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Abstract— In this paper we present a two novel reinforcement 

learning methods that allow for full replay of all past experience 

in every step of a reinforcement learning agent life with minimal 

overhead. In particular, we show how to deduce an equivalent 

efficient backward view of replaying the full past experience 

online using TD(0) error. We emphasise the already established 

link between replaying and planning in our algorithm design by 

comparing it with an Extensive Linear Dyna Planning algorithm, 

and we show that our method can outperform this expensive form 

of planning methods. We test the new method, which we called 

TD(0)-Replay, on two different domains problems; Dyna Maze to 

test its planning capabilities, and Random Walk to test its 

prediction capabilities. We compare TD(0)-Replay with TD(λ) for 

benchmarking and we show that our method outperform this 

traditional RL method as well. We also show that our method 

when combined with weight reinitialisation turns into especially 

effective form of planning.  

Keywords—component, formatting, style, styling, insert (key 

words) 

I. INTRODUCTION 

In Reinforcement Learning, replaying past experience has 
been shown to have an important and definite role in reaching 
an optimal or close-to-optimal policy. Replay becomes even 
more important when dealing with experience that is difficult or 
expensive to simulate or when the trajectory of available 
experience is very limited. Especially in applications that 
requires real world interaction, it is difficult, and simply 
undesirable, to have to repeated the experience physically. 
Instead replaying the experience in the mind of the agent and 
learning form it becomes a natural and important method of 
learning. In essence, such complex task that needs rich 
imagination is going to be inevitably computationally 
expensive. Yet, in online learning, allowing the agent to fully 
repeat all past experience that has been done so far is even more 
demanding. However, this full repetition if achieved efficiently, 
can provide the agent with a very powerful learning mechanism 
that boosts its performance and allows it to maximise the so far 
lived experience in a way that has not been done before.  

In this paper we will provide a new method that allows the 
agent to achieve exactly the above. I.e. to allow the agent to fully 
replay all past experience (in its head rather that physically), 
which will allow it, in turn, to quickly optimise its value function 
prediction as well as improve its policy. We will show that this 

can be achieved with a reasonable computational expense that 
makes the proposed method, called TD-Replay, a very attractive 
method for the above mentioned situations which requires 
maximisation of so far experience without having to physically 
repeat it. [1] and [2] for example studied the effect of replaying 
and they have shown that the agent can boost its experience 
when using replaying. The original interpretation for experience 
replay is that the samples will be presented for the agent as a 
new set of samples [1]. While in [3] the agent suffices by re-
updating its weight as well as its value function estimation either 
fully or partially. At the same time, [4] studied the effect of 
replaying from planning perspective and they showed that 
replaying can be looked at as planning by looking into the past 
(instead of future) and they showed that their TD(0) replay 
algorithm is equivalent to the Planning with the linear Dyna 
model Algorithm. We will follow a similar approach as in [4] 
and [5], however we will develop a different algorithm that has 
its own update rules and mechanism that is different form the 
presented algorithms but has some resemblance in terms of the 
form of updates. 

 In our work we will introduce an efficient algorithm with 
forward view that depends on the mechanism provided by [4] 
and [5]. True Online TD [5] allows the learning process to be 
repeated for all 𝑘 = 1 … 𝑡  but it does not utilise replay, it 
assumes that the agent will always reinitialise its weights to the 
same initial values in  every time step t. On the other hand, [4] 
utilises replaying on the level of targets only. Replaying TD(0) 
updates Algorithm for example (and its more efficient 
equivalent Planning with Dyna Algorithm) assumes that the 
agent starts from the same initial weights at every set of 
imaginary experience, only its 𝑈𝑖 targets are changing according 
to the latest weights coming from the real time step t.  Our 
algorithm, which we call TD(0)-Replay, assumes that both the 
targets as well as the initial weights are changing in every set of 
imaginary updates 𝑘 = 1 …  𝑡 , making it more vigilant and 
adaptive to changes in the environment.  

TD(0)-Replay will depends on the usual TD error and will 
not reinitialise the weights in each time step 𝑡, instead it will 
assume that the starting weights of time step 𝑡 are those obtained 
after updating the weights in time step 𝑡 − 1, but will assume 
that the agent is going to replay all of its past experience for each 
imaginary time step 𝑘, where 𝑘 = 1 … 𝑡.  



