable for the 

interactive class and it can take three values: THP1, THP2, THP3, depending on the type 

of application which follows the following priority order: THP1>THP2>THP3. The 

system considers four types of applications; video streaming, netted voice, web browsing, 

and e-mail. The inter-arrival time for each connection requested is generated using 

Poisson distribution and the connection holding time is generated using exponential 

distribution. Table provides the summary of the type of applications supported by the 

system.  

Application 

Type 

Mode of 

Transmission 

Traffic 

Class 

THP Priority Pre-

emptable 

Video Streaming Unicast Streaming N/A 1 No 

Netted Voice Unicast Interactive 1 2 Yes 

Web Browsing Unicast Interactive 2 3 Yes 

Email Unicast Background N/A 4 Yes 

Table I Types of applications supported by the system 

2.2 CAC Processor 

The CAC Processor consists of four functional blocks: a subband selector, an effective 

bandwidth estimator, a resource consumption estimator and an admission decision 

controller, as shown in Figure 3[7-9].    

The subband selector selects the forward subband for a new MT from the list of available 

subbands. Two methods have been proposed: (i) MinConnSubSel selects the forward 

subband with the minimum number of connections running from the list of available 

subbands. This method allows a basic form of load balancing, (ii) random method 

randomly selects a forward subband. 

 

Figure 3  Functional Block Diagram of CAC Processor 

The effective bandwidth estimator estimates the bandwidth requirement of the connection 

based on their statistical characteristics. All traffic sources are modelled as ON-OFF 

process [12]. The estimated capacity is calculated using the peak rate, Rpeak, and the source 

utilization, ρ, of the connection as follows: 

 𝐸𝑠𝑡𝐶𝑎𝑝 = 𝑅𝑝𝑒𝑎𝑘 ∗ 𝜌  (1) 

The source utilization represents the fraction of time the source is active 
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The function of the resources utilization estimator is to calculate the total resources used 

on the given forward subband. The adaptive CAC algorithm takes into account the link 

condition and the class of the MT while calculating the resources used by the connections 

on a forward subband. The forward frame in the physical layer carries the data on a 

forward subband from the RNC to MT. Each forward frame is 80ms long and consists of 

eight FEC blocks. The forward subband supports a range of code rates and is bounded by 

the lowest and the highest code rates in order to maintain a packet error rate of 10-3 under 

different radio link conditions. The code rate is a fractional number that indicates the 

portion of the total amount of information that is useful. Hence, the resource used on a 

forward subband is calculated as follows: 

givenfwdsubband

allconnections

ResourcesUsed = EstCap / coderate                           (2) 

where the coderate varies constantly in adaptive CAC algorithm.  

The admission decision controller is responsible for performing one of the following 

actions on the new connection request: (i) admit new connection on the given forward 

subband, (ii)  admit new connection on the given forward subband by pre-empting one or 

more, lower priority connections and (iii) block the new connection. 

2.3 Pre-emption controller 

The functionality of the pre-emption controller is to find the connections which can be 

pre-empted according to pre-defined pre-emption criteria, such that the new connection 

can be admitted on the given forward subband. Three pre-emption algorithms have been 

proposed; Greedy, SubSetSum and Fuzzy pre-emption algorithms.  

2.3.1 Greedy pre-emption. The Greedy pre-emption algorithm pre-empts the 

connections with the lowest resource usage. This algorithm performs by pre-empting the 

lower priority connections in the ascending order of the resources consumed by the 

connections and in doing so, it greedily pre-empts more connections than required. Figure 

4 shows the flowchart for the Greedy pre-emption algorithm.  

 

Figure 4 Flow chart of Greedy pre-emption algorithm 
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2.3.2 SubSetSum  pre-emption. The SubSetSum pre-emption algorithm selects the pre-

emptable connections in an optimum manner. The algorithm is based on a SubSetSum 

problem [13] which states that given a set A of positive integers such that 

1 2 n
A= [a ,a ,……,a ]  and a positive integer called the target sum, s, where

n

i

i=1

s a   there 

exists a column vector 𝑋 = [𝑥1, 𝑥2, …… , 𝑥𝑛]
𝑇 , 𝑥𝑖 ∈ [0,1],  such that AX is as large as 

possible but not greater than s. Figure 5 shows the flowchart for the SubSetSum pre-

emption algorithm. 

