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Abstract

Gliotoxin is an epipolythiodioxopiperazine (ETP) class toxin, contains a disulfide bridge that
mediates its toxic effects via redox cycling and is produced by the opportunistic fungal pathogen
Aspergillus fumigatus. The gliotoxin bis-thiomethyltransferase, GtmA, attenuates gliotoxin
biosynthesis in A. fumigatus by conversion of dithiol gliotoxin to bis-thiomethylgliotoxin (BmGT).
Here we show that disruption of dithiol gliotoxin bis-thiomethylation functionality in A. fumigatus
results in significant remodelling of the A. fumigatus secondary metabolome upon extended culture.
RP-HPLC and LC-MS/MS analysis revealed the reduced production of a plethora of unrelated
biosynthetic gene cluster-encoded metabolites, including pseurotin A, fumagillin, fumitremorgin C
and tryprostatin B, occurs in A. fumigatus AgtmA upon extended incubation. Parallel quantitative
proteomic analysis of A. fumigatus wild-type and AgtmA during extended culture revealed cognate
abundance alteration of proteins encoded by relevant biosynthetic gene clusters, allied to multiple
alterations in hypoxia-related proteins. The data presented herein reveal a previously concealed
functionality of GtmA in facilitating the biosynthesis of other BGC-encoded metabolites produced

by A. fumigatus.
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Introduction

Ascomycetes constitute the largest phylum of the fungal kingdom and produce an incredible array
of natural products. Although many of these compounds are known as medicinal therapeutics or
industrial chemicals, several natural products are potent toxins which pose substantial threats to
human food supplies and health (Schueffler and Anke 2014). The opportunistic fungus Aspergillus
Sfumigatus produces a wealth of these potent natural product toxins which are encoded by multigene

biosynthetic gene clusters (BGCs) (Bignell et al. 2016).

Gliotoxin has been shown to be a virulence attribute in invasive aspergillosis due to its
cytotoxic, genotoxic and apoptosis-stimulating properties. It is produced through a sequential series
of enzymatic steps, which are predominantly encoded by the gli BGC (Dolan et al. 2015). Gliotoxin
biosynthesis is also influenced by GtmA (TmtA in Scharf et al. (2014)), a thiol-directed
methyltransferase encoded outside the gli BGC, which specifically bis-thiomethylates both thiols of
dithiol gliotoxin to form bis-thiomethylgliotoxin (BmGT), resulting in the attenuation of gliotoxin
formation (Dolan et al. 2014). Lines between defined BGCs have been blurred by elegant work
describing the existence of intertwined biosynthetic gene clusters which are involved in the
formation of more than one chemical product (Wiemann et al. 2013). For example, A. fumigatus
encodes a “supercluster” in the subtelomeric region of chromosome 8, in which the genes
responsible for the production of two natural products, pseurotin and fumagillin, are physically
intertwined (Wiemann et al. 2013). Like gliotoxin, these other natural products also have potent
toxicities. For example, pseurotin A is an immunosuppressive spirocyclic that has been shown to
have interesting biological activities including the ability to induce the cellular differentiation of
PC12 neuronal cells (Komagata et al. 1996), monoamine oxidase inhibitory activity (Maebayashi et
al. 1985) and chitin synthase inhibitory activity (Wenke et al. 1993), highlighting many potential
applications of this metabolite. Fumagillin has antibiotic and antifungal activity. It was also found
to exhibit anti-cancer properties and anti-angiogenic activity as a inhibitor of the of the human type

2 methionine aminopeptidase (MetAP2) (Sin et al. 1997; Hou et al. 2009).
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Despite the fact that BGCs often possess a pathway-specific transcription factor, the
production of several otherwise unconnected natural products has been shown to be regulated by
global regulators of secondary metabolism such as LaeA. This functionally enigmatic regulator has
been shown to regulate the production of several A. fumigatus secondary metabolites (SMs)
including gliotoxin, fumagillin, pseurotin A and helvolic acid (Perrin et al. 2007). LaeA has also
been shown to counteract the establishment of heterochromatin marks, thus activating SM
production, inferring that LaeA regulates BGC-encoded metabolism by modifying chromatin
structure (Niitzmann et al. 2011). This suggests that fungal SM is controlled by a rigorous hierarchy

of regulatory mechanisms.