II. TD-REPLAY FORWARDVIEW 

A. TD-Replay update rules at time step t 

In this section we will develop the updates rules for our TD-
Replay method on the basis of a one-layer neural network model 
(linear model). At time step 𝑡 TD(0) update for a linear model is 
given as  

𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝜃𝑡
⊺𝜙𝑡+1 − 𝜃𝑡

⊺𝜙𝑡  (1) 

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝜙𝑡
⊺  (2) 

Where: 𝛿𝑡 is the temporal Difference error, 𝑅𝑡+1 is the 
reward signal, 𝛾 is a discount factor, 𝜙𝑡

⊺ is the transpose of  
feature vector 𝜙𝑡 obtained through current state 𝑆𝑡, 𝜃𝑡

⊺ is the 
transpose of the weight vector 𝜃𝑡 and 𝛼𝑡 is a learning step; all 
varies according to time step 𝑡. 

In order to replay previous experience and assuming that the 

agent is at time step 𝑡, in this case the TD(0) error for a time 

step k: 0 ≤ 𝑘 < 𝑡 is given by  

𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘(𝑅𝑘+1 + 𝛾𝜃𝑘
⊺ 𝜙𝑘+1 − 𝜃𝑘

⊺ 𝜙𝑘)𝜙𝑘  (3) 

Or  

𝜃𝑘+1 = [𝐼 + 𝛼𝑘𝜙𝑘(𝛾𝜙𝑘+1
⊺ − 𝜙𝑘

⊺ )]𝜃𝑘 + 𝛼𝑘𝑅𝑘+1𝜙𝑘 (4) 

Hence by renaming we have: 

𝜃𝑘+1 = 𝐴𝑘𝜃𝑘 + 𝐵𝑘    (5) 

𝐴𝑘: = [𝐼𝑛×𝑛 + 𝛼𝑘𝜙𝑘(𝛾𝜙𝑘+1 − 𝜙𝑘)⊺]  (6) 

𝐵𝑘 : =  𝛼𝑘𝜙𝑘𝑅𝑘+1   (7) 

Where 𝑛 is the features dimension i.e. |𝜙𝑘| = 𝑛. Of course 

since we are using a linear model we have also |𝜃𝑘| = 𝑛.  𝐴𝑘 is 

an 𝑛 × 𝑛  squared matrix, while 𝐵𝑘  is 𝑛 × 1  vector, ⊺  is the 

transpose symbol. 

B. Cummulative update rules at time steps 𝑡 = 𝑘 + 1 

If we allow the agent to replay all so far experience in every 
step, we get the following formulae: 

𝑡 = 1 𝑘 = 0 𝜃1
1 = 𝐴0𝜃𝑖𝑛𝑖𝑡 + 𝐵0)   

𝑡 = 2 𝑘 = 0 𝜃1
2 = 𝐴0𝜃1

1 + 𝐵0

          𝑘 = 1 𝜃2
2 = 𝐴1𝜃1

2 + 𝐵1

)      

𝑡 = 3 𝑘 = 0 𝜃1
3 = 𝐴0𝜃2

2 + 𝐵0

          𝑘 = 1 𝜃2
3 = 𝐴1𝜃1

3 + 𝐵1

          𝑘 = 2 𝜃3
3 = 𝐴2𝜃2

3 + 𝐵2

)  (8)   

…    

By convention, since the last imaginary step is 𝑘 = 𝑡 − 1 

for 𝑡, (and the last update is going to be 𝜃𝑘+1
𝑡 = 𝜃𝑡

𝑡), we define 
𝜃𝑡: = 𝜃𝑡

𝑡. The above will give the following set of formula for 
𝜃𝑡

𝑡. 

𝜃1 = 𝐴0𝜃0
0 + 𝐵0    

𝜃2 = 𝐴1𝐴0𝜃1 + 𝐴1𝐵0 + 𝐵1    
𝜃3 = 𝐴2𝐴1𝐴0𝜃2 + 𝐴2𝐴1𝐵0 + 𝐴2𝐵1 + 𝐵2 

…      

𝜃𝑡+1 = 𝐴𝑡 . . 𝐴0𝜃𝑡 + 𝐴𝑡 . . 𝐴1𝐵0 + ⋯ + 𝐴𝑡𝐵𝑡−1 + 𝐵𝑡   (9) 

By defining  

𝐴𝑡
𝑖 : = 𝐴𝑡 … 𝐴𝑖    (10) 

𝐴𝑡
𝑡+1: = 𝐼𝑛×𝑛    (11) 

The previous equations can be written through induction as 

𝜃𝑡+1 = 𝐴𝑡
0𝜃𝑡 + 𝐴𝑡

1𝐵0 + ⋯ + 𝐴𝑡
𝑡𝐵𝑡−1 + 𝐴𝑡

𝑡+1𝐵𝑡  (12) 

Where: 𝐴𝑡: = [𝐼𝑛×𝑛 + 𝛼𝑡𝜙𝑡(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺]  

𝜃𝑡+1 = 𝐴𝑡
0𝜃𝑡 + ∑ 𝐴𝑡

𝑖+1𝑡
𝑖=0 𝐵𝑖   (13) 

