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Abstract 

Global concern around energy use and anthropogenic climate change have resulted in an 

increased effort to reduce the energy demand and CO2 emissions attributable to buildings. 

This has led to the development of a number of low energy building standards, one of which 

is the internationally recognised Passivhaus Standard. 

The Passivhaus Standard aims to reduce the space heating energy demand of a building by 

adopting a ‘fabric first’ approach, thus ensuring the thermal envelope is highly insulated and 

airtight whilst also maximising passive solar heat gains. However, adopting such an approach 

does present a risk of overheating; a situation that is of particular concern when the occupants 

have additional healthcare requirements. 

This study uses 21 months of in-use monitored data to consider the overheating risk in a UK 

Passivhaus dwelling with vulnerable occupants using both static and adaptive thermal 

comfort assessment methods. The analysis of the data suggests the occurrence of substantial 

overheating according to PHPP, CIBSE Guide A and CIBSE TM52 criteria. The analysis was 

then expanded to consider a novel composite method to overcome the limitations of existing 

approaches, allowing overheating to be assessed during non-typical periods i.e. the heating 
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season. This revealed apparent overheating during colder months, in addition to substantial 

night-time overheating. This has implications for the thermal comfort assessment of low 

energy dwellings and the design and operation of Passivhaus buildings, particularly those 

with vulnerable occupants. 
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Nomenclature 

He Hours of exceedance 

Tcomf Comfort temperature 

Tdb Dry bulb temperature 

Tmax Maximum temperature 

TMRT Mean radiant temperature 

Top Operative temperature 

Trm Exponentially weighted running mean outdoor temperature 

Tupp Upper temperature limit 

We Weighted exceedance 

L24 Lounge, constant occupancy  

B24 Bedroom, constant occupancy 

LISO Lounge, day/night occupancy profile 

BISO Bedroom, day/night occupancy profile 
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1. Introduction 

The ratification of the Paris Agreement [1] identifies that reducing carbon emissions remains 

a prominent global political priority. It is estimated that the built environment accounts for 

approximately one third of anthropogenic greenhouse gas emissions world-wide and around 

40% of global energy use [2]. In the UK, the energy used in dwellings accounts for over a 

quarter of total energy use and carbon emissions [3]. The built environment therefore offers a 

significant opportunity for energy reduction, a circumstance that has led to the adoption of 

legislation designed to limit building energy use. For domestic dwellings in the UK, this has 

primarily taken the form of the Building Regulations Approved Document Part L: 

Conservation of Fuel and Energy [4, 5]. In the UK, the prevailing climate conditions have 

resulted in an emphasis being placed on the reduction of space heating energy use. This is 

reflected in government policy, which has encouraged the adoption of insulation materials 

into the building fabric in order to reduce the associated transmission losses. 

As the energy requirements for buildings have become progressively stricter, novel methods 

for low energy construction, which go beyond existing compliance requirements, have been 

developed e.g. the Passivhaus Standard. This is a voluntary standard that aims to minimise 

the requirement for space heating and cooling, whilst also creating high levels of indoor air 

quality and occupant comfort [6]. Dwellings built to the Passivhaus Standards are a relatively 

new concept in the UK, with the first certified Passivhaus dwelling completed in 2010 [7]. 

The number of UK Passivhaus certified buildings is growing, and as of January 2017 there 

were in excess of 500 certified units located throughout the UK, the majority of which are 

dwellings [8]. 

The standard adopts a ‘fabric first’ approach to the design, which requires a high performance 

building envelope (high levels of insulation and airtightness), the use of a mechanical 
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ventilation with heat recovery (MVHR) system and the optimisation of passive solar gains. 

However, there is a potential risk that in designing dwellings to maximise passive gains in 

order to offset winter heating loads, various unintended consequences may manifest, such as 

an increased risk of overheating [9].   

It is the ability of Passivhaus dwellings to reduce primary energy demand through passive 

gains that differentiates the Passivhaus Standard from more generic fabric first approaches 

centred around reducing heat losses, such as incorporating additional insulation products to 

satisfy the Standard Assessment Procedure (SAP) calculation for energy performance 

certification [10]. Unlike holistic approaches towards sustainability such as the Building 

Research Establishment Environmental Assessment Method (BREEAM) [11], Passivhaus is 

focussed on the reduction of primary energy demand for heating. Additionally, Passivhaus 

differs from net-zero energy or energy plus approaches as there is no requirement for 

renewable energy generation. 

