
Citation:
Altahhan, A (2018) TD(0)-Replay: An Efficient Model-Free Planning with full Replay. Pro-
ceedings of International Joint Conference on Neural Networks. ISSN 2161-4393 DOI:
https://doi.org/10.1109/IJCNN.2018.8489300

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/4849/

Document Version:
Article (Accepted Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/4849/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

TD(0)-Replay: An Efficent Model-Free Planning with

full Replay

Abdulrahman Altahhan

School of Computing and Creative Technology

Leeds Beckett University

Leeds, UK

a.altahhan@leedsbeckett.ac.uk

Abstract— In this paper we present a two novel reinforcement

learning methods that allow for full replay of all past experience

in every step of a reinforcement learning agent life with minimal

overhead. In particular, we show how to deduce an equivalent

efficient backward view of replaying the full past experience

online using TD(0) error. We emphasise the already established

link between replaying and planning in our algorithm design by

comparing it with an Extensive Linear Dyna Planning algorithm,

and we show that our method can outperform this expensive form

of planning methods. We test the new method, which we called

TD(0)-Replay, on two different domains problems; Dyna Maze to

test its planning capabilities, and Random Walk to test its

prediction capabilities. We compare TD(0)-Replay with TD(λ) for

benchmarking and we show that our method outperform this

traditional RL method as well. We also show that our method

when combined with weight reinitialisation turns into especially

effective form of planning.

Keywords—component, formatting, style, styling, insert (key

words)

I. INTRODUCTION

In Reinforcement Learning, replaying past experience has
been shown to have an important and definite role in reaching
an optimal or close-to-optimal policy. Replay becomes even
more important when dealing with experience that is difficult or
expensive to simulate or when the trajectory of available
experience is very limited. Especially in applications that
requires real world interaction, it is difficult, and simply
undesirable, to have to repeated the experience physically.
Instead replaying the experience in the mind of the agent and
learning form it becomes a natural and important method of
learning. In essence, such complex task that needs rich
imagination is going to be inevitably computationally
expensive. Yet, in online learning, allowing the agent to fully
repeat all past experience that has been done so far is even more
demanding. However, this full repetition if achieved efficiently,
can provide the agent with a very powerful learning mechanism
that boosts its performance and allows it to maximise the so far
lived experience in a way that has not been done before.

In this paper we will provide a new method that allows the
agent to achieve exactly the above. I.e. to allow the agent to fully
replay all past experience (in its head rather that physically),
which will allow it, in turn, to quickly optimise its value function
prediction as well as improve its policy. We will show that this

can be achieved with a reasonable computational expense that
makes the proposed method, called TD-Replay, a very attractive
method for the above mentioned situations which requires
maximisation of so far experience without having to physically
repeat it. [1] and [2] for example studied the effect of replaying
and they have shown that the agent can boost its experience
when using replaying. The original interpretation for experience
replay is that the samples will be presented for the agent as a
new set of samples [1]. While in [3] the agent suffices by re-
updating its weight as well as its value function estimation either
fully or partially. At the same time, [4] studied the effect of
replaying from planning perspective and they showed that
replaying can be looked at as planning by looking into the past
(instead of future) and they showed that their TD(0) replay
algorithm is equivalent to the Planning with the linear Dyna
model Algorithm. We will follow a similar approach as in [4]
and [5], however we will develop a different algorithm that has
its own update rules and mechanism that is different form the
presented algorithms but has some resemblance in terms of the
form of updates.

 In our work we will introduce an efficient algorithm with
forward view that depends on the mechanism provided by [4]
and [5]. True Online TD [5] allows the learning process to be
repeated for all 𝑘 = 1 … 𝑡 but it does not utilise replay, it
assumes that the agent will always reinitialise its weights to the
same initial values in every time step t. On the other hand, [4]
utilises replaying on the level of targets only. Replaying TD(0)
updates Algorithm for example (and its more efficient
equivalent Planning with Dyna Algorithm) assumes that the
agent starts from the same initial weights at every set of
imaginary experience, only its 𝑈𝑖 targets are changing according
to the latest weights coming from the real time step t. Our
algorithm, which we call TD(0)-Replay, assumes that both the
targets as well as the initial weights are changing in every set of
imaginary updates 𝑘 = 1 … 𝑡 , making it more vigilant and
adaptive to changes in the environment.

TD(0)-Replay will depends on the usual TD error and will
not reinitialise the weights in each time step 𝑡, instead it will
assume that the starting weights of time step 𝑡 are those obtained
after updating the weights in time step 𝑡 − 1, but will assume
that the agent is going to replay all of its past experience for each
imaginary time step 𝑘, where 𝑘 = 1 … 𝑡.