Hence by defining the eligibility trace 𝑒𝑡  and eligibility 

matrix 𝑒̂𝑡 as: 

 

  𝑒̂𝑡: = 𝐴𝑡
0   (14) 

𝑒𝑡: = ∑ 𝐴𝑡
𝑖+1𝑡

𝑖=0 𝐵𝑖   (15) 

The updates rules for the learning weights can be written as: 

𝜃𝑡+1 = 𝑒̂𝑡𝜃𝑡 + 𝑒𝑡   (16) 

C. Incremental cummulative update rules at time steps 𝑡 =
𝑘 + 1 

Let us now deduce incremental rules for the eligibility trace 
𝑒𝑡 and eligibility matrix 𝑒̂𝑡. 

As for the eligibility matrix 𝑒̂𝑡, by induction we have:  

       𝑒̂𝑡 = 𝐴𝑡
0 = 𝐴𝑡𝐴𝑡−1 … 𝐴0 = 𝐴𝑡𝐴𝑡−1

0 = 𝐴𝑡𝑒̂𝑡−1.  

While for the eligibility trace 𝑒𝑡, we have 

 𝑒𝑡 = ∑ 𝐴𝑡
𝑖+1𝑡

𝑖=0 𝐵𝑖 = 𝐴𝑡 ∑ 𝐴𝑡−1
𝑖+1𝑡−1

𝑖=0 𝐵𝑖 + 𝐵𝑡 = 𝐴𝑡𝑒𝑡−1 + 𝐵𝑡 , 

since we have 𝑒𝑡−1 = ∑ 𝐴𝑡−1
𝑖+1𝑡−1

𝑖=0 𝐵𝑖. 

Hence our TD(0)-Replay algorithm can be written in the 
following order: 

𝐴𝑡 = [𝐼𝑛×𝑛 + 𝛼𝑡𝜙𝑡(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺]  (17) 

𝐵𝑡 =  𝛼𝑡𝜙𝑡𝑅𝑡+1  (18) 

𝑒𝑡 = 𝐴𝑡𝑒𝑡−1 + 𝐵𝑡   (19) 

𝑒̂𝑡 = 𝐴𝑡𝑒̂𝑡−1   (20) 

𝜃𝑡+1 = 𝑒̂𝑡𝜃𝑡 + 𝑒𝑡   (21) 

 

Where we have 𝐴0 = 𝑒̂0 = 𝐼𝑛×𝑛 , 𝐵0 = 𝛼0𝜙0𝑅1, 𝑒0 = 0𝑛×1. 

It should be noted that the algorithm uses just current time step 

information to apply a full replay of all past experience hence 

its significance lies in this particular characteristic.  



D. Efficeient Form of TD-Replay Forward 

TD-Replay in its previous form can be made more efficient 
by unpacking 𝐴𝑡  in the updates and replacing matrix 
multiplications in (19) and (20) with matrix to vector 
multiplication. 

As for the calculations of 𝑒𝑡  we have 𝑒𝑡 = 𝐴𝑡𝑒𝑡−1 + 𝐵𝑡 , 
hence 𝑒𝑡 = 𝑒𝑡−1 + 𝛼𝑡𝜙𝑡[(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺𝑒𝑡−1] + 𝐵𝑡  . Therefore 
the calculations of involves calculating the term (𝛾𝜙𝑡+1 −
𝜙𝑡)⊺𝑒𝑡−1  is a scalar (multiplying a vector 𝑒𝑡−1 by a vector 
transpose) which is more efficient than multiplying a squared 
matrix 𝐴𝑡 and a vector 𝑒𝑡−1.  

As for 𝑒̂𝑡  we have 𝑒̂𝑡 = 𝐴𝑡𝑒̂𝑡−1 , hence 𝑒̂𝑡 = 𝑒̂𝑡−1 +
𝛼𝑡𝜙𝑡[(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺𝑒̂𝑡−1] . It should be noted that [(𝛾𝜙𝑡+1 −
𝜙𝑡)⊺𝑒̂𝑡−1]  is a multiplication of a squared matrix 𝑒̂𝑡−1  by a  
vector (𝛾𝜙𝑡+1 − 𝜙𝑡)⊺  and is more efficient than multiplying 
two squared matrices 𝐴𝑡  and 𝑒̂𝑡−1  as before. The complexity 
still lies within this calculation which is of O(𝑛2) for space and 
time. The final algorithm can be written as: 

𝑒𝑡 = 𝑒𝑡−1 + 𝛼𝑡𝜙𝑡[(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺𝑒𝑡−1 + 𝑅𝑡+1] (22) 

𝑒̂𝑡 = 𝑒̂𝑡−1 + 𝛼𝑡𝜙𝑡[(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺𝑒̂𝑡−1] (23) 

𝜃𝑡+1 = 𝑒̂𝑡𝜃𝑡 + 𝑒𝑡   (24) 

Where we have 𝑒0 = 0𝑛×1,   𝑒̂0 = 𝐼𝑛×𝑛 

E. TD(0)-Replay Forward Algorithm 

Formula (22) -(24) define a set of update rules for an agent 
to be able to predict the value function for a specific task in some 
environment. The algorithm is given below.  