 

Figure 5 Flow chart of SubSetSum pre-emption algorithm 

Adapting the SubSetSum problem to the pre-emption problem is equivalent to finding a 
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1 2 n
A= [a ,a ,……,a ]  where n is the total number of pre-emptable connections on a 
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n
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Because there can be more than one solution for X, the one which gives the minimum 

value of AX but greater than r will be adopted. Any element xi equalling to 1 in the chosen 

solution of X will lead to connection i being dropped. Hence, the algorithm drops one or 

more lower priority connections such that the total resource consumption of these 

connections is just enough to accommodate the new connection request. This enables high 

priority connection requests to be admitted without dropping more than necessary 

existing lower priority connections, thus minimizing the bandwidth released by the pre-

emptable connections and also reducing the number of connections pre-empted. Hence, 

SubSetSum pre-emption algorithm is an improvement over the Greedy pre-emption 

algorithm.  
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2.3.3 Fuzzy pre-emption. The Fuzzy pre-emption algorithm is proposed to overcome 

the shortcomings of the SubSetSum algorithm and to further enhance the performance of 

the system. Although, SubSetSum algorithm provides an optimum solution by 

minimizing the bandwidth released by the pre-emption of the connections and by 

reducing the number of connections to be pre-empted, however, it is mathematically 

complex and requires more computation time. Also, it does not consider other factors 

such as priority of the connection when deciding which connections are to be pre-empted 

[14, 15]. 

 

Figure 6 Block diagram of Fuzzy Pre-emption Algorithm 

Figure 6 shows the block diagram describing the methodology and criteria used in the 

Fuzzy pre-emption algorithm. The main idea of the algorithm is to produce the output, 

PreemptableFactor for each pre-emptable connection using a given number of input 

criteria. PreemptableFactor indicates the odds of a connection to be pre-empted; the 

higher the value of PreemptableFactor, the greater the chance of the connection to be 

pre-empted and vice-versa. Once the PreemptableFactor is calculated for each pre-

emptable connection, the list is sorted according to the value of PreemptableFactor. The 

sorted list is then sent to the FuzzyOutput procedure which selects the connections for 

pre-emption. The following three input criteria have been used to compute 

PreemptableFactor: 

 Priority – indicates the priority of the connection which in turn depends on the 

type of traffic.  

 ConnectionCapacity – indicates the resource utilized by the connection on the 

given forward subband. 

 TimeLeft – indicates the remaining service time of the connection. 

Table II shows the range used for the input and the output variables while designing the 

Fuzzy pre-emption algorithm. The range has been selected such that the design remains 

suitable for different traffic classes with varying QoS requirements. 

The core of the Fuzzy pre-emption algorithm is the Fuzzy logic controller (FLC) [15]. It 

collects the input variables for each pre-emptable connection and based on that 

information, it produces the PreemptableFactor as an output. The FLC operates by 

converting the real or crisp values to the corresponding linguistic values of the fuzzy sets, 

which can be described using membership functions. A membership function can be 

represented by a curve or a line. Some of the most common shapes used for membership 

functions are Guassian, Trapezoidal and Triangular. The given input and output linguistic 

variables are assumed to have either triangular or trapezoidal membership functions 

which are described in the succeeding text: 
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 The triangular curve function, trimf(x,[a,b,c]), is a function of vector x and 

depends on three scalable factors, a, b and c. The parameters, a and c locate the 

‘feet’ of the triangle, and the parameter b locates the peak. 

 The trapezoidal curve function, trapmf(x,[a,b,c,d]), is a function of vector x and 

depends on four scalable factors, a, b, c and d. The parameters, a and d, locate the 

‘feet’ of the trapezoid, and the parameters b and c locate the ‘shoulders’. 