II. TD-REPLAY FORWARDVIEW

A. TD-Replay update rules at time step t

In this section we will develop the updates rules for our TD-
Replay method on the basis of a one-layer neural network model
(linear model). At time step 𝑡 TD(0) update for a linear model is
given as

𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝜃𝑡
⊺𝜙𝑡+1 − 𝜃𝑡

⊺𝜙𝑡 (1)

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝜙𝑡
⊺ (2)

Where: 𝛿𝑡 is the temporal Difference error, 𝑅𝑡+1 is the
reward signal, 𝛾 is a discount factor, 𝜙𝑡

⊺ is the transpose of
feature vector 𝜙𝑡 obtained through current state 𝑆𝑡, 𝜃𝑡

⊺ is the
transpose of the weight vector 𝜃𝑡 and 𝛼𝑡 is a learning step; all
varies according to time step 𝑡.

In order to replay previous experience and assuming that the

agent is at time step 𝑡, in this case the TD(0) error for a time

step k: 0 ≤ 𝑘 < 𝑡 is given by

𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘(𝑅𝑘+1 + 𝛾𝜃𝑘
⊺ 𝜙𝑘+1 − 𝜃𝑘

⊺ 𝜙𝑘)𝜙𝑘 (3)

Or

𝜃𝑘+1 = [𝐼 + 𝛼𝑘𝜙𝑘(𝛾𝜙𝑘+1
⊺ − 𝜙𝑘

⊺)]𝜃𝑘 + 𝛼𝑘𝑅𝑘+1𝜙𝑘 (4)

Hence by renaming we have:

𝜃𝑘+1 = 𝐴𝑘𝜃𝑘 + 𝐵𝑘 (5)

𝐴𝑘: = [𝐼𝑛×𝑛 + 𝛼𝑘𝜙𝑘(𝛾𝜙𝑘+1 − 𝜙𝑘)⊺] (6)

𝐵𝑘 : = 𝛼𝑘𝜙𝑘𝑅𝑘+1 (7)

Where 𝑛 is the features dimension i.e. |𝜙𝑘| = 𝑛. Of course

since we are using a linear model we have also |𝜃𝑘| = 𝑛. 𝐴𝑘 is

an 𝑛 × 𝑛 squared matrix, while 𝐵𝑘 is 𝑛 × 1 vector, ⊺ is the

transpose symbol.

B. Cummulative update rules at time steps 𝑡 = 𝑘 + 1

If we allow the agent to replay all so far experience in every
step, we get the following formulae:

𝑡 = 1 𝑘 = 0 𝜃1
1 = 𝐴0𝜃𝑖𝑛𝑖𝑡 + 𝐵0)

𝑡 = 2 𝑘 = 0 𝜃1
2 = 𝐴0𝜃1

1 + 𝐵0

 𝑘 = 1 𝜃2
2 = 𝐴1𝜃1

2 + 𝐵1

)

𝑡 = 3 𝑘 = 0 𝜃1
3 = 𝐴0𝜃2

2 + 𝐵0

 𝑘 = 1 𝜃2
3 = 𝐴1𝜃1

3 + 𝐵1

 𝑘 = 2 𝜃3
3 = 𝐴2𝜃2

3 + 𝐵2

) (8)

…

By convention, since the last imaginary step is 𝑘 = 𝑡 − 1

for 𝑡, (and the last update is going to be 𝜃𝑘+1
𝑡 = 𝜃𝑡

𝑡), we define
𝜃𝑡: = 𝜃𝑡

𝑡. The above will give the following set of formula for
𝜃𝑡

𝑡.

𝜃1 = 𝐴0𝜃0
0 + 𝐵0

𝜃2 = 𝐴1𝐴0𝜃1 + 𝐴1𝐵0 + 𝐵1
𝜃3 = 𝐴2𝐴1𝐴0𝜃2 + 𝐴2𝐴1𝐵0 + 𝐴2𝐵1 + 𝐵2

…

𝜃𝑡+1 = 𝐴𝑡 . . 𝐴0𝜃𝑡 + 𝐴𝑡 . . 𝐴1𝐵0 + ⋯ + 𝐴𝑡𝐵𝑡−1 + 𝐵𝑡 (9)

By defining

𝐴𝑡
𝑖 : = 𝐴𝑡 … 𝐴𝑖 (10)

𝐴𝑡
𝑡+1: = 𝐼𝑛×𝑛 (11)

The previous equations can be written through induction as

𝜃𝑡+1 = 𝐴𝑡
0𝜃𝑡 + 𝐴𝑡

1𝐵0 + ⋯ + 𝐴𝑡
𝑡𝐵𝑡−1 + 𝐴𝑡

𝑡+1𝐵𝑡 (12)

Where: 𝐴𝑡: = [𝐼𝑛×𝑛 + 𝛼𝑡𝜙𝑡(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺]

𝜃𝑡+1 = 𝐴𝑡
0𝜃𝑡 + ∑ 𝐴𝑡

𝑖+1𝑡
𝑖=0 𝐵𝑖 (13)

Hence by defining the eligibility trace 𝑒𝑡 and eligibility

matrix 𝑒̂𝑡 as:

 𝑒̂𝑡: = 𝐴𝑡
0 (14)

𝑒𝑡: = ∑ 𝐴𝑡
𝑖+1𝑡

𝑖=0 𝐵𝑖 (15)

The updates rules for the learning weights can be written as:

𝜃𝑡+1 = 𝑒̂𝑡𝜃𝑡 + 𝑒𝑡 (16)

C. Incremental cummulative update rules at time steps 𝑡 =
𝑘 + 1

Let us now deduce incremental rules for the eligibility trace
𝑒𝑡 and eligibility matrix 𝑒̂𝑡.