In recent years, a growing body of evidence has emerged that suggests that summertime 

overheating is becoming a significant problem in both new and existing dwellings in the UK 

under existing climatic conditions [9, 12-20]. Although few in number, there are some in-use 

performance studies for Passivhaus dwellings in the UK including the Camden Passivhaus 

[21], the Larch and Lime house [22, 23] and a number of flats located in the Sampson Close 

development in Coventry [20] indicate that summertime overheating is occurring.  Elsewhere 

in Europe overheating in Passivhaus dwellings is recorded to be more widespread [24-29]. 

These findings appear to be at odds with the Passivhaus claim of superior levels of comfort to 

traditional buildings [30]. In addition, these assertions are likely to be of particular concern 

where Passivhaus design has been encouraged for dwellings that require enhanced internal 

conditions, such as in assisted living and healthcare. Overheating in dwellings with 
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vulnerable occupants presents additional challenges [31, 32], however there is a current lack 

of empirical evidence for such application of Passivhaus design. 

On average people spend over 85% of their time indoors [33], a figure which rises to 95% for 

the elderly [34]. Consequently, the provision of suitable internal conditions takes on 

additional significance for assisted living dwellings. Elderly people are physiologically less 

able to regulate their body temperature to respond to both hot and cold environments [35, 36], 

predominantly relying on adaptive strategies such as window opening and clothing 

modification to regulate comfort [37, 38]. This presents a challenge for elderly residents in 

Passivhaus dwellings, as age-related health conditions may limit the cognitive or physical 

ability to understand and operate the systems for combatting overheating [39, 40]. 

Additionally, evidence shows that elderly people prefer a slightly warmer environment [41], 

particularly in cooler climatic zones [42], and are more sensitive to shifting thermal 

conditions [35, 41]. This preference for warmer temperatures combined with poor thermal 

risk perception [40] may result in unintentional exposure to potentially harmful temperatures.  

There is, however, some evidence that suggests summertime overheating can be avoided in 

Passivhaus buildings. For instance, the CEPHEUS (Cost Efficient Passive Houses as 

European Standards) project, which monitored 221 dwellings in 5 European countries, 

revealed that mean indoor temperatures could be kept within a comfortable range in the 

summer, and comfort could be improved through appropriate occupant ventilation behaviour 

[6, 43, 44]. It is worth noting that the aforementioned research was conducted by practitioners 

from the Passivhaus Institute with a detailed understanding PassivHaus dwelling operation. 

Although the majority of the available literature on dwellings currently focusses on 

overheating in summer, evidence is also beginning to emerge that suggests that overheating 

can also occur within both Passivhaus and similar prototype zero carbon dwellings at other 
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times of the year [14, 30]. This suggests that the other studies may be underestimating the 

risks.  In addition, other studies tend to use aggregate analysis methods, which identify the 

occurrence of overheating based on the ability to fulfil limiting criteria over a summertime 

period. One such method is the adaptive comfort methodology [45]. By utilising such 

aggregate methods, it is not possible to differentiate between daytime and night-time periods 

beyond the application of occupancy hours which limit the analysis of different dwelling 

zones to specific time periods. 

The research presented in this paper presents the findings obtained from undertaking a 

detailed assessment of the overheating risk associated with a recently constructed Passivhaus 

certified dwelling throughout the entire year, i.e. presenting a seasonal temporal overheating 

risk assessment.  In addition, it also investigates the overheating risk during the day and 

night, i.e. the daily temporal risks.  In doing so, it will identify whether temporal overheating 

analysis is capable of providing a much greater depth of description and more beneficial 

understanding of the overheating risk than would otherwise be provided by undertaking a 

more common aggregate seasonal assessment method. 

This research adds to the limited empirical evidence base associated with Passivhaus 

dwellings, and since the case study dwelling is used for assisted living accommodation, it 

also comments on the appropriateness of Passivhaus buildings for residents with additional 

healthcare requirements. The research was undertaken for 21 months and included in-use 

monitoring of environmental conditions as well as occupant surveys.  It investigates the risk 

of overheating in the case study dwelling using static methods and the CIBSE TM52 

methodology [46], which is derived from the adaptive thermal comfort ISO 15251 standard 

[45]. In addition, it also compares the predicted overheating occurrence identified by PHPP 

(Passive House Planning Package) with the observed reality. In order to further explore the 

temporal aspects of overheating in the case study Passivhaus dwelling, specifically the 



7 
 

incidence of overheating in periods not considered by current protocols and the prevalence of 

night-time overheating, a composite method was applied to overcome the limitations of 

traditional approaches, the results of which are also presented. 