 

Type of variable Variables Range 

Input Priority 2, 3, 4 

Input ConnectionCapacity 1 – 10 Kbits 

Input TimeLeft 0 – 1200 s 

Output PreemptableFactor 0 – 1 

Table II Range of input and output variables used in Fuzzy pre-emption algorithm 

The Fuzzy variables assumed for the input linguistic variables, Priority, TimeLeft and 

ConnectionCapacity; and for the output linguistic variable, PreemptableFactor are 

defined respectively as: 

 𝑇(𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦) = {𝐻𝑖𝑔ℎ,𝑀𝑒𝑑𝑖𝑢𝑚, 𝐿𝑜𝑤} 

 𝑇(𝑇𝑖𝑚𝑒𝐿𝑒𝑓𝑡) = {𝑇1, 𝑇2, 𝑇3, 𝑇4} 

 𝑇(𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) = {𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ} 

 𝑇(𝑃𝑟𝑒𝑒𝑚𝑝𝑡𝑎𝑏𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟) = {𝑃𝐹1, 𝑃𝐹2, 𝑃𝐹3, 𝑃𝐹4, 𝑃𝐹5, 𝑃𝐹6, 𝑃𝐹7, 𝑃𝐹8, 𝑃𝐹9} 

Figures 7–10 show the membership functions of the input variables. 

 
Figure 7: Membership function plot for Input variable, Priority. 



 
Figure 8: Membership function plot for Input variable, TimeLeft. 

 
Figure 9: Membership function plot for Input variable, ConnectionCapacity. 

 
Figure 10: Membership function plot for Output variable, PreemptableFactor. 

 



 

Figure 11 Flow chart of Fuzzy pre-emption algorithm 

Figure 11 shows the flowchart for the Fuzzy pre-emption algorithm. 

1. The FLC block runs for each pre-emptable connection in InputList(xi) as shown 

in Figure 6 and calculates the corresponding PreemptableFactor. Upon 

completion of the FLC block, the pre-emptable connection list is sorted according 

to the PreemptableFactor to form the FuzzySortedInputList(xi), where i = 1…n 

and n is the number of existing pre-emptable connections. The 

FuzzyOutput_Trigger carrying the FuzzySortedInputList(xi) and BWNeeded  

parameters is sent to the FuzzyOutput procedure shown in Figure 6, where 

BWNeeded is the required bandwidth for the new connection. 

2. Set i = 1 and j=1, where j is the index of the connections selected for pre-emption, 

PreemptConnList(yj). Define ConnCap as the bandwidth utilized by the next 

available connection in the FuzzySortedInputList(xi), then when i=1: 

𝐶𝑜𝑛𝑛𝐶𝑎𝑝 = 𝐹𝑢𝑧𝑧𝑦𝑆𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑝𝑢𝑡𝐿𝑖𝑠𝑡(𝑥1) 

3. If (𝐵𝑊𝑁𝑒𝑒𝑑𝑒𝑑 <=ConnCap), then 

𝑃𝑟𝑒𝑒𝑚𝑝𝑡𝐶𝑜𝑛𝑛𝐶𝑎𝑝(𝑦𝑗) = 𝐹𝑢𝑧𝑧𝑦𝑆𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑝𝑢𝑡𝐿𝑖𝑠𝑡(𝑥𝑖) 

The pre-emption process is completed and stops at this step. 

4. If (𝐵𝑊𝑁𝑒𝑒𝑑𝑒𝑑 >ConnCap), more than one connection is required to be dropped 

in order to admit the new connection. 

5. Set 

𝑃𝑟𝑒𝑒𝑚𝑝𝑡𝐶𝑜𝑛𝑛𝐶𝑎𝑝(𝑦𝑗) = 𝐹𝑢𝑧𝑧𝑦𝑆𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑝𝑢𝑡𝐿𝑖𝑠𝑡(𝑥𝑖) 

𝐵𝑊𝑁𝑒𝑒𝑑𝑒𝑑 = 𝐵𝑊𝑁𝑒𝑒𝑑𝑒𝑑 − 𝐶𝑜𝑛𝑛𝐶𝑎𝑝 

6. Set i = i + 1 and j = j+1. 

𝐶𝑜𝑛𝑛𝐶𝑎𝑝 = 𝐹𝑢𝑧𝑧𝑦𝑆𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑝𝑢𝑡𝐿𝑖𝑠𝑡(𝑥𝑖) 

If 𝐵𝑊𝑁𝑒𝑒𝑑𝑒𝑑 < 0, the pre-emption process is completed and stops at this step. 