 

It should be noted that the agent is applying its current update 
through the normal delta update then it does a full replay again 
from first step up until the last step. Therefore, effectively the 
agent takes into consideration current step information (rewards 
and feature), updates the weights, replay all past experience and 
updates the weights accordingly, then finally re-update the 
weights of current step again according to the replay. This is 

more effective than replaying up until the step before the last. In 
the above algorithm the learning rate 𝛼 is assigned at every time 
steps 𝑡 according to ℓ(𝛼) which can be any scheme that reduces 
𝛼 (annealing for example). In practices if 𝛼 is chosen to be small 
enough then it can be left without updating it [3]. 

F. Comparing TD(0)-Replay with Other Replay Algorithms 

Clearly from a formative perspective the updates rules are 
different than those presented in From  [4]. From a fundamental 
inner working mechanism, the main differences between 
‘TD(0)-Replay’ and ‘Replaying TD(0)’ Algorithms [4] (and to 
some extent even the True online TD algorithms [5])  are in three 
essential characteristics. The first, is that the dynamics are 
different since in [4] the agent reflects back and uses the latest 
weights that resulted from previous step 𝑡  in calculating the 
targets 𝑈𝑘  in all consequent steps 𝑘 = 0 … 𝑡 . While, TD(0)-
Replay uses the weights 𝜃𝑡

𝑡 from past experience 𝑡 as an initial 
weights in step 𝑘 = 0, then it lets the consequent updates specify 

targets 𝑈𝑘  that has been calculated using the latest 𝜃𝑘
𝑡+1 in 

consequent steps 𝑘 = 1 … 𝑡. Secondly, the term 𝐴𝑡 is different 
since we have 𝐴𝑡 = [𝐼𝑛×𝑛 + 𝛼𝑡𝜙𝑡(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺]  instead of 
𝐴𝑡 = [𝐼𝑛×𝑛 − 𝛼𝑡𝜙𝑡(𝜙𝑡)⊺]. Lastly, the broader concept of weight 
updates with no reinitialisation makes our approach more 
general. In other words for this form of TD-Replay we do not 
reinitialise the weights in the start of each imaginary set of 
updates unlike[4][5] and [10]. Later we will relax this 
assumption to obtain a new algorithm. 

On the other hands, both TD(0)-Replay and Replaying 
TD(0), replay fully all previous experience in every steps 𝑡. Also 
both do not require storing any previous states or weights, hence 
are efficient. TD-Replay only requires storing the eligibility 
squared matrix 𝑒̂ and e (equivalent requirements for Replaying 
TD(0) updates is to store square matrix 𝐹  and 𝑏 ). The 
complexities of both our algorithm and their algorithms for 
storage and computation are of 𝑂(𝑛2)  in the worst case 
regardless of the number of steps. 

G. TD(0)-Replay and Re-Planning 

From another perspective, since we are updating the weights 
then reflecting back on the agent past experience to learn from 
it, it is only reasonable to consider our algorithm as a re-planning 
algorithm as well. 𝑒̂ can be considered to be trying to establish a 
prediction model for the feature vector that is capable of being 
changed according to the difference between the two consequent 

vectors (𝛾𝝓́ − 𝝓)
⊺
instead of predicting the next feature vector as 

in [3]. This makes sense since the TD(0)-Replay algorithm does 
not need to know the next feature, instead it needs to know how 
the features are changing. Similarly, it needs to know how the 
reward function will change through 𝑒 in order to come up with 
a planning scheme for the future replays of past experience 
according to the latest up to date weights and targets. It should 
be noted that TD(0)-Replay is different than an algorithm that 

utilises the residual gradient since the term (𝛾𝜙́ − 𝜙)
⊺
𝑒̂  is 

multiplied by 𝛼𝜙 not with (𝛾𝜙́ − 𝜙)
⊺
. 