2. Method 

This section outlines the salient information on the case study dwelling and its occupants and 

proceeds to describe the data collection techniques used. The case study dwelling is a 66m2 

two bedroom end terrace bungalow (1 of 7 in the terrace), the plan for which can be seen 

below in Figure 1, and has a plant room in the roof void which houses the hot water tank and 

MVHR system. The case study dwelling forms part of a much larger development of 28 

bungalows (8 end-terrace, 17 mid-terrace and 3 detached), which were constructed in 2011 in 

the North of England. The case study dwelling is Passivhaus certified and Code for 

Sustainable Homes Level 4. The development was specifically designed for older occupants 

and the residents of the case study dwelling reflect this. Both residents were retired and over 

65 years old; one male one female, and occupied the dwelling for most of the time due to care 

requirements related to decreased mobility. The case study dwelling formed part of an in-use 

monitoring study that was undertaken as part of the Technology Strategy Boards Building 

Performance Evaluation Programme (The Technology Strategy Board, 2010). Further details 

regarding this study can be obtained from Johnston & Fletcher [47]. 
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Figure 1 Floor plan and front elevation image of case study dwelling 

 

As is illustrated in Figure 1, the case study dwelling consists of a south-facing open-plan 

living/kitchen area which runs the full depth of the dwelling, a north-facing master bedroom 

with an internal storage cupboard, a south-facing smaller bedroom with an internal storage 

cupboard (this cupboard also houses the main consumer unit for the dwelling) and a 

bathroom. Additionally, a mezzanine plant area is situated above the bathroom, corridor and 

both bedrooms and is only accessible via a loft hatch and ladder. It also houses the hot water 

tank and MVHR system and is not designed to function as a loft space. 

The case study dwelling is of lightweight construction with low thermal mass (specific heat 

capacity of 60Wh/K per m2 total floor area), with external walls constructed from pre-

fabricated timber frame cassettes filled with 300mm insulation and clad externally in 15mm 

Bitroc and either brick or render. The ground floor is of reinforced concrete slab-on-ground 

construction, with 300mm insulation and 50mm screed above the slab. Windows are triple 

glazed low-e krypton filled units.  
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Ventilation is provided by an MVHR system, with space heating provided via a small low 

temperature hot water heater battery installed in the MVHR ductwork. In addition to the 

heater battery, a heated towel radiator is provided in the bathroom, along with a small 

radiator in the drying cupboard. Heat provision is thermostatically controlled, with thermostat 

set point determined by the occupant. The dwelling has no active cooling system, with natural 

ventilation via window opening the primary cooling mechanism. Additionally, the MVHR 

system has summer bypass and boost functions to increase air exchange with the external 

environment. These functions are user-controlled via a control interface located in the hall. 

Hot water to the heater battery, towel radiator and small drying cupboard radiator are 

supplied from a communal boiler located in a small boiler room on the East end of the 

terrace. The communal boiler supplies hot water to all seven of the dwellings in the terrace 

via a communal heat main.  

The dwelling was subjected to fabric performance testing during winter 2011 which 

comprised of: pressurisation testing following the method outlined in ATTMA [48]; 

coheating testing to the method outlined in Wingfield et al [49]; elemental effective U value 

assessment using the averaging method described in ISO 9869 [50] and thermographic survey 

for qualitative purposes. The dwelling was found to have an in situ heat loss coefficient of 

46.7W/K with a mean air permeability of 0.89 m3.h-1.m-2 @ 50Pa, and as such satisfied the 

requirements for Passivhaus Certification. 

Internal dry bulb temperature and relative humidity (RH) data were collected from April 

2013 until December 2014 using Eltek GD47 sensors with an accuracy of ±0.4°C and ±2% 

respectively. Sensors were located in the open plan lounge/kitchen and the master bedroom. 

Sensors were placed on top of storage units in order to be sensitive to occupant requests for 

minimal visual intrusion. Care was taken to ensure sensors were not in direct sunlight, near 

localised heat sources, or draughts and so were deemed representative of the room 
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temperature. Due to the results of fabric performance testing, thermal stratification was 

assumed to satisfy the designed Passivhaus guideline of less than 2°C variance between ankle 

and head height. External environmental conditions were measured using a Vaisala WXT520 

weather station, with dry bulb temperature accuracy of ±0.4°C. Data were gathered at 10 

minute intervals and collected remotely using a modem. 