As for the eligibility matrix 𝑒̂𝑡, by induction we have:

 𝑒̂𝑡 = 𝐴𝑡
0 = 𝐴𝑡𝐴𝑡−1 … 𝐴0 = 𝐴𝑡𝐴𝑡−1

0 = 𝐴𝑡𝑒̂𝑡−1.

While for the eligibility trace 𝑒𝑡, we have

 𝑒𝑡 = ∑ 𝐴𝑡
𝑖+1𝑡

𝑖=0 𝐵𝑖 = 𝐴𝑡 ∑ 𝐴𝑡−1
𝑖+1𝑡−1

𝑖=0 𝐵𝑖 + 𝐵𝑡 = 𝐴𝑡𝑒𝑡−1 + 𝐵𝑡 ,

since we have 𝑒𝑡−1 = ∑ 𝐴𝑡−1
𝑖+1𝑡−1

𝑖=0 𝐵𝑖.

Hence our TD(0)-Replay algorithm can be written in the
following order:

𝐴𝑡 = [𝐼𝑛×𝑛 + 𝛼𝑡𝜙𝑡(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺] (17)

𝐵𝑡 = 𝛼𝑡𝜙𝑡𝑅𝑡+1 (18)

𝑒𝑡 = 𝐴𝑡𝑒𝑡−1 + 𝐵𝑡 (19)

𝑒̂𝑡 = 𝐴𝑡𝑒̂𝑡−1 (20)

𝜃𝑡+1 = 𝑒̂𝑡𝜃𝑡 + 𝑒𝑡 (21)

Where we have 𝐴0 = 𝑒̂0 = 𝐼𝑛×𝑛 , 𝐵0 = 𝛼0𝜙0𝑅1, 𝑒0 = 0𝑛×1.

It should be noted that the algorithm uses just current time step

information to apply a full replay of all past experience hence

its significance lies in this particular characteristic.

D. Efficeient Form of TD-Replay Forward

TD-Replay in its previous form can be made more efficient
by unpacking 𝐴𝑡 in the updates and replacing matrix
multiplications in (19) and (20) with matrix to vector
multiplication.

As for the calculations of 𝑒𝑡 we have 𝑒𝑡 = 𝐴𝑡𝑒𝑡−1 + 𝐵𝑡 ,
hence 𝑒𝑡 = 𝑒𝑡−1 + 𝛼𝑡𝜙𝑡[(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺𝑒𝑡−1] + 𝐵𝑡 . Therefore
the calculations of involves calculating the term (𝛾𝜙𝑡+1 −
𝜙𝑡)⊺𝑒𝑡−1 is a scalar (multiplying a vector 𝑒𝑡−1 by a vector
transpose) which is more efficient than multiplying a squared
matrix 𝐴𝑡 and a vector 𝑒𝑡−1.

As for 𝑒̂𝑡 we have 𝑒̂𝑡 = 𝐴𝑡𝑒̂𝑡−1 , hence 𝑒̂𝑡 = 𝑒̂𝑡−1 +
𝛼𝑡𝜙𝑡[(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺𝑒̂𝑡−1] . It should be noted that [(𝛾𝜙𝑡+1 −
𝜙𝑡)⊺𝑒̂𝑡−1] is a multiplication of a squared matrix 𝑒̂𝑡−1 by a
vector (𝛾𝜙𝑡+1 − 𝜙𝑡)⊺ and is more efficient than multiplying
two squared matrices 𝐴𝑡 and 𝑒̂𝑡−1 as before. The complexity
still lies within this calculation which is of O(𝑛2) for space and
time. The final algorithm can be written as:

𝑒𝑡 = 𝑒𝑡−1 + 𝛼𝑡𝜙𝑡[(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺𝑒𝑡−1 + 𝑅𝑡+1] (22)

𝑒̂𝑡 = 𝑒̂𝑡−1 + 𝛼𝑡𝜙𝑡[(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺𝑒̂𝑡−1] (23)

𝜃𝑡+1 = 𝑒̂𝑡𝜃𝑡 + 𝑒𝑡 (24)

Where we have 𝑒0 = 0𝑛×1, 𝑒̂0 = 𝐼𝑛×𝑛

E. TD(0)-Replay Forward Algorithm

Formula (22) -(24) define a set of update rules for an agent
to be able to predict the value function for a specific task in some
environment. The algorithm is given below.

It should be noted that the agent is applying its current update
through the normal delta update then it does a full replay again
from first step up until the last step. Therefore, effectively the
agent takes into consideration current step information (rewards
and feature), updates the weights, replay all past experience and
updates the weights accordingly, then finally re-update the
weights of current step again according to the replay. This is

more effective than replaying up until the step before the last. In
the above algorithm the learning rate 𝛼 is assigned at every time
steps 𝑡 according to ℓ(𝛼) which can be any scheme that reduces
𝛼 (annealing for example). In practices if 𝛼 is chosen to be small
enough then it can be left without updating it [3].