BWNeeded

<=

ConnCap TRUEFALSE

Indicates that 2 or 

more connections 

needs to be 

preempted

PreemptConnList(yj)=

FuzzySortedInputList(xi)

PreemptionPossible

(PreemptConnList(yj))

start

FuzzyOutput_Trigger

(FuzzySortedInputList(xi), BWNeeded)

ConnCap = 

FuzzySortedInputList(xi)

i=1;

j=1

A

A

B

PreemptConnList(yj)=FuzzySortedInputList(xi)

BWneeded = BWneeded-ConnCap

i=i+1;

j=j+1;

BWNeeded >=0

ConnCap = FuzzySortedInputList(xi)

FALSE

i <=

length(FuzzySortedInputList)

TRUE

TRUE

FALSE

PreemptionNotPossible

PreemptionPossible

(PreemptConnList(yj))

B

B



If 𝐵𝑊𝑁𝑒𝑒𝑑𝑒𝑑 >= 0, 

  If 𝑖 ≤ 𝑛, 

   𝐵𝑊𝑁𝑒𝑒𝑑𝑒𝑑 = 𝐵𝑊𝑁𝑒𝑒𝑑𝑒𝑑 − 𝐶𝑜𝑛𝑛𝐶𝑎𝑝 

   Goto step 5 

  If i > n, then pre-emption is not possible and the process stops here. 

 

3. SIMULATION PARAMETERS 

The following simulation parameters have been defined to analyse the system 

performance under different scenarios: 

 Blocking ratio: When a new connection arrives and finds no resources available or no 

lower priority connection to pre-empt, the connection will be blocked. The blocking 

ratio is calculated as the ratio of the number of connections rejected/blocked to the 

total number of connection request made. 

 Dropping ratio: The lower priority connections are pre-empted in order to admit a 

higher priority connection. The dropping ratio is calculated as the ratio of the number 

of connections dropped/pre-empted to the total number of connection request made. 

 Number of successful connections: The number of admitted connections which finish 

their service time such that the connections are not dropped. 

 Pre-emptable data size: This indicates the total data size released by all the pre-empted 

connections over a period of simulation time. 

 Computation time: This is used to measure the performance of the pre-emption 

algorithms. It indicates the time MATLAB takes to run an algorithm. For a given 

simulation, the amount of time to run the algorithm each time the algorithm is 

triggered in a given simulation time, is measured. The computation time for the given 

algorithm is the average of the measured times over a period of the simulation time. 

 Revenue generation: This is also used to measure the performance of the pre-emption 

algorithms. A time-based charging mechanism has been applied to calculate the 

revenue. A tariff of w pence/sec is used for calculating the charge for the session the 

connection is active in the system. The value of w depends on the type of the traffic 

and is proportional to the priority of the application. Hence, a higher priority 

connection generates higher revenues and a lower priority connection generates lower 

revenues. 

 

4. SIMULATION SCENARIOS AND RESULTS  

The purpose of the simulation is to test the performance of the system using proposed 

pre-emption algorithms. The pre-emption procedure is activated when the system is 

congested. The selection of the simulation parameters in the given scenario is such that 

the system is heavily congested very quickly. For this purpose, the system is configured 

with only one available forward subband supporting a data rate of 512 Kbps under good 

link condition. Table III summarizes the MATLAB simulation parameters for the given 

scenarios. Parameters used in the simulation scenarios are based on [16]. 

 



Common Simulation Parameters  Values  
Total No. of connections  32 
Number of MTs  20 
Number of available forward subbands 1 

Number of 

connections of 

each traffic type 

Video Streaming  8 
Web Browsing  8  
Netted Voice  8  
E-mail  8  

Data rate (kbps)  Video Streaming  32  
Netted Voice 60 
Web Browsing  32  
E-mail  120  

Avg. Holding time 

(sec)  
Video Streaming  300 

Netted Voice 240 

Web Browsing 200 
E-mail  150 

Source Utilization  Video Streaming  0.8 

Netted Voice 0.3 

Web Browsing 0.2 
E-mail  0.2 

Table III Simulation Parameters for Scenarios 

Four types of unicast traffic with different traffic parameters [16] are considered; video 

streaming, netted voice, Web browsing and E-mail, where each traffic type generates 

eight connection requests. These scenarios were chosen as representative applications 

considered in the Inmarsat Broadband Global Area Network System.2 The number of 

MTs is taken as 20. The admission control algorithm and the subband selection method 

are chosen as the adaptive and the MinConnSubSel, respectively. 