3. Results 

3.1 Observed temperatures 

Thermal comfort guidance presented in CIBSE Environmental Design Guide A recommends 

summer temperatures between 23-25°C should be achieved in the living rooms and bedrooms 

of dwellings [51]. The distribution of monitored temperatures is shown by the box plots 

presented in Figure 2 and Figure 3 for the 2013 and 2014 summer period (May-September) 

respectively. These show the temperatures recorded during the day and night time as defined 

by ISO 13790 [52] guidance, which offers a representative indicator of daytime and night-

time hours; 07:00-23:00 (day) and 23:00-07:00 (night).  The upper and lower thresholds are 

depicted for reference. As can be seen, the dwelling spends a substantial amount of time 

above the 25°C upper limit during both the day and night times in both monitored years; a 

minimum of 54.5% of time in 2014. Temperatures appear higher in the Lounge, which is 

likely due to the internal gains from electrical appliances in this space. The data suggests 

internal temperatures were slightly warmer during the night in the bedroom which may be the 

result of reduced window opening for noise and draught attenuation in addition to increased 

occupancy in a smaller space. 
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Figure 2 2013 temperature distribution in the lounge/kitchen area and bedroom. 

 
 

Figure 3 2014 temperature distribution in the lounge/kitchen area and bedroom. 

A higher frequency of internal temperatures above the 25°C threshold were observed during 

2013. This may in part be the result of external conditions during summer 2013, which 

experienced a heat wave between 3rd to the 23rd of July [53].  

Figure 4 illustrates the higher frequency of warmer temperatures (>20°C) during 2013, which 

were predominantly recorded during the heat wave period. 
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Figure 4 Comparison of external dry bulb temperature distribution for summer 2013 (Left) 

and summer 2014 (Right) 

 

3.2 Passive House Planning Package (PHPP)  

The Passive House Institute (PHI) criteria guidelines stipulate that overheating levels are 

acceptable if the “Percentage of hours in a given year with indoor temperatures above 25°C 

without active cooling ≤ 10%” [54]. The PHPP assessment completed for the case study 

dwelling identified an overheating frequency (where internal temperature was above the 25°C 

overheating limit) of 5% of total hours. Therefore, no recommendation for additional 

measures to protect against summer heat waves were made to the property. Monitored data 

during 2014, however, shows that the annual percentage of time above this PHPP overheating 

threshold was substantially higher than the recommended limits, as shown in Figure 5, 

particularly for the open plan lounge/kitchen area. Data from 2013 could not be considered 

for direct comparison due to the shorter monitoring period (<12 months). Despite this, the 

data available from this period suggests a similarly high percentage of time above the PHPP 

overheating limit. 



13 
 

 

Figure 5 Comparison of PHPP prediction and measured time above the PHPP overheating 

threshold, with maximum limit given by dashed line. 

 

The PHPP result may be primarily due to an underestimation of the internal heat loads. 

Monitored energy data, together with a DomEARM appliance audit, revealed energy 

consumption in situ to be far more weighted towards electrical appliances, such as televisions 

and computer equipment, than considered in PHPP. It is likely that the resulting additional 

internal heat gains will have contributed to the observed high internal temperatures. 

3.3 Adaptive thermal comfort  

Overheating was evaluated using the method described in CIBSE TM52 [46], derived from 

the adaptive comfort ISO 15251 [45] standard. The TM52 analysis method determines a 

comfort temperature (Tcomf) based on the exponentially weighted running mean external 

temperature (Trm). The calculation for Tcomf is given such that: 

Tcomf = 0.33 Trm + 18.8     (1) 
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Where Trm may be calculated following the process described in the Technical Memorandum 

[46]. In order to account for the inherently imprecise nature of thermal comfort judgement, a 

tolerance around Tcomf is specified for free-running buildings depending on the building type 

as described in Table 1.  

Table 1 Suggested applicability of the categories and their associated temperature ranges for 

free-running buildings [45, 46] 

Category Explanation Suggested acceptable 

range (K) 

I 
High level of expectation only used for spaces occupied by very 

sensitive and fragile persons 
± 2 

II Normal expectation (for new buildings and renovations) ± 3 

III A moderate expectation (used for existing buildings) ± 4 

IV 
Values outside the criteria for the above categories (only 

acceptable for a limited periods) 
> 4 

 

The case study dwelling was determined as Category I to reflect the dwelling occupancy. As 

such, the maximum permissible temperature Tmax at any given Trm may be calculated 

following the below equation: 

 Tmax = 0.33 Trm + 20.8     (2) 

TM52 uses operative temperature (Top) to describe the internal temperature, and is a 

combination of dry bulb temperature (Tdb) and mean radiant temperature (TMRT). As only 

internal dry bulb temperature was monitored, it has been assumed that Tdb = TMRT = Top. The 

adoption of such an assumption is deemed to be appropriate, given the lightweight nature of 

the structure and absence of large sources of radiant heat. To test whether such an assumption 

is valid, a calibrated dynamic thermal simulation model was built, further details of which are 

described in Parker et al [55]. Modelled dry bulb and operative temperature relationship was 

observed to be Top = 1.0023Tdb – 0.0801 with an R2=0.9968, and as such demonstrates a high 

correlation between measured and modelled temperatures thus supporting our assumption.  
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Figure 6 and Figure 7 illustrate the acceptable temperature range for each Trm, presenting the 

adaptive comfort charts for the lounge/kitchen area and bedroom during each monitored year 

which have been generated following the protocol described in ISO 15251 [45]. These figures 

indicate a higher incidence of internal temperatures within the Category I comfort range at 

external temperatures exceeding 16°C during 2014, suggesting cooling strategies were 

employed during warmer periods in 2014 with positive results.  