F. Comparing TD(0)-Replay with Other Replay Algorithms

Clearly from a formative perspective the updates rules are
different than those presented in From [4]. From a fundamental
inner working mechanism, the main differences between
‘TD(0)-Replay’ and ‘Replaying TD(0)’ Algorithms [4] (and to
some extent even the True online TD algorithms [5]) are in three
essential characteristics. The first, is that the dynamics are
different since in [4] the agent reflects back and uses the latest
weights that resulted from previous step 𝑡 in calculating the
targets 𝑈𝑘 in all consequent steps 𝑘 = 0 … 𝑡 . While, TD(0)-
Replay uses the weights 𝜃𝑡

𝑡 from past experience 𝑡 as an initial
weights in step 𝑘 = 0, then it lets the consequent updates specify

targets 𝑈𝑘 that has been calculated using the latest 𝜃𝑘
𝑡+1 in

consequent steps 𝑘 = 1 … 𝑡. Secondly, the term 𝐴𝑡 is different
since we have 𝐴𝑡 = [𝐼𝑛×𝑛 + 𝛼𝑡𝜙𝑡(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺] instead of
𝐴𝑡 = [𝐼𝑛×𝑛 − 𝛼𝑡𝜙𝑡(𝜙𝑡)⊺]. Lastly, the broader concept of weight
updates with no reinitialisation makes our approach more
general. In other words for this form of TD-Replay we do not
reinitialise the weights in the start of each imaginary set of
updates unlike[4][5] and [10]. Later we will relax this
assumption to obtain a new algorithm.

On the other hands, both TD(0)-Replay and Replaying
TD(0), replay fully all previous experience in every steps 𝑡. Also
both do not require storing any previous states or weights, hence
are efficient. TD-Replay only requires storing the eligibility
squared matrix 𝑒̂ and e (equivalent requirements for Replaying
TD(0) updates is to store square matrix 𝐹 and 𝑏). The
complexities of both our algorithm and their algorithms for
storage and computation are of 𝑂(𝑛2) in the worst case
regardless of the number of steps.

G. TD(0)-Replay and Re-Planning

From another perspective, since we are updating the weights
then reflecting back on the agent past experience to learn from
it, it is only reasonable to consider our algorithm as a re-planning
algorithm as well. 𝑒̂ can be considered to be trying to establish a
prediction model for the feature vector that is capable of being
changed according to the difference between the two consequent

vectors (𝛾𝝓́ − 𝝓)
⊺
instead of predicting the next feature vector as

in [3]. This makes sense since the TD(0)-Replay algorithm does
not need to know the next feature, instead it needs to know how
the features are changing. Similarly, it needs to know how the
reward function will change through 𝑒 in order to come up with
a planning scheme for the future replays of past experience
according to the latest up to date weights and targets. It should
be noted that TD(0)-Replay is different than an algorithm that

utilises the residual gradient since the term (𝛾𝜙́ − 𝜙)
⊺
𝑒̂ is

multiplied by 𝛼𝜙 not with (𝛾𝜙́ − 𝜙)
⊺
.

Algorithm 1 TD(0)-Replay: Value Function Prediction

INPUT: 𝛼, 𝛾, 𝜃𝑖𝑛𝑖𝑡

𝜃 ← 𝜃𝑖𝑛𝑖𝑡

Loop (over episodes):

 Obtain initial S, 𝜙

 𝒆̂ ← 𝐼𝑛×𝑛, 𝒆 ← 𝟎𝑛×1
 While (terminal state has not been reached), do:

 act according to the policy

 observe next reward 𝑅 = 𝑅𝑡+1 , next state 𝑆́ = 𝑆𝑡+1

 and its features 𝜙́ = 𝜙𝑡+1

 𝛼 ← ℓ(𝛼)

 𝜽 ← 𝜽 + 𝛼𝝓 ((𝛾𝝓́ − 𝝓)
⊺
𝜽 + 𝑅) (𝛿 update)

 𝒆 ← 𝒆 + 𝛼𝝓 ((𝛾𝝓́ − 𝝓)
⊺
𝒆 + 𝑅) (Re-Playing/Re-Planning)

 𝒆̂ ← 𝒆̂ + 𝛼𝝓 [(𝛾𝝓́ − 𝝓)
⊺
𝒆̂]

 𝜽 ← 𝒆̂𝜽 + 𝒆

 𝝓 ← 𝝓́

H. TD(0)-Replay with Reinitialisation

If we changed the mechanism of TD(0)-Replay so that it will
reinitialise its weights in each imaginary step 𝑘 = 0, to 𝜃0

𝑡 =
𝜃𝑖𝑛𝑖𝑡 ∀𝑡 then the update rules (17)-(20) stay the same, update rule
(21) becomes

𝜃𝑡+1 = 𝑒̂𝑡𝜃𝑖𝑛𝑖𝑡 + 𝑒𝑡 (25)

