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Abstract  
 

This paper presents a novel engine controller targeting the 
reduction of gas emissions. Toxic emissions, such as Carbon 

Monoxide (CO) and Nitric Oxide (NOx) affect the 

environment and the authorities aim to limit their amount by 

law. Emissions are formed during the high temperature 

combustion process, and can be optimised by adjusting some 

engine operating parameters. In this paper, the model 

describing emissions output of the engine as a function of 

engine control parameters is represented as a state-space 

system. A closed-loop controller is developed by using state-

feedback control algorithm. The closed-loop gain, K, is 

obtained from the LQR tuning principles. The fuel estimator 
developed in previous works is used in order to reduce the 

model from the 8th order. The results show that the controller 

is able to control emission to the minimum in all constraints 

while keeping engine running in the same performance. 

 

I. Introduction 
 

Engine combustion performance can be affected by 

engine operating parameters, such as fuel to air ratio, 
ignition timing, and the valve opening and closing event 

[13], hence emission control can be achieved by system 

identification of an inverse engine combustion process and 

optimisation using closed-loop control algorithms. To 

achieve this, various sensors are fitted onto the engine in 

order to monitor the combustion process. They are able to 

collect exhaust gas information, including the amount of 

carbon dioxide (CO2), oxygen (O2), carbon monoxide (CO) 

and nitric oxide (NOx), as well as the condition of exhaust 

gas including exhaust gas temperature and pressure [7]. The 

Engine Control Unit (E.C.U.) can use such information to 
calculate the optimal engine operating parameters to control 

the emissions while keeping the engine in the best possible 

performance. The exhaust substance contains CO and NO, 

which are considered as pollutants and the maximum 

amount allowed is regulated by law. 

 

The other area that works in minimizing emissions 

focuses on the fuel composition research. Gas exchange 

process is summarized next.  The atmosphere air contains 

Nitrogen (N) and Oxygen (O) while fuel contains Hydrogen 

(H) and Carbon (C) atoms. Products are formed in the  

combination of C, H, O and N during the high temperature 

engine combustion process. The main toxic by-products 

discovered are CO and NOx. Fuels are usually a blend of 
gasoline with a type of alcohol, such as methanol and 

ethanol, to reduce toxic emissions. However further engine 

control is needed in order to understand the correct 

composition of fuel injected into engine. Pioneering in that 

direction, artificial intelligence has been successfully 

proposed [3][4]. 

 

In this paper, an emission controller is developed. The 

controller is tested using engine simulations based on 1st law 

of thermodynamic [ref to our paper in the model 

development].  The engine simulation is able to generate the 
exhaust gas composition and allow off-line research on 

control algorithms [14]. This paper is organised as follows. 

The methodology of the paper is discussed in Section II. The 

development of the artificial intelligence fuel estimator is 

discussed in Section III. The SI engine and representation of 

the state-space model is discussed in Section IV. The state-

feedback model and its results are analysed in Section V. 

Finally conclusions are drawn in Section VI. 

 

II. Methodology 
  

Engine simulation is used in this paper instead of engine 

test bed. The main advantages for using engine simulation 

are the flexibility and low-cost. In real engine development, 

such research may require heavy demand of mechanical 

systems or even engine modifications which usually are not 

cost-effective on commercial engines. For example, in 

mechanical Variable Valve Timing (VVT) systems, it is 

required to fit a large mechanical system onto the intake 

manifold. Another example is a cylinder pressure sensor that 

would require drilling holes for its installation into the 

cylinder. 

 

The development of the engine controller consists of three 

parts: - a) the virtual engine IIB, b) fuel estimator III and c) 
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closed-loop state-space controller. Figure 1 presents the 

block diagram of the engine control. The engine parameters, 

including fuel to air ratio, ignition timing, exhaust valve 

closed timing and intake valve open timing, are used as the 

input parameters to control the level of emission in the 

virtual engine. The reason for choosing those parameters are 

explained in early studies [3][4]. The controller estimates the 

original fuel composition using artificial neural network. 