  

Figure 6 2013 ISO 15251 adaptive comfort charts for the dwelling lounge (left) and bedroom 

(right). Lines represent the upper and lower temperature thresholds for dwelling categories, 

with Category I denoted by the innermost lines. 
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Figure 7 2014 ISO 15251 adaptive comfort charts for the dwelling lounge (left) and bedroom 

(right). Lines represent the upper and lower temperature thresholds for dwelling categories, 

with Category I denoted by the innermost lines. 

 

The TM52 overheating assessment requires three criteria to be considered: Criteria 1 sets an 

hours of exceedance (He) limit of no more than 3% of occupied hours where the operative 

temperature (Top) may exceed the maximum acceptable temperature (Tmax) by 1K; Criteria 2 

sets a limit on the severity of daily overheating using a weighted exceedance (We) where We ≤ 

6; Criteria 3 sets an absolute maximum daily temperature difference (Tupp) of ∆T ≤ 4K where 

∆T = Top - Tmax.. The three criteria in TM52 have been abbreviated to C1 (Criteria 1), C2 

(Criteria 2) and C3 (Criteria 3) in subsequent analysis.  

Data for the TM52 assessment is considered from 1st of May to the 30th of September for 

each year, as required by C1. Overheating analysis methods are sensitive to occupancy 

schedules [46], specifically with regard to the determination of occupied hours. Whilst 

potentially representing an extreme scenario, 24 hour dwelling occupancy has been assumed, 

as 24 hour occupancy is consistent with the assumption in the PHPP overheating assessment 

and reasonably realistic for occupants with healthcare requirements. Within this whole 

dwelling occupancy, a sensitivity analysis is undertaken to compare the effect of zonal 

occupancy profiles on localised overheating, showing realistic experiential comfort under 

differing zonal occupancy. 

The first profile (24 hour) assumes 24 hour occupancy of each zone i.e. an immobile 

occupant. The second profile (ISO) assesses the overheating risk in each zone during 

occupied hours according to the ISO occupancy schedule i.e. assuming that the 

lounge/kitchen area and bedroom were only occupied during the hours of 07:00-23:00 and 
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23:00-07:00 respectively. The results of both analyses are discussed in the proceeding 

sections. 

3.3.1 Criteria 1 

The lounge/kitchen and the bedroom both experienced substantial hours of exceedance (He) 

where the operative temperature (Top) exceeded the maximum acceptable temperature (Tmax) 

by 1K. The maximum allowable He of 3% is illustrated in Figure 8 by the dashed line, 

together with the total percentage of He for each case. It is apparent that in all circumstances 

the He limit was breached, therefore C1 was failed.  

 

Figure 8 Percentage of occupied hours where operative temperature exceeds the maximum 

acceptable temperature by 1K 

 

3.3.2 Criteria 2 

C2 applies a weighted exceedance (We) to daily monitored temperatures to allow the severity 

of overheating to be considered, the calculation process for which is: 

We = ∑(hey x WF )     (3) 
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We = (he0 x 0) + (he1 x 1) + (he2 x 2) + (he3 x 3)   (4) 

Where WF = 0 if ∆T≤ 0, otherwise WF = ∆T, and hey is the time (h) when WF = y. 

For each day the sum of We is calculated and should not exceed the limiting value of 6 to 

fulfil the C2 requirement. Figure 9 illustrates the percentage of total days during monitoring 

which exceeded the We maximum value. As can be seen, the We limit was exceeded in all 

circumstances and as such was failed. 

 

 

Figure 9 Percentage of total days within each monitored period where weighted exceedance 

(We) exceeds limiting value. 