Understanding the diversity of regulatory strategies controlling the expression of these
pathways is therefore critical if their biosynthetic potential is to be explored for new drug leads. No
single medium under standardized growth conditions can secure expression of the full potential for
producing the secondary metabolome of a fungal culture. However, there are many strategies to
enable fungal cultures to produce even more BGC-encoded metabolites; for instance by modifying
the media constituents, adding other microorganisms, using light or using longer incubation periods,

alternate temperatures or deploying low or high pH (Ochi & Hosaka 2013).

The filamentous fungus Aspergillus terreus produces the ETP acetylaranotin (Guo et al.
2013). Similar to gliotoxin, this metabolite and its derivatives have been shown to display an array
of interesting bioactivities including the induction of apoptosis in cancer cell lines and antifungal
activity (Guo et al. 2013; Choi et al. 2011; Suzuki et al. 2000; Li et al. 2016). Three novel
bis(methylthio)dioxopiperazine derivatives of the epipolythiodioxopiperazine (ETP) emestrin were
produced by Podospora australis following static incubation of cultures at 23 °C for 14 days (Li et
al. 2016). Like P. australis, A. fumigatus produces many thiomethylated forms of gliotoxin upon
incubation for two weeks at 25 °C in the dark (Forseth et al. 2011). Extending the incubation

duration of A. terreus cultures from 6 d to 42 d resulted in the production of four thiomethylated
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forms of acetylaranotin, which were undetectable at earlier incubation time points. One of these
bioactive SMs (bisdethiobis(methylsulfanyl)apoaranotin) exhibited growth inhibitory properties
against Mycobacterium tuberculosis H37Ra with an MIC value of 1.56 pg/ml, thus highlighting the
potential of extended incubation to develop exciting natural product derivatives (Haritakun et al.
2012). As the generation of these thiomethylated forms of acetylaranotin was likely dependent on
an A. terreus GtmA homolog, this research prompted us to explore the effect of extended culture
incubation on A. fumigatus wild-type and AgtmA. Moreover, despite significant work describing the
production and isolation of these ETP derivatives (Dolan et al. 2014; Scharf et al. 2014; Liang et al.
2014), the downstream effects of removing this ETP bis-thiomethylation functionality and
concomitant perpetuation of gliotoxin biosynthesis, have not been explored to date in extended

cultures.
Materials and Methods

RP-HPLC and LC-MS detection of natural products from A. fumigatus culture supernatants

A. fumigatus wild-type, AgtmA and gtmA® strains (Dolan et al. 2014) were grown ( 10® conidia/ml)
in quadruplicate (Czapek-Dox broth, 200 rpm, 3 d; then static, 25 d 37 °C). Culture supernatants
and ethyl acetate organic extracts (100 u1) were analysed by RP-HPLC with UV detection (Agilent
1200 system), using a C18 RP-HPLC column (Agilent Zorbax Eclipse XDB-C18 Semi-Preparative;
5 pum particle size; 4.6 x 250 mm) at a flow rate of 2 ml/min (Figure 1). A mobile phase of water
and acetonitrile with 0.1 % (v/v) trifluoroacetic acid, was used under various gradient conditions.
For LC-MS analysis, organic extracts were diluted 1/10 in 0.1 % (v/v) formic acid and spin filtered
prior to LC-MS analysis (Agilent Ion Trap 6340). Gliotoxin (purity: 98%) and BmGT (purity: 99%)
standards were obtained from Sigma-Aldrich and Enzo Life Sciences, respectively. Fumagillin,
pseurotin A, tryprostatin B and fumitremorgin C were identified based on published m/z ratios,

retention times and fragmentation patterns as described previously (O’Keeffe et al. 2014). All data
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were analysed using built-in GraphPad prism version 5.01 functions, as specified. The level of
significance was set at p < 0.05 (*), p <0.001 (**), and p < 0.0001 (***), unless otherwise stated.
Comparative quantitative proteomic analysis of A. fumigatus wild-type and mutant strains