The fuel estimator is able to find the probability distribution 

of the likelihood of the given fuels. This provides the 

proportional control to the state-feedback controller 

according to the fuel composition. 

 

 
Figure 1 Block diagram of the engine control algorithm 

 

A. Air and Fuel Properties 
 

Engines take air from the atmosphere and work with fuels 

with different fuel compositions provided by the suppliers. 

Dry air consists of mainly 79% of nitrogen and 21% of 

oxygen. A more detailed composition of dry air is shown in 

Table 1.  

 
Table 1 Principle constituents of dry air [11] 

Gas ppm by 

volume 

Molecular 

weight 

Mole 

fraction 

Molar 

ratio 

Oxygen 209500 31.998 0.2095 1 

Nitrogen 780900 28.012 0.7905 3.773 

Argon 9300 38.948 NIL NIL 

Carbon 

dioxide 

300 40.009 NIL NIL 

Air 1000000 28.962 1.000 4.773 

 

Fuel suppliers provide a blended composition with alcohol 

which includes small amounts of oxygen atoms, to help with 

the reduction of CO in the emissions. Therefore, three 

commonly used fuel compositions are considered here, 

including Isooctane, Methanol and Ethanol.  
Table 2 Fuel compositions being tested according to [6], [11], 

and [16] 

Fuel # of 

C 

atoms  

#of H 

atoms 

# of O 

atoms  

Chemical 

symbol 

Isooctane_r [16] 8 18 0 C8-H18 

Isooctane_h [11] 8 18 0 C8-H18 

Methanol_f [6] 1 4 1 C1-H4-O1 

Methanol_h [11] 1 4 1 C1-H4-O1 

Ethanol_h [11] 2 6 1 C2-H6-O1 

 

B. Virtual Engine 
 

The- test run is based on a virtual 4-stokes spark-ignition 
(SI) engine. Recent works have been done on the estimation 

of the four strokes engine [2]. They are involved in different 

engine processes, including volumetric efficiency, heat 

transfer and gas exchange. Heat release calculation is only 

generated in combustion stroke. The engine pressure is 

calculated in a single zone, and temperature is calculated in 

two zones, burned and unburned zone. The unburned zone is 

used prior to the combustion process without any heat being 

generated during combustion. The burned zone calculates 

the temperature with heat release estimation. The work done 

is calculated by volume from the crank-slider model. The 

burning process and heat transfer are calculated by using 
sub-models as shown in Table 3. 
 

Table 3 Sub-models use in engine simulation modelling 

Process Sub-models 

Work done Crank-slider model 

Heat release in combustion Single Wiebe function 

Heat transfer correlation Woschni function 

Injection Port injection 

Gas Exchange Thermal equilibrium 

 

C. Engine Data Collection 
 

The experimental dataset needs to be prepared before the 

training of the neural network can take place. In the 

development of the fuel estimator, the dataset records the 
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emissions of three different fuels, which are Isooctane, 

Methane and Ethanol. The dataset contains 10500 samples, 

3500 samples for each fuel. The training process used 60% 

of the data for training and 40% of data for network 

validation. When collecting the data, the engine runs at 

2000rpm with a fixed torque. The dataset also records the 

behaviours of engine using random engine operating 

parameters, including fuel-to-air ratio, ignition timing and 

valves event. The ranges of these parameters are shown in 

Table 4. The contents of emission compositions recorded are 
CO2, O2, CO and NOx. 