 

3.3.3 Criteria 3 

To fulfil C3 an upper temperature limit (Tupp) is applied whereby the difference (∆T) between 

operative temperature (Top) and maximum acceptable temperature (Tmax) should not exceed 

4K. Figure 10 shows that whilst in several cases Tupp was reached, at no point during the in-

use monitoring was it exceeded. Consequently, the case study dwelling fulfilled C3. 
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Figure 10 Maximum ∆T during monitoring 

 

As can be seen, the case study dwelling fails on both C1 and C2 of the TM52 assessment 

during both years, although there is an apparent reduction of overheating during 2014. As has 

been discussed in section 3.1, it is likely that the heat wave during 2013 influenced the higher 

overheating values displayed in the present analysis. However, the heat wave was of 

insufficient duration to fully account for the difference between the years. As shown by 

Johnston and Fletcher [47] there was little variation in electricity or heating use between both 

years, and thus aggregate internal heat gains may be considered to be similar in each year. 

Therefore, the additional decrease in overheating in 2014 is thought to be attributable to the 

occupant through increased cooling behaviour such as window opening for ventilation.   

With regard to the zonal occupancies under consideration, notable reductions in C2 and C3 

result are observed in the bedroom under ISO occupancy. This reduction is simply a product 

of daily maximum temperatures occurring during daytime hours; peak daily overheating is 

excluded from ISO bedroom analysis which assumes bedroom vacancy at these times, which 
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may not always be the case in reality for vulnerable occupants with mobility issues. It is 

apparent that the considered occupancy profiles affect the individual values but not the 

overall result i.e. the success or failure to meet criteria requirements. Part of the reason for 

this is thought to be attributable to the lack of any diurnal variation in the dry bulb 

temperature throughout the dwelling.  

  

3.4 Temporal static overheating assessment 

The adaptive comfort assessment incorporates the theory that the combined influence of 

psychological, physiological and behavioural adaptation permits a comfort temperature 

relative to the external temperature [45]. This limits the application of the methodology for 

assessing overheating during colder periods, such as the heating season, as indoor 

temperatures within what are commonly regarded as ‘acceptable’ limits would appear to 

indicate that overheating is occurring due to the much larger internal/external temperature 

difference. In the context of this research, the observed high internal temperatures were not 

limited to the summer period, and required additional investigation.  

Static overheating limits, such as that described in CIBSE Environmental Design Guide A 

[56], whilst not able to describe the severity of overheating, are not influenced by a dynamic 

threshold temperature relative to the external environment and may, therefore, be used to 

describe the overall overheating experienced during the monitored period.  The guide 

recommends that summer operative temperatures (Top) in the lounge/kitchen area and 

bedroom should not exceed 28°C and 26°C respectively for more than 1% of total occupied 

hours. The results of this assessment for the case study dwelling are presented in Figure 11.  

As can be seen, the percentage of total occupied hours exceeding these threshold 
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temperatures during the two monitored summer periods in each zone under both occupancy 

profiles is greater than the 1% limit in all instances. 

 

Figure 11 Percentage of occupied hours above CIBSE Guide A (2006) temperature thresholds 

 

By disaggregating the above method and considering threshold exceedance per day, as 

opposed to total exceedance during summer, it is possible to observe the seasonal temporal 

occurrence of overheating, namely the specific days where overheating thresholds were 

exceeded. Critically, such an approach may be used to assess winter overheating by applying 

plausible static threshold temperatures. For this analysis, threshold operative temperatures 
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threshold temperature under 24-hour occupancy due to the 10 minute resolution of the data. 

In order to acknowledge the influence of occupancy schedules in such an analysis, the ISO 
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07:00), with practical daily exceedance limits of 30 minutes and 20 minutes respectively, in 
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order to align with the relative weighting applied by the ISO profiles. A 3% threshold was 

chosen as it provides a reasonable estimation of acceptable exposure duration during a single 

day, and is consistent with the Zero Carbon Hub [57] guidance. However, as noted above the 

authors acknowledge that static thresholds do not indicate severity, therefore days 

experiencing excessive overheating for durations shorter than the aforementioned exceedance 

limits will not be revealed by the following analysis.  

For subsequent analysis, nomenclature of location and schedule is given such that: L24 is the 

Lounge/Kitchen under 24 hour occupancy; B24 is the Bedroom under 24 hour occupancy; 

LISO is the Lounge/Kitchen under ISO schedule occupancy and BISO is the Bedroom under 

ISO schedule occupancy. 