As shown in Figure 1, Mycelia were then harvested and snap frozen in liquid N;. No significant
differnces in biomass were noted for these strains (Supplementary Figure 1 and 2). Mycelial lysates
were prepared in lysis buffer (100 mM Tris-HCI, 50 mM NaCl, 20 mM EDTA, 10% (v/v) glycerol,
1 mM PMSF, 1 ug/ml pepstatin A, pH 7.5) with grinding, sonication and clarified using
centrifugation. The resultant protein lysates were precipitated using trichloroacetic acid/acetone and
resuspended in 100 mM Tris-HCI, 6 M urea, 2 M thiourea, pH 8.0. After dithiothreitol reduction
and iodoacetamide-mediated alkylation, sequencing grade trypsin combined with ProteaseMax
surfactant was added. All peptide mixtures were analysed via a Thermo Fisher Q-Exactive mass
spectrometer coupled to a Dionex RSLCnano. LC gradients ran from 4-35 % B over 2 h, and data
was collected using a Top15 method for MS/MS scans. Comparative proteome abundance and data
analysis was performed using MaxQuant software (Version 1.3.0.5), with Andromeda used for

database searching and Perseus used to organise the data (Version 1.4.1.3) (Cox & Mann 2008).
Results and Discussion

Late-stage culture metabolomics reveals that dysregulated gliotoxin biosynthesis due to gtmA
absence influences the biosynthesis of other secondary metabolites

Comparative RP-HPLC analysis of culture supernatants at 3 d showed that the overall SM profile
was not altered significantly by the deletion of gtmA (Figure 2A), except that gliotoxin production
was significantly increased and bis-thiomethylgliotoxin (BmGT) production was abolished as
described previously (Dolan et al. 2014). However, when the culture incubation time was increased
by 25 d, a decrease in several compounds was specifically detected in A.fumigatus AgtmA by RP-
HPLC DAD (at 254 nm and 351 nm) (Figure 2B,C). The production of these compounds was

restored in the complemented strain (gzmA°). These compounds were fraction-collected, analysed by
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LC-MS and identities were elucidated based on known m/z values and fragmentation patterns.
Pseurotin A (p =0.0001) and fumagillin (p = 0.0005) were produced at significantly decreased
concentrations in A. fumigatus AgtmA (Figure 2D). Furthermore, LC-MS/MS analysis of ethyl-
acetate extracted culture supernatants also uncovered that the detected concentration of tryprostatin
B (p =0.0005) and fumitremorgin C (p =0.0074) were significantly lower in the AgtmA strain
(Figure 2D). This suggested that GtmA activity may influence the production of other SM through
the production of BmGT or, alternatively, by augmenting gli-cluster activity.

In order to uncover if the absence of BmGT was directly responsible for the metabolite
alterations, the extended culture experiment was repeated and exogenous BmGT was added (10
pg/ml final) to A. fumigatus AgtmA prior to static incubation for 25 days (n = 4). Methanol was
added to the control cultures. Exogenously added BmGT did not result in the restoration of
pseurotin A or fumagillin production in A. fumigatus AgtmA to wild-type levels, suggesting that
BmGT does not directly facilitate the production of these metabolites (Figure 2E).

Label-Free Quantitative (LFQ) proteomics of late-stage cultures reveals that the absence of
gtmA expression and resulting dysregulated gliotoxin biosynthesis leads to widespread
proteomic alterations

The metabolomic analysis demonstrated that A. fumigatus AgtmA has an altered SM profile in
comparison with that of the wild-type or gthC cultured under identical conditions. Comparative
label-free quantitative (LFQ) proteomic analysis was carried out to further elucidate the
involvement of GtmA activity in this metabolite profile alteration. A total of 1468 proteins were
detected in A. fumigatus wild-type vs. AgtmA analysis (Figure 3). Two proteins were uniquely
detected in A. fumigatus AgtmA and 87 proteins were significantly more abundant in this mutant.
Proteins (n =35) were not detected in A. fumigatus AgtmA and 136 proteins were significantly less
abundant in this strain compared to wild-type. This dataset was cross referenced with the grmAS vs.
AgtmA dataset in order to confirm which of these changes were directly due to the absence of grmA.