 

Algorithm 1 TD(0)-Replay: Value Function Prediction 

INPUT: 𝛼, 𝛾, 𝜃𝑖𝑛𝑖𝑡 

𝜃 ←  𝜃𝑖𝑛𝑖𝑡   

Loop (over episodes): 

       Obtain initial S, 𝜙 

       𝒆̂ ← 𝐼𝑛×𝑛, 𝒆 ← 𝟎𝑛×1 
       While (terminal state has not been reached), do: 

              act according to the policy 

              observe next reward 𝑅 = 𝑅𝑡+1 , next state 𝑆́ = 𝑆𝑡+1  

              and its features 𝜙́ = 𝜙𝑡+1  

              𝛼 ← ℓ(𝛼)   

              𝜽 ← 𝜽 + 𝛼𝝓 ((𝛾𝝓́ − 𝝓)
⊺
𝜽 + 𝑅)  (𝛿 update) 

              𝒆 ← 𝒆 + 𝛼𝝓 ((𝛾𝝓́ − 𝝓)
⊺
𝒆 + 𝑅)  (Re-Playing/Re-Planning) 

              𝒆̂ ← 𝒆̂ + 𝛼𝝓 [(𝛾𝝓́ − 𝝓)
⊺
𝒆̂]  

              𝜽 ← 𝒆̂𝜽 + 𝒆  

              𝝓 ← 𝝓́  

     



H. TD(0)-Replay with Reinitialisation 

If we changed the mechanism of TD(0)-Replay so that it will 
reinitialise its weights in each imaginary step 𝑘 = 0,  to 𝜃0

𝑡 =
𝜃𝑖𝑛𝑖𝑡 ∀𝑡 then the update rules (17)-(20) stay the same, update rule 
(21) becomes 

𝜃𝑡+1 = 𝑒̂𝑡𝜃𝑖𝑛𝑖𝑡 + 𝑒𝑡  (25) 

And the next update is going to be  

𝜃𝑡+2 = 𝑒̂𝑡+1𝜃𝑖𝑛𝑖𝑡 + 𝑒𝑡+1   

In this case, since 𝜃𝑖𝑛𝑖𝑡 is fixed then we can make the updates 
rules much more efficient since we can store  𝑒̂𝑡𝜃𝑖𝑛𝑖𝑡 instead of 
𝑒̂𝑡. Hence, the update rule (20) can be changed into: 

𝑒̂𝑡𝜃𝑖𝑛𝑖𝑡 = 𝐴𝑡𝑒̂𝑡−1𝜃𝑖𝑛𝑖𝑡    (26) 

By defining 𝜃́𝑡 as a vector 

𝜃́𝑡: = 𝑒̂𝑡𝜃𝑖𝑛𝑖𝑡    (27) 

The update (28) can be written as: 

𝜃́𝑡 = 𝐴𝑡𝜃́𝑡−1    (28) 

Hence, these updates along with (22) define a new algorithm 
that can be written efficiently as 

𝑒𝑡 = 𝑒𝑡−1 + 𝛼𝑡𝜙𝑡[(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺𝑒𝑡−1 + 𝑅𝑡+1] (29) 

𝜃́𝑡 = 𝜃́𝑡−1 + 𝛼𝑡𝜙𝑡[(𝛾𝜙𝑡+1 − 𝜙𝑡)⊺𝜃́𝑡−1]   (30) 

𝜃𝑡+1 = 𝜃́𝑡 + 𝑒𝑡   (31) 

Where we have 𝑒0 = 0𝑛×1,   𝜃́0 = 𝜃𝑖𝑛𝑖𝑡  all as vectors. The 
algorithm is shown below.  

 

One important issue to realise in this algorithm is the 
initialisation to 𝜃́ ← 𝜃 in each episode. This is important so that 
the updates of 𝜃  are not lost. Also we have removed the (𝛿 

update steps because it has no effect since the weights are 
effectively being reinitialised in each step. This new algorithm, 
regardless of the policy boosting update step, is doing a special 
type of efficient replay that resemble the one done in True 
Online TD but it uses one step backup rather than the full interim 
λ-returns. Moreover, it is not a special case or equivalent to True 
Online TD(0), since True Online TD(0) is equivalent to normal 
TD(0), while obviously this algorithm is doing more updates 
than TD(0). This algorithm can be considered a counter part of 
TD(λ) but it is analytical and is also truly online because it has 
an equivalent online algorithm.  

Algorithms 1 and 2 have exact equivalent algorithms that are 
based on some form of repetitive TD updates. TD(0)-Replay can 
also be generalised by using the full interim λ-returns but this 
will be left for future work.  

We will call Algorithm 2 TD(0)-Replay(θ0) to recognise the 
fact that in each step it starts from the initial weight θ0= θinit, 
while the original TD(0)-Replay will be called TD(0)-Replay(θt) 
to reflect the fact that in each time step the it starts from the latest 
weights θt. 

I. Sarsa(0)-Replay Forward Algorithm 

As for control, we can straightforwardly build control 
algorithm on the grounds of TF-Replay. The agent would need 
to learn a suitable policy; the policy can be deduced out of the 
predicted value function for the agent. 