4.1 Comparison between different pre-emption algorithms 

 

Figure 12 Comparison of the blocking and the dropping ratio for different pre-

emption algorithms 

                                                 
2 Private conversation with Mr Paul Febvre from Inmarsat. 
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Figure 12 compares the blocking and the dropping ratio for different pre-emption 

algorithms. As can be seen, the blocking ratio is slightly higher for the Greedy algorithm 

than the SubSetSum and the Fuzzy algorithms which have the same blocking ratio. Also, 

the dropping ratio is the highest for the Greedy algorithm followed by the SubSetSum and 

the Fuzzy algorithms. This is expected as the Greedy algorithm admits the higher priority 

connections by pre-empting as many lower priority connections as required starting with 

the lowest resource using connection. In doing so, a large number of lower priority 

connections are dropped. Hence, the dropping ratio is the highest. This also results in 

increased blocking of the new higher priority connections as there may not be enough 

lower priority connections to drop. The SubSetSum algorithm drops the connections in an 

optimum way by selecting the connection from the list of pre-emptable connections such 

that its resource consumption is just enough to admit a higher priority connection.  Hence, 

as compared to Greedy, it drops fewer connections. The Fuzzy algorithm considers 

multiple criteria such as priority, remaining service time, and the connection capacity, 

while deciding the connections to be pre-empted. The rules are set such that the 

connection with the lowest priority, longest remaining time and smallest connection 

capacity has the highest chance of being pre-empted. Such rules ensure that the 

connections with short remaining service time are less likely to be dropped allowing more 

successful departures from the system, which in turn increases the possibility of admitting 

more connections and hence reduces the dropping ratio.  

Figure 13 compares the number of successful connections for different pre-emption 

algorithms. As can be seen, all 8 video streaming connections and no email connections 

are admitted for each pre-emption algorithms. This is expected as the video streaming are 

the highest priority connections and the email are the lowest priority connections. For the 

netted voice and web browsing connections, the Fuzzy algorithm admits the maximum 

connections followed by SubSetSum and Greedy. This is in accordance with the increased 

dropping ratio shown in Figure 12 in the same order. As more connections are dropped, 

fewer connections are successfully admitted. 

 

 

Figure 13 Comparison of number of successful connections for different pre-

emption algorithms 
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Figure 14 Comparison of pre-emptable data size for different pre-emption 

algorithms 

Figure 14 compares the pre-emptable data size in bits for different pre-emption 

algorithms. As can be seen, the SubSetSum has the lowest pre-emptable data size followed 

by the Greedy and the Fuzzy. This is expected as the SubSetSum algorithm tries to 

minimize the pre-emptable data size by selecting the connections to be pre-empted such 

that its resource consumption is just enough to admit a higher priority connection. The 

Greedy algorithm also tries to keep the pre-emptable data size minimum by pre-empting 

as many lower priority connections as required starting with the lowest resource using 

connection. However, it does not do it in an optimum manner and hence, the pre-emptable 

data size is slightly higher than the SubSetSum. For the Fuzzy algorithm, although the 

rules ensure that the connections with low connection capacity have the highest chance 

of being pre-empted which helps to minimize the pre-emptable data size, however, at the 

same time the algorithm also tries to keep the dropping ratio to a minimum and to 

maximise the number of successfully admitted connections. In doing so, the pre-emptable 

data size is higher than both the Greedy and the SubSetSum algorithms. 

 

Figure 15 Comparison of computation time for different pre-emption algorithms 

Figure 15 compares the computation time for different pre-emption algorithms. As can 

be seen, the SubSetSum algorithm has the highest computation time followed by the Fuzzy 

and the Greedy algorithms. This is expected since the SubSetSum algorithm is based on 

the SubSetSum problem which is computationally heavy and requires a lot of loop 

iterations to find the optimum solution. The Fuzzy algorithm also provides the optimum 
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solution. However, it is easy to understand and takes much less time to compute as 

compared to SubSetSum. Although the Greedy algorithm gives higher blocking and 

dropping ratio, it is easy to implement and computationally efficient.  