Based on this enrichment, 27 proteins were not detected in A. fumigatus AgtmA and 93 proteins
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were significantly less abundant in this strain. Two proteins were uniquely detected in A. fumigatus
AgtmA under this condition and 71 proteins were significantly more abundant in this mutant (Table
S1 and S2).

Four proteins encoded by the gli cluster were shown to be significantly more abundant
(log2-fold) in AgtmA compared to the wild-type. The MFS gliotoxin efflux transporter GliA
(AFUA_6G09710; 1.82652), the membrane dipeptidase GliJ (AFUA_6G09650; 1.66652), a
predicted O-methyltransferase GliM (AFUA_6G09680; 1.62724) and the glutathione S-transferase
GliG (AFUA_6G09690; 1.40425) were increased in abundance in AgtrmA (Table S1). Additionally,
a putative short chain dehydrogenase (AFUA_4G08710; 1.37478) and a ThiJ/Pfpl family protein
(AFUA_5G01430; 1.93416), which were previously shown to be induced by gliotoxin exposure
were more abundant in this condition. RmtA (AFUA_1G06190; 1.06), a putative arginine
methyltransferase previously shown to act as a global regulator in A. flavus, mediating broad effects
on secondary metabolism and development in this organism (Satterlee et al. 2016), also exhibited
significantly elevated abundance. However, its role in A. fumigatus has yet to be elucidated.

Co-incident with the reduced levels of selected SMs, several proteins for which cognate
transcripts have previously been shown to be induced by hypoxia, or by exposure to neutrophils,
were increased in abundance in A. fumigatus AgtmA. Two proteins which are repressed by gliotoxin
exposure and two which are repressed by hypoxia (Vodisch et al. 2011) were significantly
decreased in abundance in AgtmA. This may be a response to the sustained gliotoxin production in
A. fumigatus AgtmA as the abundance of these proteins is returned to wild-type levels in the
complemented strain. Proteins which had been shown previously to be induced by hypoxia
exposure were significantly more abundant in A. fumigatus AgtmA compared to the wild-type
(Vodisch et al. 2011). These include a putative transaldolase (AFUA_5G09230; 1.58072), a
putative  glyceraldehyde 3-phosphate dehydrogenase (AFUA_5G01030; 1.34405), an
argininosuccinate lyase (AFUA_3G07790; 1.34137), a 6-phosphogluconate dehydrogenase

(AFUA_6G08050; 1.31184), a putative mevalonate kinase (AFUA_4G07780; 1.07826), and an
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essential 1, 3-beta-glucanosyltransferase (AFUA_2G05340; 1.0025). Additionally, glutathione
synthase (AFUA_5G06610; 1.67077), which is an ortholog of the Saccharomyces cerevisiae GSH2
glutathione biosynthetic protein, known to be induced by oxidative stress in this organism
(Sugiyama et al. 2000), was more abundant. Additionally, proteins formerly shown to be induced
by neutrophil exposure were also more abundant in AgtmA (Sugui et al. 2008). These included a
putative carbon-nitrogen family hydrolase (AFUA_5G02350; 1.567), a putative myo-inositol-
phosphate synthase (AFUA_2G01010; 1.21826) and an aldehyde reductase (AKRI)
(AFUA_6G10260; 1.09358). Mannitol 2-dehydrogenase which has a predicted role in mannitol
metabolism (AFUA_4G14450; 1.52766) was also more abundant. Mannitol is an important
virulence determinant of pathogenic fungi. Its high antioxidant capacity aids in suppressing the
reactive oxygen species mediated attacks from neutrophils (Wyatt et al. 2014). This suggests that
the sustained expression of the gli-cluster in long-term cultures may be translated as an oxidative

challenge to A. fumigatus.