One way to build the policy learning model, based on the 
value prediction model, is as follows. A set of learning weights 
is provided for each action, given the set of actions are limited. 
The control features 𝜓𝑡 are going to have a cardinality of |𝜓𝑡| =
|𝒜| × 𝑛 where 𝑛 = |𝜙𝑡| (the state feature size) and |𝒜| is the 
number of actions that an agent can take at any time step 𝑡. The 
agent also would have the same size for its weights when using 
a linear model i.e. |𝒜| × 𝑛 weights. 

 In each time step, the set of features 𝜙𝑡(𝑎𝑡)  in 𝜓𝑡 (that 
corresponds to the current action 𝑎𝑡) will be populated with the 
values of the state features, while the rest 𝜙𝑡(𝑎𝑖): 𝑎𝑖 ≠ 𝑎𝑡  in 𝜓𝑡 
will be simply populated with 0. Hence the learning takes place 
on the set of weights corresponding to the current actions since 
the rest of the features are going to be 0.  

In order to deduce a suitable policy, the agent calculates the 
value function for each action and then picks the action with the 
highest value (most of the time, except for few times with small 
probability of 𝜀 where the agent picks a random action). This 
type of policy, called 𝜀-greedy policy, is a common policy to be 
followed, other policies such as soft-max is also possible. 

 In this paper we will follow an 𝜀-greedy policy. By doing 
the above scheme a similar algorithm can be written for the 
agent in order to learn a suitable policy instead of learning only 
to predict the value function of its current policy. According to 
the policy improvement theorem this scheme of improving the 
policy by picking the max action value then updating the 
prediction accordingly will lead to convergence to an optimal 
policy in the case of a linear model that is being updated 
according to the TD error, with some extra conditions on the 
learning rate [6][7] . The policy improvement algorithm for 

 

Algorithm 2 TD(0)- Replay(θ0) with Reinitialisation: Value Function 

Prediction(Policy Evaluation) 

INPUT: 𝛼, 𝛾, 𝜃𝑖𝑛𝑖𝑡 

𝜃 ←  𝜃𝑖𝑛𝑖𝑡   

Loop (over episodes): 

       Obtain initial S, 𝜙 

       𝜽́ ← 𝜃 , 𝒆 ← 𝟎𝑛×1 

       While (terminal state has not been reached), do: 

              act according to the policy 

              observe next reward 𝑅 = 𝑅𝑡+1 , next state 𝑆́ = 𝑆𝑡+1  

              and its features 𝜙́ = 𝜙𝑡+1  

              𝛼 ← ℓ(𝛼)   

              𝒆 ← 𝒆 + 𝛼𝝓 ((𝛾𝝓́ − 𝝓)
⊺
𝒆 + 𝑅)           (replaying) 

              𝜽́ ← 𝜽́ + 𝛼𝝓 ((𝛾𝝓́ − 𝝓)
⊺
𝜽́) 

              𝜽 ← 𝜽́ + 𝒆          

              𝝓 ← 𝝓́  

 

 

 



Sarsa(0)-Replay is given above. It should be noted that by 

convention 𝜓́ ← 0 if 𝑆́ is terminal. 

In order to improve the policy an agent can run either 
indefinitely or through a set of episodes that is specified in priori, 
where it stops when the learning slows down under a specific 
threshold. 

For our comparisons we will choose a specific number of 
episodes and compare the Route Mean Squared Error (RMSE) 
or the total number of steps to for those episodes. 

 

J. Dyna Full Planning Algorithm 

In order to compare our algorithms objectively we will 
compare TD(0)-Replay with a special version of Dyna Planning 
which we call Dyna Full Re-Planning, where the agent 
regenerate (reimagine) fully all previous samples in every time 
step in order to better plan what to do with them in case it sees 
them in the future.  

It seems reasonable that the concept of re-planning based on 
replaying past experience, works especially when the agent is 
expected to revisit some states due to its incompetence of 
reaching its terminal state or achieving its final goal (the case in 
lots of RL environment and tasks). The algorithm, shown above, 
is expensive because its complexity is going to be ∑ 𝑡𝑇

𝑡=1 =
𝑂(𝑇2) rather than 𝑂(𝑛2), where 𝑛 is the feature size and 𝑇 is 
the total number of visited states. T is normally >> n especially 
at the start if learning. This extreme case of planning is 
conceived as the maximum performance any Dyna Re-Planning 
algorithm can achieve. We will compare this algorithms 
performance with ours to show the real planning capabilities of 
TD-Replay algorithms. Similar to the other algorithms, a policy 
improvement algorithm can be devised based on this above. 