 
Table 4 Parameters and the ranges are used to record the 

experimental simulation dataset 

Parameters Range 

Fuel used Isooctane (C8H18) 
Methanol (C1H4O1) 

Ethanol (C2H6O1) 

Fuel-to-air ratio 0.7 to 1.3 

Ignition -10 to -40 deg 

Exhaust valve open timing 330 to 390 deg 

Intake valve open timing 330 to 390 deg 

  
 

III. Fuel Estimator 
  

Previous works have been done on estimating the actual 

fuel composition [3] [4]. The results prove the fuel estimator 

has a reasonable performance by using feed-forward 

artificial neural network. To provide the proportional 

control, the fuel estimator is needed to design the estimator 

of the likelihood of given fuel compositions. The transfer 

function used in the output layer is softmax. The ‘softmax’ 

transfer function returns a value between 0 and 1 according 
to Equation 1. The same dataset and training methods are 

applied for two different cases, namely Isooctane-Ethanol 

and Isooctane-Methanol. 

 

   
  

   
   

 

Equation 1 

A. Case 1: Isooctane-Ethanol Mixture 
 

The first case study is the estimation of probability using 

Isooctane-Ethanol mixture. The mixture contains Isooctane 
(C8H18) ranging between 70% to 100% and Ethanol (C2H6) 

ranging between 0% to 30%, and one case with 100% 

Ethanol for reference of pure Ethanol. The results are 

presented in Table 5. The estimation of pure Isooctane is not 

accurate with the estimator returning 20% Ethanol for the 

pure 100% Isooctane case.  . When the fuel contains a 

portion of Ethanol, the neural network estimation is more 

accurate. The estimation of 100% Ethanol is very accurate, 

returning 98.76%. The neural network is able to provide 

further control to different portions of mixture of Isooctane-

Ethanol. 

 
Table 5 The probability of isooctane, methanol and ethanol 

estimated with isooctane- methanol mixture 

Fuel Probability (%) 

Isooctane Ethanol Isooctane Methanol Ethanol 

100% 0% 80.45% 0% 19.55% 

95% 5% 78.20% 0% 21.80% 

90% 10% 75.86% 0% 24.14% 

85% 15% 73.94% 0% 26.06% 

80% 20% 72.37% 0% 27.63% 

75% 25% 67.87% 0% 32.12% 

70% 30% 66.80% 0% 33.20% 

0% 100% 0.36% 0.88% 98.76% 

B. Case 2: Isooctane-Methanol Mixture 
 

The second case is the estimation of probability for the 

mixture of Isooctane-Methanol mixture. The mixture 

contains Isooctane (C8H18) ranging between 70% to 100% 

and Methanol (C1H4) ranging between 0% to 30%, and one 

case with 100% Ethanol for reference. The results are 

presented in Table 6. The estimation of 100% Isooctane 

behaves as in Case 1. When the portion of Methanol is 

mixed with Isooctane, the estimator mistakenly identifies 

Ethanol instead of Methanol. This is due to the fact that the 

mixed compositions in terms of hydrocarbon are very 

similar. The estimation of 100% Methanol is 99.7% of. The 

neural network is developed for further control to different 
portion of mixture of Isooctane-Methanol. 

 
Table 6 The probability of isooctane, methanol and ethanol 

estimated with isooctane- methanol mixture 

Fuel Probability (%) 

Isooctane Methanol Isooctane Methanol Ethanol 

100% 0% 80.45% 0% 19.55% 

95% 5% 77.78% 0% 22.22% 

90% 10% 73.07% 0% 26.93% 

85% 15% 65.32% 0% 34.68% 

80% 20% 54.15% 0% 45.84% 

75% 25% 42.62% 0% 57.38% 

70% 30% 36.56% 0.01% 63.43% 

0% 100% 0.01% 99.70% 0.29% 

 

IV. State-space Engine Model 
 

Although the engine is running in continuous time, the 

engine operating timing can be considered as a discrete 
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event due to division into strokes [9]. The engine operating 

parameters will not operate all the time throughout the 

engine event. A detailed diagram of the engine events and 
theirs’ operating parameters is presented in Figure 2. For 

example, the collection of exhaust gas information is valid 

while the exhaust gas valve is opened, and finishes while the 

valve is closed. The optimal ignition timing related to the 

past emissions information can be updated during to the time 

gap between the timing of exhaust valve closed and the 

igniting timing in the coming stroke.  