The black segments in Figure 12Figure 13 indicate individual days where internal 

temperatures exceeded the daily maximum temperature duration limits described above and 

are therefore regarded as experiencing overheating. For reference, the non-heating season (1st 

May- 30st September) which is typically the focus of overheating analysis [46] is highlighted 

by the hashed box. It is clear that days with temperatures exceeding the thresholds occur 

during the colder seasons also, although to a lesser extent. Although it is established in the 

literature that elderly occupants prefer a warmer internal environment and thus the warmer 

internal temperature may be the result of the occupant’s thermostat settings, it is unlikely that 

the maximum thresholds used during this analysis would be exceeded intentionally.   
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Figure 12 2013 Daily exceedance beyond static threshold limits  

 

 

Figure 13 2014 Daily exceedance beyond static threshold limits 

 

As mentioned, this analysis only highlights when periods of overheating occur and does not 

indicate severity, which has obvious implications on acceptable exposure duration. In order to 

account for this, analysis similar to C2 in TM52 [46] was undertaken, applying weighted 

significance to temperatures based on the extent to which the threshold was exceeded i.e. the 

temperature difference between the internal operative temperature and the maximum 
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threshold temperature. The process for this followed the same weighting as in TM52 as 

defined above, however the maximum temperature was fixed for the lounge/kitchen area and 

bedroom as 28°C and 26°C respectively rather than calculated based on external temperature. 

Additionally, the weighted exceedance (We) daily limit was reduced to We ≤1 in response to 

the high maximum temperature used, in order to reflect the severity of overheating and 

reduce acceptable exposure accordingly. 

The distribution and magnitude of We for individual days where We >1 during the monitored 

period are displayed in Figure 14 Figure 15. A high daily We is indicative of sustained time 

and/or considerable temperature above the maximum temperature threshold. As expected, the 

greatest severity of overheating occurs during the summer months which have warmer mean 

daily external temperatures; an extreme example being the heat wave in July 2013. Notably, 

there are also instances of excessive We during colder months, albeit to a lesser severity, 

suggesting overheating periods during these times are not exclusively limited to mild or 

short-term events. Whilst it is apparent that We is predominantly related to external 

temperature, the occurrence of overheating during colder months suggests that occupancy 

factors also play a role in overheating events.  

 

 

Figure 14 2013 distribution of daily weighted exceedance 
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Figure 15 2014 distribution of daily weighted exceedance 

Although an adaptive approach is more commonly used in the thermal comfort assessment of 

free running dwellings, recent literature suggests that static thresholds still remain relevant. 

This is particularly the case during periods where adaptive behaviours are restricted such as 

during sleep [31], an assertion supported by the Zero Carbon Hub [57]. The occurrence of 

daily temporal overheating, and specifically night-time overheating, is an issue of growing 

concern, with existing UK evidence suggesting that quality of sleep is affected at 

temperatures above 24°C even in cooler months [58]. Guidance is also available that suggests 

that in the absence of a means to create air movement, temperatures should be kept below 

26°C [51]. The importance of this is enhanced when considering the specific context of the 

case study dwelling: a care setting with elderly residents [59]. The above analysis identifies 

that under maximum static threshold temperature analysis, the case study bedroom 

experiences substantial overheating in terms of both duration and severity, even when only 

considering non-summer night-time occupancy hours. 

4. Discussion 

Although it is only possible to make a number of qualitative comments due to the sole and 

non-random nature of the case study dwelling that was monitored, the results indicate that 

temperatures within the case study dwelling were predominantly above recommend limits 
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[51]. Measured temperatures were observed to substantially exceed the overheating 

prediction generated by the PHPP calculation. It is thought that this was due to an 

underestimation of internal heat gains from electrical appliances. As such, this offers 

evidence of the importance of accurately accounting for internal heat loads during predictive 

assessments of Passivhaus buildings.  

Adaptive comfort assessment following the method described in TM52 [46] was conducted 

for the summer period of both monitored years. Analysis considered both 24 hour and 

daytime/night-time occupancy in the separate zones of the dwelling in order to assess the 

influence of schedules on the assessment result. The results suggested that the case study 

dwelling experienced overheating under both occupancy schedules, with Criteria 1 and 

Criteria 2 of the TM52 assessment failing in all cases. It was apparent that the occupancy 

patterns affected individual criteria results, but not the overall result i.e. the success or failure 

to meet criteria requirements. This is an important finding, as part of the reason for this is felt 

to be attributable to the lack of any diurnal variation in the dry bulb temperature throughout 

the dwelling, a feature typical in Passivhaus dwellings. The observed reduction of 

overheating in the second year of monitoring, particularly during warmer external conditions 

as illustrated in section 3.3, suggests a change in cooling behaviour. This may be due to 

familiarity with the dwelling, or be indicative of pre-emptive cooling based on previous 

experience.  