 

III. EXPERIMENTS DESIGN AND ALGORITHM TESTING  

We have tested our algorithm on a two test beds. The first is 
Random Walk which is a Markov Reward Process (MRP) to test 
the TD(0)-Replay prediction algorithm. MRPs are useful tools 
to isolate the prediction problem form the policy improvement 
(control) problems. The idea behind it is to assign an action, in 
each step, based on a transition probability that represents the 
dynamics of the environment. The actions are generated due to 
this probability only, there is no decision making taking place 
and the policy is stochastic with fix probability. We will use a 6-
state Random Walk environment, where the process starts form 
a middle state as in Fig. 1. The current state will be moved to the 
state in the left according to a probability of p, or to the right 
according to the probability 1-p. Once the process reaches the 
final state to the right the process stops and the agent is rewarded 
+1, otherwise if the process reaches the final state to the left, the 
process stops and the agent is rewarded with 0. All other 
transitions have a 0 reward. 

 

 

Fig. 1. Random Walk for 6 states. The true value for those states are their 

probabilty of reaching the far left terminal state assuming the agent start 

form each of them.  

We have set 𝛾 = 1 and we have used a very simple set of 
binary features that each represents a state. The features size is 
equal to the number of states. we have studies the effect of the 
learning rate for TD(0)-Replay in comparison with accumulate 
TD(λ) as a benchmark as well as with Dyna Full Re-Planning 
algorithms. Fig. 2 shows the results. It seems, due to its 
simplicity and effectiveness, the winner in this testbed is TD(0)- 
Replay(θ0),  in this simple prediction domain. 

 

 

Algorithm 3 Sarsa(0)- Replay(θt): Policy Improvement 

INPUT: 𝛼, 𝛾, 𝜃𝑖𝑛𝑖𝑡 

𝜃 ←  𝜃𝑖𝑛𝑖𝑡   

Loop (over episodes): 

       Obtain initial 𝑆, 𝜙 

       Select action 𝐴 based on State 𝑆 

       𝜓 ← features corresponding to 𝑆, 𝐴; (|𝜓| = 𝑛 × |𝒜| = 𝒩) 

       𝒆̂ ← 𝐼𝒩×𝒩 , 𝒆 ← 𝜽 ← 𝟎𝒩×1 

       While terminal state has not been reached, do: 

              take action 𝐴, observer next state 𝑆́ and reward 𝑅  

              𝑎 ← 𝜀-greedy(argmax𝑄́(𝐴𝑖) ← 𝜽⊺(𝒂𝒊)𝝓́)   (|𝑄́| = |𝒜|) 

              𝜓́ ← features corresponding to 𝑆́, 𝑎́ 

              𝛼 ← 𝑙(𝛼)   

              𝜽 ← 𝜽 + 𝛼𝝓 ((𝛾𝝍́ − 𝝍)
⊺
𝜽 + 𝑅)           (𝛿 update) 

              𝒆 ← 𝒆 + 𝛼𝝍 ((𝛾𝝍́ − 𝝍)
⊺
𝒆 + 𝑅)            (re-planning) 

              𝒆̂ ← 𝒆̂ + 𝛼𝝍 [(𝛾𝝍́ − 𝝍)
⊺
𝒆̂] 

              𝜽 ← 𝒆̂𝜽 + 𝒆  

              𝝍 ← 𝝍́ ; 𝐴 ← 𝐴́ 

 

 

 

 

Algorithm 4 Dyna Full Re-Planning: Extreme Planning for Policy 

Evaluation (expensive; for comparison only) 

INPUT: 𝛼, 𝛾, 𝜃𝑖𝑛𝑖𝑡 

𝜃 ←  𝜃𝑖𝑛𝑖𝑡   

Loop (over episodes): 

       Obtain initial S, 𝜙 

       𝐹 ← 𝟎𝑛×𝑛, 𝒆 ← 𝟎𝑛×1 𝑡 ← 1 

       While (terminal state has not been reached), do: 

              act according to the policy observe next reward 𝑅 , 𝑆́ and 𝜙́  

              𝜽 = 𝜽 + 𝛼[𝑅 + 𝜽⊺𝝓́ − 𝜽⊺𝝓]𝝓 

              𝑭 ← 𝑭 + 𝛼[𝛾𝝓́ − 𝑭𝝓]𝝓⊺           (F is to predict next state 𝝓́) 

              𝒃 ← 𝒃 + 𝛼(𝑅 − 𝒃⊺𝝓)𝝓             (b is to predict next reward R) 

              𝝓𝒕 ← 𝝓        (store visited state features, memory expensive) 

              For 𝑘 ← 1 𝑡𝑜 𝑡   (planning steps, computationally expensive)     

                    based on revisiting past states  

                    in order to obtain a better policy evaluation  

                𝝓́ ← 𝑭𝝓𝒌  

                 𝑅 ← 𝒃⊺𝝓𝒌 

                  𝜽 ← 𝜽 + 𝛼[𝑅 + 𝜽⊺𝝓𝒌
́ − 𝜽⊺𝝓𝒌]𝝓𝒌       

              𝑡 ← 𝑡 + 1  

 

 

D E A B C 

start

100000



 

Fig. 2. Comparison ofr RMSE of different algorithms for the Random Walk 

problem and different learning rates. Clearly TD(0)- Replay(θ0) 

performed best due to its simplicity and effectiveness in this prediciton 

problem, overcoming TD(0)- Replay(θ0) as well as True Online TD(λ), λ 
= 0.7, algorithms. 