And the next update is going to be

𝜃𝑡+2 = 𝑒̂𝑡+1𝜃𝑖𝑛𝑖𝑡 + 𝑒𝑡+1

In this case, since 𝜃𝑖𝑛𝑖𝑡 is fixed then we can make the updates
rules much more efficient since we can store 𝑒̂𝑡𝜃𝑖𝑛𝑖𝑡 instead of
𝑒̂𝑡. Hence, the update rule (20) can be changed into:

𝑒̂𝑡𝜃𝑖𝑛𝑖𝑡 = 𝐴𝑡𝑒̂𝑡−1𝜃𝑖𝑛𝑖𝑡 (26)

By defining 𝜃́𝑡 as a vector

𝜃́𝑡: = 𝑒̂𝑡𝜃𝑖𝑛𝑖𝑡 (27)

The update (28) can be written as:

𝜃́𝑡 = 𝐴𝑡𝜃́𝑡−1 (28)

Hence, these updates along with (22) define a new algorithm
that can be written efficiently as

𝑒𝑡 = 𝑒𝑡−1 + 𝛼𝑡𝜙𝑡[(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺𝑒𝑡−1 + 𝑅𝑡+1] (29)

𝜃́𝑡 = 𝜃́𝑡−1 + 𝛼𝑡𝜙𝑡[(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺𝜃́𝑡−1] (30)

𝜃𝑡+1 = 𝜃́𝑡 + 𝑒𝑡 (31)

Where we have 𝑒0 = 0𝑛×1, 𝜃́0 = 𝜃𝑖𝑛𝑖𝑡 all as vectors. The
algorithm is shown below.

One important issue to realise in this algorithm is the
initialisation to 𝜃́ ← 𝜃 in each episode. This is important so that
the updates of 𝜃 are not lost. Also we have removed the (𝛿

update steps because it has no effect since the weights are
effectively being reinitialised in each step. This new algorithm,
regardless of the policy boosting update step, is doing a special
type of efficient replay that resemble the one done in True
Online TD but it uses one step backup rather than the full interim
λ-returns. Moreover, it is not a special case or equivalent to True
Online TD(0), since True Online TD(0) is equivalent to normal
TD(0), while obviously this algorithm is doing more updates
than TD(0). This algorithm can be considered a counter part of
TD(λ) but it is analytical and is also truly online because it has
an equivalent online algorithm.

Algorithms 1 and 2 have exact equivalent algorithms that are
based on some form of repetitive TD updates. TD(0)-Replay can
also be generalised by using the full interim λ-returns but this
will be left for future work.

We will call Algorithm 2 TD(0)-Replay(θ0) to recognise the
fact that in each step it starts from the initial weight θ0= θinit,
while the original TD(0)-Replay will be called TD(0)-Replay(θt)
to reflect the fact that in each time step the it starts from the latest
weights θt.

I. Sarsa(0)-Replay Forward Algorithm

As for control, we can straightforwardly build control
algorithm on the grounds of TF-Replay. The agent would need
to learn a suitable policy; the policy can be deduced out of the
predicted value function for the agent.

One way to build the policy learning model, based on the
value prediction model, is as follows. A set of learning weights
is provided for each action, given the set of actions are limited.
The control features 𝜓𝑡 are going to have a cardinality of |𝜓𝑡| =
|𝒜| × 𝑛 where 𝑛 = |𝜙𝑡| (the state feature size) and |𝒜| is the
number of actions that an agent can take at any time step 𝑡. The
agent also would have the same size for its weights when using
a linear model i.e. |𝒜| × 𝑛 weights.

 In each time step, the set of features 𝜙𝑡(𝑎𝑡) in 𝜓𝑡 (that
corresponds to the current action 𝑎𝑡) will be populated with the
values of the state features, while the rest 𝜙𝑡(𝑎𝑖): 𝑎𝑖 ≠ 𝑎𝑡 in 𝜓𝑡
will be simply populated with 0. Hence the learning takes place
on the set of weights corresponding to the current actions since
the rest of the features are going to be 0.

In order to deduce a suitable policy, the agent calculates the
value function for each action and then picks the action with the
highest value (most of the time, except for few times with small
probability of 𝜀 where the agent picks a random action). This
type of policy, called 𝜀-greedy policy, is a common policy to be
followed, other policies such as soft-max is also possible.

 In this paper we will follow an 𝜀-greedy policy. By doing
the above scheme a similar algorithm can be written for the
agent in order to learn a suitable policy instead of learning only
to predict the value function of its current policy. According to
the policy improvement theorem this scheme of improving the
policy by picking the max action value then updating the
prediction accordingly will lead to convergence to an optimal
policy in the case of a linear model that is being updated
according to the TD error, with some extra conditions on the
learning rate [6][7] . The policy improvement algorithm for

Algorithm 2 TD(0)- Replay(θ0) with Reinitialisation: Value Function

Prediction(Policy Evaluation)

INPUT: 𝛼, 𝛾, 𝜃𝑖𝑛𝑖𝑡

𝜃 ← 𝜃𝑖𝑛𝑖𝑡

Loop (over episodes):