Six transporter proteins were found to be significantly more abundant in AgtmA. These were
an ABC transporter CdrlB (AFUA_1G14330; 2.4345), a putative MFS monocarboxylate
transporter (AFUA_3G03320; 2.29482) (located in an uncharacterised SM cluster (Lind et al.
2016), the ABC multidrug transporter Mdrl (AFUA_5G06070; 2.19999), a putative plasma
membrane H" ATPase Pmal (AFUA_3G07640; 1.3888), the low affinity plasma membrane zinc
transporter ZrfB (AFUA_2G03860; 1.30673), which is induced by zinc depletion and the amino
acid permease Gapl (AFUA_7G04290; 1.0342). Pmal was upregulated during conidial
germination and in response to amphotericin B and downregulated by caspofungin treatment
(Gautam et al. 2008; Cagas et al. 2011). Overexpression of the Cdr1B transporter was reported to
be responsible for azole resistance in a clinical setting (Fraczek er al. 2013). The Zn,-Cyse
transcription factor AtrR was recently shown to be responsible for regulating cdr1B expression in A.

fumigatus (Hagiwara et al. 2017).
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Aminoacyl-tRNA synthetases are central enzymes in translation which provide the charged
tRNAs needed for protein synthesis (Guo et al. 2010). Tyrosyl-tRNA synthetase (AFUA_5G10640;
2.85558), Seryl-tRNA synthetase (AFUA_5G05490; 1.22428), Putative valyl-tRNA synthetase
(AFUA_8G04800; 1.22314), Isoleucyl-tRNA synthetase (AFUA_1G13710; 1.10632) and a
putative Lysyl-tRNA synthetase (AFUA_6G07640; 1.05645) were significantly more abundant in
A. fumigatus AgtmA compared to the wild-type. Several cell wall-related proteins were increased in
abundance in A. fumigatus AgtmA. These included the GPI-anchored cell wall beta-1,3-
endoglucanase Bgt2 (AFUA_3G00270; 1.35218) and three B(1-3)glucanosyltransferases which
belong to the 7-member GEL family (Fontaine et al. 2003; Gastebois et al. 2010); Gel5
(AFUA_8G02130; 1.23988), Gel3 (AFUA_2G12850; 1.00391), and Gel4 (AFUA_2G05340;
1.0025; previously shown to be increased in hypoxia). GIfA, a UDP-galactopyranose mutase
(AFUA_3G12690; 1.3312), was also significantly more abundant. A. fumigatus AglfA is devoid of
galactofuranose and displays attenuated virulence in a low-dose mouse model of invasive
aspergillosis (Schmalhorst er al. 2008). Interestingly, the small monomeric GTPase RasA
(AFUA_5G11230; 1.65165) was also significantly more abundant in AgfmA. A ArasA mutant
demonstrated a phenotype of cell wall instability and slow germination (Fortwendel et al. 2008).
Higher levels of RasA abundance may be linked to the cell wall remodelling described above.

As mentioned above, A. fumigatus AgtmA 28 d cultures showed a significant decrease in the
production of pseurotin A and fumagillin compared to the wild-type strain. Complementary LFQ
proteomic analysis revealed a significant decrease in abundance of several proteins encoded by the
chromosome 8 supercluster (AFUA_8G00100-00720) (Wiemann et al. 2013), in agreement with
the metabolomic analysis which revealed the decreased production of pseurotin A and fumagillin
(Figure 4). A total of 15 proteins from this cluster were detected as less abundant in AgtmA.
Interestingly, 19 of the 98 proteins detected as significantly decreased in abundance in AgtmA are
encoded on Chromosome 8, whereas 2 of the 38 proteins which were detected as increased in

abundance in AgrmA were similarly located. O’Keeffe et al. (2014) demonstrated that an intact