 

Figure 2 The control event of a SI engine. 

 

Engine emission is considered as non-linear behaviours 

[11][12]. To catch the dynamic of the engine emission 

against engine operating parameters, system identification 

method is needed [1][5][8][15]. The state-space 

representation is chosen to perform system identification. 

For real time system, the state-space equations are presented 

in Equation 2. The state-space is divided into two equations, 

the state equation       and the measurement equation     .  

                 , 
                 

Equation 2 

where  

x is the state vector, 

u is the input vector, 

y is the output vector, 
A is a n-by-n state weighting matrix,  

B is a n-by-m input weighting matrix, 

C is a l-by-n output weighting matrix, 

D is a m-by-m back propagate weighting matrix, 

zero when there is no gain between input and 

output, 

n is the number of state order, 

l is the number of outputs, 

m is the number of inputs. 

Since the engine data is sampled, the state-space 

representation in discrete time is shown in Equation 3. 

                             

                   
Equation 3 

where, 

the state vector    is using the state value in the 

previous step, i.e.        . 
These four gains, A, B, C and D, can be estimated by the 

prediction error method (pem). Such method estimates the 
error of Nth order and finds the minimum cost by the 

following equations:- 

        
   

    
          

Equation 4 

 

The cost function, Vn(Ɵ,ZN), is used as in Equation 5 [8]. 

         
 

 
   

                

 

   

 

Equation 5  

where, 

 Vn is the cost function 

 Zn is the measurement data 

   is the weighting matrix 

eF(k,Ɵ) is the prediction error function and can be 

determined by[8]:- 

                                        

Equation 6 

where, 

L is the monic prefilter that can be used to enhance 

certain frequency regions. 

G is process model 

H is white noise model 
 

  can be determined by the least squares method by 

minimizing the sum of the form of the output and the 

product of   and the measurement data. 

               
 

   

 

Equation 7 

V. State-feedback Control using 
LQR  

 

In order to design the closed-loop controller for state-space, 

the next step is to identify the state feedback control gain, K, 

which is in agreement with the state feedback control law 

shown in Equation 8. 

u = -Kix,  
Equation 8 

where,  

u is the output 

x is the input 
Ki is the gain between input and output 
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and state-space can be controlled as closed-loop system 

shows in by updating the input gain as 

 

A- BK 

Equation 9 

where,  
K is the closed-loop gain  

Assume engine parameter is controllable against the 

emissions and engine performance/ Then the gain K can be 

obtained by using linear quadratic regulator (LQR) method 

which optimises the system at the minimum cost. The state-

space can be optimised by a LQR with the minimum cost. 

LQR is calculated to minimize the cost function J(u). For a 

discrete engine system:- 

                                         

 

   

 

Equation 10 

where,  

Q is the state cost,         ,       
      

R is the input cost,          and  
N is the time horizon 

The LQR can be solved by Riccati equation:- 

                                       

Equation 11 

The controller assumes the simplest case to control the 

system by choosing R = 1, and Q = C’.C. The cost function 

corresponding to Q and R share the equal importance in the 

state variables although this can be tuned. 

 

 

 
Figure 3 Block diagram of closed-loop state-space system with 

closed-loop gain K obtained from LQR method 

A. State-feedback Control with Fuel 

Estimator 
 

In order to capture the engine behaviours covered the 

most of the situations, a large set of engine data is needed. 

The development of the state-space is hence generated the 

model with relatively higher order. The engine operating 

parameters of the 20th order state-space included all fuel 

comsition listed in Table 2 are presented in Figure 4. In this 

test the engine is running with pure Isooctane. Results 

showed that the state-space is unable to find the optimized 

engine operating parameters. For a) fuel to air ratio and b) 

ignition timing, the values are fluctuating between the 

maximum and minimum; and for c) exhaust valve closing 

timing and d) intake valve opening, the values are staying at 

the minimum. The model is unstable. 