 Obtain initial S, 𝜙

 𝜽́ ← 𝜃 , 𝒆 ← 𝟎𝑛×1

 While (terminal state has not been reached), do:

 act according to the policy

 observe next reward 𝑅 = 𝑅𝑡+1 , next state 𝑆́ = 𝑆𝑡+1

 and its features 𝜙́ = 𝜙𝑡+1

 𝛼 ← ℓ(𝛼)

 𝒆 ← 𝒆 + 𝛼𝝓 ((𝛾𝝓́ − 𝝓)
⊺
𝒆 + 𝑅) (replaying)

 𝜽́ ← 𝜽́ + 𝛼𝝓 ((𝛾𝝓́ − 𝝓)
⊺
𝜽́)

 𝜽 ← 𝜽́ + 𝒆

 𝝓 ← 𝝓́

Sarsa(0)-Replay is given above. It should be noted that by

convention 𝜓́ ← 0 if 𝑆́ is terminal.

In order to improve the policy an agent can run either
indefinitely or through a set of episodes that is specified in priori,
where it stops when the learning slows down under a specific
threshold.

For our comparisons we will choose a specific number of
episodes and compare the Route Mean Squared Error (RMSE)
or the total number of steps to for those episodes.

J. Dyna Full Planning Algorithm

In order to compare our algorithms objectively we will
compare TD(0)-Replay with a special version of Dyna Planning
which we call Dyna Full Re-Planning, where the agent
regenerate (reimagine) fully all previous samples in every time
step in order to better plan what to do with them in case it sees
them in the future.

It seems reasonable that the concept of re-planning based on
replaying past experience, works especially when the agent is
expected to revisit some states due to its incompetence of
reaching its terminal state or achieving its final goal (the case in
lots of RL environment and tasks). The algorithm, shown above,
is expensive because its complexity is going to be ∑ 𝑡𝑇

𝑡=1 =
𝑂(𝑇2) rather than 𝑂(𝑛2), where 𝑛 is the feature size and 𝑇 is
the total number of visited states. T is normally >> n especially
at the start if learning. This extreme case of planning is
conceived as the maximum performance any Dyna Re-Planning
algorithm can achieve. We will compare this algorithms
performance with ours to show the real planning capabilities of
TD-Replay algorithms. Similar to the other algorithms, a policy
improvement algorithm can be devised based on this above.

III. EXPERIMENTS DESIGN AND ALGORITHM TESTING

We have tested our algorithm on a two test beds. The first is
Random Walk which is a Markov Reward Process (MRP) to test
the TD(0)-Replay prediction algorithm. MRPs are useful tools
to isolate the prediction problem form the policy improvement
(control) problems. The idea behind it is to assign an action, in
each step, based on a transition probability that represents the
dynamics of the environment. The actions are generated due to
this probability only, there is no decision making taking place
and the policy is stochastic with fix probability. We will use a 6-
state Random Walk environment, where the process starts form
a middle state as in Fig. 1. The current state will be moved to the
state in the left according to a probability of p, or to the right
according to the probability 1-p. Once the process reaches the
final state to the right the process stops and the agent is rewarded
+1, otherwise if the process reaches the final state to the left, the
process stops and the agent is rewarded with 0. All other
transitions have a 0 reward.

Fig. 1. Random Walk for 6 states. The true value for those states are their

probabilty of reaching the far left terminal state assuming the agent start

form each of them.

We have set 𝛾 = 1 and we have used a very simple set of
binary features that each represents a state. The features size is
equal to the number of states. we have studies the effect of the
learning rate for TD(0)-Replay in comparison with accumulate
TD(λ) as a benchmark as well as with Dyna Full Re-Planning
algorithms. Fig. 2 shows the results. It seems, due to its
simplicity and effectiveness, the winner in this testbed is TD(0)-
Replay(θ0), in this simple prediction domain.

Algorithm 3 Sarsa(0)- Replay(θt): Policy Improvement

INPUT: 𝛼, 𝛾, 𝜃𝑖𝑛𝑖𝑡

𝜃 ← 𝜃𝑖𝑛𝑖𝑡

Loop (over episodes):

 Obtain initial 𝑆, 𝜙

 Select action 𝐴 based on State 𝑆

 𝜓 ← features corresponding to 𝑆, 𝐴; (|𝜓| = 𝑛 × |𝒜| = 𝒩)

 𝒆̂ ← 𝐼𝒩×𝒩 , 𝒆 ← 𝜽 ← 𝟎𝒩×1

 While terminal state has not been reached, do:

 take action 𝐴, observer next state 𝑆́ and reward 𝑅

 𝑎 ← 𝜀-greedy(argmax𝑄́(𝐴𝑖) ← 𝜽⊺(𝒂𝒊)𝝓́) (|𝑄́| = |𝒜|)

 𝜓́ ← features corresponding to 𝑆́, 𝑎́

 𝛼 ← 𝑙(𝛼)

 𝜽 ← 𝜽 + 𝛼𝝓 ((𝛾𝝍́ − 𝝍)
⊺
𝜽 + 𝑅) (𝛿 update)

 𝒆 ← 𝒆 + 𝛼𝝍 ((𝛾𝝍́ − 𝝍)
⊺
𝒆 + 𝑅) (re-planning)