 

4.2 Comparison between pre-emption and no pre-emption  

In this scenario, the performance of the system is compared under the following three 

conditions: 

 Pre-emption allowed – All the connections are configured to be pre-emptable. 

The fuzzy pre-emption algorithm has been used.  

 Pre-emption not allowed – No connections are configured to be pre-emptable. 

 Pre-emption randomly allowed – Some connections are randomly selected to 

be pre-emptable.  

Figure 16 shows the effect of the pre-emption procedure on the blocking and the dropping 

ratio. As can be seen, the blocking ratio is the highest for pre-emption not allowed and 

lowest for pre-emption allowed. However, the reverse is true for the dropping ratio. Such 

results are expected. With the pre-emption procedure enabled, fewer number of 

connections are blocked as the connection of a higher priority are admitted into the system 

by dropping of one or more existing lower priority connections during congestion. This 

in turn implies a higher dropping ratio. On the other hand, with no pre-emption allowed, 

the connections are blocked irrespective of the priority once the given forward subband 

is fully occupied. Hence, the blocking ratio is very high and since there is no dropping of 

the connections, the dropping ratio is zero. 

 

Figure 16 Effect of the pre-emption procedure on the blocking and the dropping 

ratio 
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Figure 17 Effect of pre-emption procedure on the number of successful 

connections 

Figure 17 shows the effect of the pre-emption procedure on the number of successful 

connections. As can be seen for pre-emption allowed, all the video streaming connections 

are admitted since they are the highest priority connections. As the priority drops for the 

different traffic in the given order, netted voice > web browsing > email, the number of 

successful connections also reduces as most of these lower priority connections are 

dropped. Since email connections have the lowest priority, they are dropped for all other 

higher priority connections and hence, there are no successful email connections. On the 

other hand for pre-emption not allowed, the connections are not admitted according to 

their priority resulting in only 2 video streaming connections being admitted as opposed 

to 8 in the case when pre-emption is allowed. Under the condition, pre-emption randomly 

allowed, only 5 video streaming connections are successfully admitted and the rest have 

been blocked since there were not enough pre-emptable lower priority connections. 
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Figure 18 Effect of pre-emption procedure on the revenue generation 

Figure 18 shows the effect of pre-emption procedure on the revenue generated by the 

network. As can be seen, the revenue generation is the highest for pre-emption allowed 

and lowest for pre-emption not allowed, and lies in between for pre-emption randomly 

allowed. This is directly related to the number of successful connections for each priority 

connections. For example, the pre-emption procedure tries to maximize the higher 

priority connections which have the highest revenues whereas with no pre-emption, the 

highest numbers of successful connections are email connections as shown in Figure 17 

and hence, pre-emption not allowed has the lowest revenues.   

5. CONCLUSIONS 

In this paper, a pre-emption controller as a part of CAC framework has been presented 

for UMTS satellite systems. The pre-emption controller allows the possibility of pre-

empting an existing connection of lower priority in order to admit a connection of higher 

priority. Three pre-emption control algorithms have been proposed; Greedy, SubSetSum 

and Fuzzy. The system supports mixed types of traffic such as video, Web browsing, 

netted voice and E-mail. Comparing the Greedy and the SubSetSum algorithms, the 

simulation results demonstrate that the SubSetSum algorithm performs 7% and 18% 

better than the Greedy pre-emption algorithm in terms of the dropping and blocking ratio, 

respectively. Hence, higher numbers of connections are successful using the SubSetSum 

algorithm. However, the computation time is 98% higher than the Greedy pre-emption 

algorithm because SubSetSum algorithm is mathematically complex and requires more 

computation time. As a result, a further improvement over the SubSetSum pre-emption 

algorithm has been proposed by the use of an intelligent Fuzzy pre-emption algorithm. It 

makes use of the expert system knowledge to provide a better system performance as 

compared to the Greedy and the SubSetSum pre-emption algorithms. The results indicate 

7% improvement in the dropping ratio resulting in a slight increase in the number of 

successful connections but 94% shorter computation time as compared with the 

SubSetSum algorithm is achieved. In addition, the Fuzzy pre-emption algorithm also 

results in higher revenue generation. This work will be extended in future to support 
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different classes of multicast traffic. The performance of the proposed pre-emption 

algorithms will be analysed under different multicast and unicast traffic conditions.  
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