10
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gliotoxin self-protection mechanism, mediated by GIiT, is essential to regulate the biosynthesis of
apparently unrelated metabolites such as pseurotin A, fumagillin and fumitremorgins. Herein, we
have shown that when A. fumigatus cultures are incubated for extended duration, the absence of
GtmA, resulting in dysregulated gliotoxin production, also has downstream effects on the
biosynthesis of apparently unrelated natural products produced by this organism. A total of 17
proteins from the supercluster (Wiemann et al. 2013) were detected as less abundant in AgtmA.
Interestingly, 23 of the 136 proteins detected as significantly decreased in abundance in AgtmA are
encoded on Chromosome 8. This is in comparison to 2 of the 72 proteins detected as increased in
abundance in AgtmA being encoded on Chromosome 8. Several proteins encoded by the
supercluster were either undetectable or significantly decreased in abundance in A. fumigatus
AgtmA (Table 3; Table S2). Four proteins involved in the synthesis of fumitremorgins were
significantly decreased in abundance in AgtmA. FtmPT1 (AFUA_8G00210; not detected) and
FtmPT2 (AFUA_8G00250; not detected), two prenyltransferases involved in fumitremorgin B
biosynthesis, FtmD, an O-methyltransferase involved in fumitremorgin B synthesis
(AFUA_8G00200; not detected), and FtmF, an alpha-ketoglutarate-dependent dioxygenase which
catalyses the conversion of fumitremorgin B to verruculogen (AFUA_8G00230; -4.32466). Six
proteins associated with fumagillin biosynthesis were not detected or significantly less abundant.
These were the fumagillin polyketide synthase (Fma-PKS) (AFUA_8G00370; not detected), the
fumagillin phytanoyl-CoA-oxidase FmaF (AFUA_8G00480; -4.17772), FmaD, the fumagillin O-
methyltransferase (AFUA_8G00390; -3.85167), a hypoxia induced protein; encoded in the fma
gene cluster (AFUA_8G00430; -3.24847), FmaC, a putative fumagillin alpha/beta hydrolase
(AFUA_8G00380; -3.16375) and a putative O-methyltransferase; encoded in the fima gene cluster
(AFUA_8G00400; -2.85247). Four proteins involved in pseurotin A biosynthesis were significantly
less abundant. PsoB, PsoD, PsoC, a putative pseurotin A methyltransferase (AFUA_8G00550; -
3.28917), PsoA, the pseurotin A non-ribosomal peptide synthetase (AFUA_8G00540; -1.60039), a

pseurotin A dual-functional mono- oxygenase/methyltransferase PsoE (AFUA_8G00560; not

11
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detected) and PsoF, a putative pseurotin A dual methyltransferase/monooxygenase
(AFUA_8G00440; -2.74114) (Table 3; Table S2). A glutathione S-transferase (AFUA_4G14380; -
2.96915) encoded within the helvolic acid cluster (AFUA_4G14380—4850) (Mitsuguchi et al. 2009)

was also decreased in abundance in A. fumigatus AgtmA.

Two proteins shown previously to be repressed by gliotoxin exposure (Carberry et al. 2012)
were shown to be significantly decreased in abundance in AgtmA: a mitochondrial peroxiredoxin
(AFUA_4G08580; -1.96889) with a predicted role in cell redox homeostasis regulation and a
putative alcohol dehydrogenase (AFUA_7G01000; -1.17862) involved in ethanol metabolism. A
putative thioredoxin (AFUA_8G01090; not detected) and an M repeat protein (AFUA_6G08660; -
1.99673), which were shown to be hypoxia-repressed were also decreased in expression (Vodisch et
al. 2011) (Table S2). The thiol methyltransferase GtmA (Dolan et al. 2014 & 2017) was uniquely
detected in the wild-type condition and abundance was restored in the complemented strain. Several
cell wall associated proteins were also not detected or decreased in abundance in A. fumigatus
AgtmA mutant in comparison with the wild-type. These included the conidial hydrophobin RodA
(AFUA_5G09580; not detected), a putative glycophosphatidylinositol (GPI)-anchored cell wall
protein MP-2 (AFUA_2G05150; not detected) and a putative phiA family cell wall protein

(AFUA_3G03060; -1.5461).