 𝒆̂ ← 𝒆̂ + 𝛼𝝍 [(𝛾𝝍́ − 𝝍)
⊺
𝒆̂]

 𝜽 ← 𝒆̂𝜽 + 𝒆

 𝝍 ← 𝝍́ ; 𝐴 ← 𝐴́

Algorithm 4 Dyna Full Re-Planning: Extreme Planning for Policy

Evaluation (expensive; for comparison only)

INPUT: 𝛼, 𝛾, 𝜃𝑖𝑛𝑖𝑡

𝜃 ← 𝜃𝑖𝑛𝑖𝑡

Loop (over episodes):

 Obtain initial S, 𝜙

 𝐹 ← 𝟎𝑛×𝑛, 𝒆 ← 𝟎𝑛×1 𝑡 ← 1

 While (terminal state has not been reached), do:

 act according to the policy observe next reward 𝑅 , 𝑆́ and 𝜙́

 𝜽 = 𝜽 + 𝛼[𝑅 + 𝜽⊺𝝓́ − 𝜽⊺𝝓]𝝓

 𝑭 ← 𝑭 + 𝛼[𝛾𝝓́ − 𝑭𝝓]𝝓⊺ (F is to predict next state 𝝓́)

 𝒃 ← 𝒃 + 𝛼(𝑅 − 𝒃⊺𝝓)𝝓 (b is to predict next reward R)

 𝝓𝒕 ← 𝝓 (store visited state features, memory expensive)

 For 𝑘 ← 1 𝑡𝑜 𝑡 (planning steps, computationally expensive)

 based on revisiting past states

 in order to obtain a better policy evaluation

 𝝓́ ← 𝑭𝝓𝒌

 𝑅 ← 𝒃⊺𝝓𝒌

 𝜽 ← 𝜽 + 𝛼[𝑅 + 𝜽⊺𝝓𝒌
́ − 𝜽⊺𝝓𝒌]𝝓𝒌

 𝑡 ← 𝑡 + 1

D E A B C

start

100000

Fig. 2. Comparison ofr RMSE of different algorithms for the Random Walk

problem and different learning rates. Clearly TD(0)- Replay(θ0)

performed best due to its simplicity and effectiveness in this prediciton

problem, overcoming TD(0)- Replay(θ0) as well as True Online TD(λ), λ
= 0.7, algorithms.

The second test bed the traditional Dyna Maze environment
with 9 × 6 cells (states). The main goal of a Dyna Maze is for
an agent to be able to learn a policy that allows it to reach a
specific goal state where it starts from a specific initial state
(cell) in each episode. The episode ends when the agent reaches
the goal square. Plenty of obstacles have been placed in the way
from the Start state to the goal state. The agent is rewarded with
-1 in each step wasted before reaching the goal while the reward
for reaching the goal state is 0. An example of a simulated agent
represented as a red square is shown in Fig. 3.

Fig. 3. Dyna Maze example of the small environment

Dyna Maze is traditionally used to test planning algorithms,
we show here that Sarsa(0)-Replay exceeds the performance of
other RL algorithms that involves planning. It actually competes
head to head with very expensive re-planning algorithm, Dyna
Full Re-Planning, that covers all previously visited states in each
current state update. It should be noted that in the below
experiments all results has been produced after averaging 20
runs. We have used binary features to represent the states by
linearising the domain. We have 54 states each represented as a
vector with 54 features, and we set 𝛾 = .95.

Fig. 4 shows the results for the Dyna Full Re-Planning
algorithm mentioned before. It should be mentioned that this
algorithm is included for comparison purpose only since it is
expensive and can be impractical. Fig. 5 shows the comparison
for Sarsa(0)-Replay(θt).

Fig. 4. Compariosn of different learning steps for Dyna Full Re-Planning for

control averaged over 20 runs for binary features. Clearly 0.9 is best and
the algorithm converges very quickly after the 5th episode in all cases,

lower alpha gave more stability for the algorithm. But the algorithm is

very slow and inefficent(Complexity is 𝑂(𝑇2) in terms of time and
memory, T is the total numberof steps) because the agent resamples all of

the so far visited states in every time step.

Fig. 5. Compariosn of different learning steps for Sarsa(0)-Replay(θt)

averaged over 20 runs for binary features.𝛼 = 0.1 gave best performance
and the algorithm converges very quickly after the 5th episode in all cases,

lower 𝛼 gave more stability for the algorithm. The algorithm is very
efficent in terms of complexity although the agent is effectively resamples
all of the so far visited states in every time step.

As for the comparison of Sarsa(0)-Replay(θ0) and the
traditional Sarsa(λ). Fig. 6 and Fig 7 show the comparisons
results for different learning steps for each algorithm.

Sarsa(0)-Replay(θt)

Dyna Full Re-Planning

Fig. 6. Compariosn of different learning steps for Sarsa(0)-Replay(θinit)

averaged over 20 runs for binary features. 𝛼 = 0.1 is best and the
algorithm converges almost as fast as Sarsa(0)-Replay(θinit) with even

better complexity O(n).