 
Figure 4 The optimised engine parameters in the 20th order 

state-space. a) is fuel-to-air ratio, b) is ignition timing is degree, 

c) is exhaust valve closed timing and d) is the intake valve 

opening timing 

The fuel estimator is introduced to simply the model. 

Three separate sets of state-spaces are built for each given 

fuel composition, including Isooctane, Methanol and 

Ethanol. Figure 5 showed the related engine operating 

parameters. The latter developed state-spaces are stable in 

the 8th order. Compared to the state-space without fuel 

estimator, the model is simplified, and the fuel estimator 

provided the proportional control according to the estimated 
fuel composition. 
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Figure 5 The optimised engine parameters in the 8th order 

state-space with fuel estimator. a) is fuel-to-air ratio, b) is 

ignition timing is degree, c) is exhaust valve closed timing and 

d) is the intake valve opening timing 

 

B. Controller test with Engine Cycle 
 

Initial works in [2][3][4] performed test with a fixed set of 

parameters. By considerating the controller works under 
realistic condition, here, the engine cycle is introduced with 

the mapping of changes in speed. This allows to capture the 

behaviours of rapid and slow speed changes when the engine 

is accelerating or decelerating between 1000 rpm and 3000 

rpm. The step of change is in every two seconds, allowing 

the engine controller to settle at the given speeds. The engine 

cycle used in the test is presented in Figure 6. It is noted that 

the tests are run on a fixed torque. 

 
Figure 6 Engine cycle used in the final tests 

 
To test that the developed engine control provides the 

optimisation of emissions, three engine simulations were 

performed, one with control and two without control, 

respectively... The engine cycle lasted 20 seconds. The 

engine parameters used without controller are fixed. The 

specifications of the engine run without control use two fuel-

to-air ratios which are fixed at 0.95 and 1.05 respectively. 

The ignition timing is fixed at 25°. Exhaust valve closes at 

TDC (360°) and the intake valve opens at the same time. 

Two cases of Isooctane-Ethanol mixtures have been chosen 

for this comparison. 

C. Result with and without Controller 
 

The levels of emissions found in species of CO2, O2, CO 

and NOx with and without control are presented in Figure 7. 

The results show that when the engine has no control, the 

levels of emissions are not at their minimum at all 

constraints. When the fuel to air ratio is 1.05 at leaner 

mixture (value over 1), the red lines in the graph show that 
the levels of CO2, O2 and NOx are at the lowest compared to 

the other two results, but the level of CO is over 1%, thus 

exceeding the level allowed by legislation. Whereas when 

the fuel to air ratio is 0.95 at richer mixture, the black lines 

in the graph show the level of CO2 and CO are at 

satisfactory levels. The negative effect is the level of NOx 

which is about eight times larger than the one resulting with 

control. Therefore it can be concluded that the controller 

identified optimal parameters in all level of emissions. 

 

 
Figure 7 The level of emissions found in the engine simulation 

with and without control with given fuel-to-air ratio. a) is CO2, 

b) is O2, c) is CO and d) is NOx 

D. Case 1: Isooctane-Ethanol Mixture 
 

Case 1 tests the engine run with Isooctane-Ethanol 

mixture in the given engine cycle. The content of the 

mixture is similar to the test in Section IIIA, with the first 

test ran on 100% Isooctane. Four more tests are done with 

the mixture blended Ethanol into Isooctane by 10%, 20%, 

30% and 40% respectively. 