A composite analysis drawing from existing static and adaptive overheating assessment 

methods was proposed in order to conduct overheating assessment during periods not 

currently considered as at risk of overheating. This encompassed an approach to assess daily 

overheating, which considered both duration and severity. 
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One of the most important findings to be obtained from this analysis was the emergence of 

empirical data that not only indicates that Passivhaus dwellings can suffer from significant 

overheating during the summer months, but that they can also experience overheating during 

periods which are not commonly considered to be at risk, i.e. colder months. This seasonal 

temporal overheating is believed to occur due to a combination of factors, such as high levels 

of thermal insulation and airtightness, a design optimised for passive gains, high internal heat 

gains, and in this particular case, low thermal mass, resulting in heat accumulation and 

retention beyond that of a typical dwelling. This has implications for the overheating 

assessment of such dwellings, and the subsequent strategies employed to reduce overheating.   

The occurrence of winter overheating also has important considerations for the control and 

conditioning systems installed within Passivhaus dwellings. For instance, control systems for 

space heating systems should be installed with maximum temperature threshold settings to 

prevent the occurrence of winter overheating. Additionally, the presence of an MVHR system 

may lead to the undesirable retention of heat in the dwelling, and care must be taken to ensure 

that bypass functions, which are typically only considered to be operated during the summer 

periods, are controlled according to internal temperature. Assuming heat recovery is 

employed continuously during colder months, the sporadic nature of winter overheating 

described in this paper suggests a risk of competing conditioning strategies. For example, an 

occupant opening windows to provide cooling during periods when the MVHR is in heat 

recovery mode, leading to system inefficiencies and increased energy use. 

Winter overheating also presents a problem with regards to the adaptive response of residents 

following the principles described in ISO 15251 [45]. According to the adaptive response 

method identified within ISO 15251, occupants are much more likely to be sensitive to higher 

temperatures during colder periods, which could lead to an enhanced level of discomfort. 

This is a scenario which requires further investigation.  
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The static threshold analysis presented in this paper also reveals the occurrence of daily 

temporal overheating, specifically night-time overheating in the dwelling bedroom, providing 

further evidence to support a detailed review on the appropriateness of existing comfort 

methods in assessing thermal comfort during sleep. Further research is required to establish 

acceptable exceedance limits at a daily resolution. Additionally, Passivhaus design should 

consider the cumulative effect of gains and their impact in the absence of overnight purging, 

with specific attention given to the barriers associated with effective cooling strategies, a 

situation exacerbated during night-time periods where acceptable adaptation opportunities are 

reduced.  

The assumption has been made that temperatures above the CIBSE maximum limits are 

undesirable, however in the absence of thermostat set point data or occupant thermal 

perception at the point of threshold exceedance the authors are unable to empirically validate 

this. In the event that the occupants find such temperatures comfortable or are simply not 

aware of the temperature severity, there arises a divergence between occupant behaviour to 

achieve comfort and their healthcare requirements. This suggests a need for automated 

cooling systems in assisted living dwellings. 

It is relevant to note that all overheating methods presented in this paper are based on current 

standards, which do not have a special classification for the elderly beyond specifying a strict 

Category I temperature band in the adaptive comfort analysis. It is established in the literature 

that elderly people have a different thermal preference to the general population, therefore 

there exists a need for further research to establish specific thermal comfort criteria for the 

elderly. This should be influenced by the healthcare requirements and age-specific limitations 

of the elderly population, in addition to individual preference. 
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Crucially, it is important to acknowledge the effect of occupancy on overheating; a 24 hour 

dwelling occupancy may be regarded as a worst case scenario, albeit realistic in the context 

of this analysis. Additionally, it was not possible to empirically validate the levels of natural 

ventilation cooling during this study. However the findings of Parker et al [55] suggest that 

an extensive natural ventilation regime would theoretically enable the dwelling to satisfy 

comfort requirements. It should be noted, however, that the nature of the dwelling and 

occupants may have prevented necessary ventilation. For example, security concerns related 

to the opening of ground floor windows. 

 

5. Conclusion 

This paper has presented the results obtained from an in-use monitoring study of an assisted 

living Passivhaus dwelling in the UK. Adaptive and static overheating analyses have been 

undertaken to show the temporal aspects of overheating, with additional consideration of the 

influence attributed to the occupancy profile.  

A composite method was applied to overcome the limitation of the adaptive method for 

overheating assessment during the heating season, and from this the dwelling was observed to 

experience overheating beyond the periods typically considered by existing overheating 

assessments. 

The implication of this finding is that even with a large temperature difference between the 

internal and external environment, overheating can occur if the dwelling is not managed 

correctly. This has added significance when considering the additional health risk posed by 

overheating to the residents of assisted living properties.  

Passivhaus dwellings offer an excellent opportunity for the reduction of heating energy 

requirement and are a legitimate route to achieving energy and carbon reduction targets. It is 
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imperative, however, that energy and carbon savings do not come at the expense of occupant 

thermal comfort. 
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