Several mitochondrial-associated proteins were not detected or less abundant in AgrmA.
These included an uncharacterized protein (AFUA_1G13195; not detected) with orthologs involved
in cristae formation and integral to mitochondrial inner membrane, a putative iron-sulfur cluster
biosynthesis protein extrinsic to mitochondrial inner membrane (AFUA_3G06492, not detected), a
putative mitochondrial intermembrane space translocase subunit (AFUA_1G04470; 1.97737), a
putative mitochondrial peroxiredoxin (AFUA_4G08580; -1.96889) with a predicted role in cell
redox homeostasis regulation, a putative prohibitin (AFUA_2G09090; -1.5947) with orthologs

involved in mitochondrion inheritance, a putative mitochondrial 2-oxodicarboxylate carrier protein
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(AFUA_1G09660; -1.56908), a putative adenylate kinase with mitochondrial intermembrane space
localization (AFUA_1G07530; -1.4474), a putative outer mitochondrial membrane protein porin
(AFUA_4G06910; -1.31711), a putative mitochondrial genome maintenance protein Mgm101
(AFUA_2G09560;  1.26767), a  mitochondrial  glycerol-3-phosphate =~ dehydrogenase
(AFUA_1G08810; -1.19813) and a putative mitochondrial processing peptidase alpha subunit with
a role in protein processing involved in protein targeting to mitochondrion (AFUA_1G11870; -
1.1768). Interestingly, several hypoxia-induced proteins were either not detected or decreased in
abundance in A. fumigatus AgtmA (Blatzer et al. 2011). These included a gamma-
glutamyltranspeptidase (AFUA_4G13580, not detected); SrbA-regulated during hypoxia, Putative
flavohemoprotein (AFUA_4G03410; -1.42304), Putative outer mitochondrial membrane protein
porin (AFUA_4G06910; -1.31711), Ubiquinol-cytochrome c¢ reductase iron-sulphur subunit
precursor (AFUA_5G10610; -1.19224) with a predicted role in oxidative phosphorylation, an
aspartic acid endopeptidase (AFUA_3G11400; -1.18445) and a thiamine biosynthesis protein

(AFUA_5G02470; -1.11766).

Gliotoxin can act as a sporulation signal for A. nidulans development under mildly reducing
conditions through NapA oxidative stress regulation, as reflected by green conidial pigmentation
(Zheng et al. 2015). Altough no phenotypic differences were noted for AgtmA, it is conceivable that
the absence of gliotoxin bis-thiomethylation can alter the normal course of fungal development by
sustaining the gli-cluster activation signal. It is speculated that this may then lead to downstream

redox stress signalling, cell wall remodelling and the modification of secondary metabolite profiles.

Conclusions

Overall these data show that the loss of GtmA-mediated thiomethylation upon extended
culture duration has downstream effects on seemingly unrelated BGC-encoded metabolites in A.
fumigatus. The exact mechanism of this effect is unclear, however, it is likely that the sustained gli-

cluster activation in the absence of GtmA artificially prioritises the expression of this cluster,
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resulting in extensive downstream proteomic remodelling, which occurs at the expense of other
BGC:s in this organism. We also explored the possiblilty that BmGT itself acts as a signal to sustain
the expression of the unrelated BGC-encoded metabolites, which decrease in its absence. Adding a
high concentration (10 pgg/mL) of BmGT to the cultures did not complement the phenotype,
suggesting that BmGT itself does not sustain the expression of these unrelated clusters. It’s
important to note that although A. fumigatus exposure to GT results in a rapid intracellular
accumulation due to the redox properties of this metabolite (Bernardo et al. 2003), BmGT does not
have this capability due to the absence of the characteristic disulfide bridge. This means that we
cannot completely rule out that the intracellular accumulation of BmGT is responsible this
phenotype. However, as shown in our earlier study, exposure of A. fumigatus to 5 pg/ml BmGT
results in a distinct proteomic response, increasing the GliT and GtmA protein abundance 2 fold
(Dolan et al. 2014). This would suggest that despite its inability to accumulate intracellularly to the
same extent as GT, exogenously added BmGT can act as a signalling molecule in A. fumigatus

when applied exogenously.