 
Figure 8 presents the level of emissions generated from 

the simulation with the engine cycle. The related optimised 

engine operating parameters are presented in Figure 9. The 

results show that the controller provides quick responses in 

the emission control. In the 2nd second the emissions have 

rapid changes due to the speed increase from 1000 rpm to 

3000 rpm. The controller is able to pick up the behaviours 

and the emissions are settled in the next few revolutions.  
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Figure 8 The level of emissions found in the engine control 

simulation of engine cycle in different portion of Isooctane-

Methanol mixture. a) is CO2, b) is O2, c) is CO and d) is NOx 

 

 
Figure 9 The engine operating parameters recorded in the 

engine control simulation of engine cycle in different portion of 

Isooctane-Methanol mixture. a) is fuel-to-air ratio, b) is ignition 

timing is degree, c) is exhaust valve closed timing and d) is the 

intake valve opening timing 

 

E. Case 2: Isooctane-Methanol Mixture 
 
Case 2 test the engine run with Isooctane-Methanol 

mixture in the given engine cycle. The first test ran on 100% 

Isooctane. Four more tests are done with the mixture of 

blended Methanol into Isooctane by 10%, 20%, 30% and 

40% respectively. 

 

Figure 10 presents the level of emissions generated from 

the simulation with the given engine cycle. The related 

engine operating parameters are presented in Figure 11. The 

results show that when the speed is changing, the controller 

settles quickly. It can be observed that when the speed 

varies, the emissions of CO2 and NOx have rapid increases 

and CO decreases rapidly. The controller is able to settle the 

emissions quickly within a few engine revolutions. 

 

One uncertainty found is in the result of 90% Isooctane 

and 10% of Methanol which is denoted by the red line. The 

controller has an unstable response between 2 to 4 seconds. 
The controller is unable to pick up the optimal engine 

operating parameters as shown in Figure 11 where the values 

of fuel to air ratio, ignition timing and valve events are 

fluctuating. The same trends happen at the results between 

12 and 14 seconds. By analysing the speed at the moment 

where the uncertainties are found, we can note that they 

happen when the speed is increasing from 1000 rpm to 

higher speed. Therefore the controller performs worse at 

lower speed and the controller needs to improve by 

collecting more data while training the state-spaces. For the 

performance of the steady control, we can draw the same 
conclusion as in Case 1. 

 

 
Figure 10 The level of emissions found in the engine control 

simulation of engine cycle in different portion of Isooctane-

Methanol mixture. a) is CO2, b) is O2, c) is CO and d) is NOx 
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Figure 11 The engine operating parameters recorded in the 

engine control simulation of engine cycle in different portion of 

Isooctane-Methanol mixture. a) is fuel-to-air ratio, b) is ignition 

timing is degree, c) is exhaust valve closed timing and d) is the 

intake valve opening timing 

 

VI. Conclusions 
 

This paper discusses the development of an engine 

controller which is able to optimise engine control 

parameters resulting in minimum levels of gas emissions 

while keeping the optimal performance in various speeds. 

Five input variables taken from the condition of exhaust gas 

have been identified, including the level of CO2, O2, CO 

and NOx in addition to the exhaust gas temperature. We are 

aiming to control four engine operating parameters, 
including fuel-to-air ratio, ignition timing, exhaust valve 

closed timing and intake valve opening timing.  

 

Three fuel mixtures have been used for this 

investigation, including 100% Isooctane, Isooctane-

Methanol mixture and Isooctane-Ethanol mixture. The 

engine simulations were also run at different speeds to test 

the controller working in different conditions. The paper can 

be concluded as follows:- 

 

1) Four MISO state-spaces have been developed for each 
control variable. 

2) The controller improves by generating one set of state-

spaces controller for each given fuel. The state-spaces 

provide the proportional control according to the 

probability of the fuels calculated from the fuel 

estimator. 

3) The fuel estimator helps to simplify the controller with 

the reduction on the number of order used. 

4) The controller is tested in various conditions. The 

results show that the controller is able to control the 

engine where the emissions are minimal while keeping 

optimal performance. 
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