Fig. 7. Compariosn different learning steps for Accumlated Sarsa(λ=0.8)

averaged over 20 runs for binary features. 𝛼 = 0.9 is associated with best
perofrmance.

Fig. 8 shows a comparison of TD(0)-Replay along with the
other three algorithms. It is again clear that our algorithm
exceeds the performance of other algorithms in this domain. It
should be noted that Sarsa(0)-Replay(θ0) has the advantage of
being very efficient with complexity of O(n) for each time step
calculation, has no hyper parametrs to be set (such as λ), it is
model free and effetive for planning and it has an exact online
equivalence algorithm that it was build on it; making it also truly
online. Fig. 9 shows the execution time for each algorithm.
Clearly Sarsa(0)-Replay(θt) has very good execution time due to
its efficiency in converging quickly to an optimal policy. It also
can be seen that Dyna Full Planning is the most expensive as
expected. Combining execution time along with how fast the
algorithm reached the optimal policy, we conclude that Sarsa(0)-
Replay(θt) can be the method of choice for those application that
needs to maximise the lived experience, such physical and real
time system.

Fig. 8. Final compariosn between Sarsa(0)-Replay(θt) [complexity is 𝑂(𝑛 ×
𝑚) m is the numebr of active features], Dyna Full Replanning for Control

[complexity is 𝑂(𝑇2) T is the number of episode step], Sarsa(0)-

Replay(θ0)and Sarsa(λ=0.8). Sarsa(0)-Replay(θt) has done almost the
same job as Dyna Full Re-Planning with much better cost.in fact it was

the fastest to converge after 4 episodes. This algorithm is efficent model-
free with reaosnable overhead and maximal performance. Next comes

Sarsa(0)-Replay(θ0) which has achived very good results compared to the

other algrithms including true Online TD with minimal overhead and very
good performance. The learning rates have been chosen to maximise the

perofrmance of each algorihtm as per the previous set of expeiments, λ is

set to 0.8 based on previous studies [8]. It should be noted that better

results may have been obtained by setting 𝛼 to even a lower values for

both TD-Replay algorithms.

Fig. 9. Compariosn different algorithms execution times.

IV. CONCLUSION AND FUTURE WORK

In this paper we have presented three new RL algorithms that
allow for an efficient and full replay of all past experience in
every step for a reinforcement learning agent life with
reasonable and minimal overhead respectively. TD(0)-
Replay(θ0) seems good for prediction while Sarsa(0)-Replay(θt)
seems best for control. When we add a delta update for the latter
before the replay process the algorithm becomes suitable for
planning although it is model-free.

Sarsa(λ=0.8)

Sarsa(0)-Replay(θ0)

Sarsa (0)-Replay(θ0)

Sarsa (0)-Replay(θt)

Dyna Planning Full

True Online TD(0.7)
TD(0.7)

The presented algorithms are suitable for real time and
experience-expensive systems (where learning through
experience is a hard and expensive process). We showed how to
deduce a backward view directly form the forward view for the
online case. We have contrasted the presented algorithms with
other similar algorithms and showed the differences
theoretically in terms of mechanics and practically through
experiments. Our experiments confirm the potential for these
method to be used in different domains and to overcome other
existing replay and planning schemes. In the future we will be
looking towards generalising our algorithm to have a general
target Ui instead of the one-step target. This new target will
change the form of the matrix A and special attention would be
needed to deduce an efficient form for the full replay of past
experience. Another avenue is to develop the algorithms for a
non-linear model. Another avenue to develop the algorithms to
become a multistep RL algorithms suitable for more general
models include averaging [10][11].

REFERENCES

[1] Lin, L. J. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 8:293–321, 1992.

[2] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., et al (2015). Human-level control through deep
reinforcement learning. Nature, 518:529–533.

[3] Sutton, R. S., Szepesvari, C., Geramifard, A., and Bowling, ´M. Dyna-
style planning with linear function approximation and prioritized
sweeping. In International Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 528–536, 2008.

[4] van Seijen, H. H. and Sutton, R. S. (2015). A Deeper Look at Planning as
Learning from Replay. Proceedings of the 32nd International Conference
on Machine learning (ICML).

[5] van Seijen, H. H. and Sutton, R. S. (2014). True online TD(λ). In
Proceedings of the 31st International Conference on Machine learning
(ICML).

[6] Sutton, R. S. and Barto, A. G. (2017). Reinforcement Learning: An
Introduction Complete Draft. 2nd Edition, Acessed online, MIT Press,
Cambridge.

[7] Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic
Programming. Athena Scientific.

[8] Dayan, P. (1992). The convergence of TD(λ) for general λ. Machine
Learning, 8(3):341–362.

[9] Sutton, R. S. (1988). Learning to predict by the methods of temporal
differences. Machine Learning, 3(1):9–4

[10] van Hasselt, H. and Sutton, R. S. (2015). Learning to predict independent
of span. arXiv:1508.04582.

[11] Sutton, R. S. TD models: Modeling the world at a mixture of time scales.
In Proceedings of the 12th International Conference on Machine Learning
(ICML), pp. 531–539, 1995.