Although several master regulators have been shown to orchestrate secondary metabolism in
fungi, this work highlights the importance of the BGC-encoded metabolites themselves as important
signals in rewiring SM production. Despite our extensive functional and mechanistic insight into
how these BGC-encoded metabolites are synthesised, the precise mechanism of how intracellular
signals orchestrate temporal control over SM production have yet to be understood. Further work
will focus on the precise nature of how exactly these competing metabolic signals are integrated,
resulting in the expression of a ‘typical’ secondary metabolome of A. fumigatus and other

pathogenic fungi.
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Figure 1. Flow diagram describing the experimental setup. Wild-type, AgrmA and gtmA® were
grown for 3 d shaking at 37° C. Cultures where then incubated at 37 °C, static for a further 25 d.
Culture supernatants were analysed by RP-HPLC at 3 d, Samples were analysed by RP-HPLC, LC-

MS/MS and quantitative proteomics at 28 d.

Figure 2. A. RP-HPLC analysis of A. fumigatus wild-type, AgtmA and gthC culture supernatants
at 72 h. No alteration of the secondary metabolite profile was altered, except the absence of BmGT
and increase in GT due to the absence of grmA. BJ/C. RP-HPLC analysis of A. fumigatus WT,
AgtmA and gthC culture supernatants at 28 d. Major alterations in the SM profile are evident,
notably at 254 nm and 351 nm. The abundance of the compounds pseurotin A and fumagillin were
significantly reduced in the AgtmA strain. D. LC-MS/MS analysis of organically extracted culture
supernatants of A. fumigatus wild-type, AgtmA and gthC culture supernatants at 28 d. Pseurotin A,
fumagillin, tryprostatin B and fumitremorgin C were detected at significantly reduced levels in
AgtmA. E. Exogenous addition of methanol or BmGT (10 pg/ml) to AgtmA (quadruplicate) prior to
static incubation for 25 d did not result in the restoration of pseurotin A or fumagillin production
levels to that of the wild-type strain. Bars represent pseurotin A or fumagillin RP-HPLC intensity

(mAU) at 254 nm.

Figure 3. Venn-diagram illustrating the proteins with altered abundance in A. fumigatus wild-type
when compared to AgrmA. Heat map depicting hierarchal clustered expression data of the 260

proteins of differential abundance in AgrmA compared to the wild-type.

Figure 4. Absence of GtmA during long-term incubation of A. fumigatus results in the increased
expression of the gli-cluster, widespread proteomic alterations and the decreased abundance of
BGC-encoded enzymes located on chromosome 8. This in turn results in the reduced production of

the respective compounds.
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Table 1: Top 10 proteins with increased abundance in A. fumigatus AgtmA compared to wild-type
following extended culture. Data sorted by fold change, in descending order.

Table 2: Top 10 proteins with decreased abundance in A. fumigatus AgtmA compared to wild-type
following extended culture. Data sorted by fold change, in descending order.

Table 3: Proteins encoded by the intertwined secondary metabolite supercluster on chromosome 8
of A. fumigatus (AFUA_8G00100-00720) with decreased abundance in A. fumigatus AgtmA
compared to wild-type and grmA° grown for 28 days in Czapek-Dox media. Data sorted by fold
change, in descending order.

Supplementary Figure 1: Image of A. fumigatus wild-type and AgtrmA long term incubation
cultures immediately prior to harvesting.

Supplementary Figure 2: Calculated mycelial dry weight from snap frozen, lyophilised mycelia
for A. fumigatus wild-type, AgtmA and gtmAC following long term incubation.
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