The second test bed the traditional Dyna Maze environment 
with 9 × 6 cells (states). The main goal of a Dyna Maze is for 
an agent to be able to learn a policy that allows it to reach a 
specific goal state where it starts from a specific initial state 
(cell) in each episode. The episode ends when the agent reaches 
the goal square. Plenty of obstacles have been placed in the way 
from the Start state to the goal state. The agent is rewarded with 
-1 in each step wasted before reaching the goal while the reward 
for reaching the goal state is 0. An example of a simulated agent 
represented as a red square is shown in Fig. 3. 

 

Fig. 3. Dyna Maze example of the small environment  

Dyna Maze is traditionally used to test planning algorithms, 
we show here that Sarsa(0)-Replay exceeds the performance of 
other RL algorithms that involves planning. It actually competes 
head to head with very expensive re-planning algorithm, Dyna 
Full Re-Planning, that covers all previously visited states in each 
current state update. It should be noted that in the below 
experiments all results has been produced after averaging 20 
runs. We have used binary features to represent the states by 
linearising the domain. We have 54 states each represented as a 
vector with 54 features, and we set 𝛾 = .95. 

Fig. 4 shows the results for the Dyna Full Re-Planning 
algorithm mentioned before. It should be mentioned that this 
algorithm is included for comparison purpose only since it is 
expensive and can be impractical. Fig. 5 shows the comparison 
for Sarsa(0)-Replay(θt). 

 

Fig. 4. Compariosn of different learning steps for Dyna Full Re-Planning for 

control averaged over 20 runs for binary features. Clearly 0.9 is best and 
the algorithm converges very quickly after the 5th episode  in all cases, 

lower alpha gave more stability for the algorithm. But the algorithm is 

very slow and inefficent(Complexity is 𝑂(𝑇2) in terms of time and 
memory, T is the total numberof steps) because the agent resamples all of 

the so far visited states in every time step. 

 

Fig. 5. Compariosn of different learning steps for Sarsa(0)-Replay(θt) 

averaged over 20 runs for binary features.𝛼 = 0.1 gave best performance 
and the algorithm converges very quickly after the 5th episode in all cases, 

lower 𝛼  gave more stability for the algorithm. The algorithm is very 
efficent in terms of complexity although the agent is effectively resamples 
all of the so far visited states in every time step. 

As for the comparison of Sarsa(0)-Replay(θ0) and the 
traditional Sarsa(λ). Fig. 6 and Fig 7 show the comparisons 
results for different learning steps for each algorithm.  

  

Sarsa(0)-Replay(θt) 

Dyna Full Re-Planning 



 

Fig. 6. Compariosn of different learning steps for Sarsa(0)-Replay(θinit) 

averaged over 20 runs for binary features. 𝛼 = 0.1  is best and the 
algorithm converges almost as fast as Sarsa(0)-Replay(θinit) with even 

better complexity O(n). 

 

Fig. 7. Compariosn different learning steps for Accumlated Sarsa(λ=0.8) 

averaged over 20 runs for binary features. 𝛼 = 0.9 is associated with best 
perofrmance.   

Fig. 8 shows a comparison of TD(0)-Replay along with the 
other three algorithms. It is again clear that our algorithm 
exceeds the performance of other algorithms in this domain. It 
should be noted that Sarsa(0)-Replay(θ0) has the advantage of 
being very efficient with complexity of O(n) for each time step 
calculation, has no hyper parametrs to be set (such as λ), it is 
model free and effetive for planning and it has an exact online 
equivalence algorithm that it was build on it; making it also truly 
online. Fig. 9 shows the execution time for each algorithm. 
Clearly Sarsa(0)-Replay(θt) has very good execution time due to 
its efficiency in converging quickly to an optimal policy. It also 
can be seen that Dyna Full Planning is the most expensive as 
expected. Combining execution time along with how fast the 
algorithm reached the optimal policy, we conclude that Sarsa(0)-
Replay(θt) can be the method of choice for those application that 
needs to maximise the lived experience, such physical and real 
time system. 

 

 

Fig. 8. Final compariosn between Sarsa(0)-Replay(θt) [complexity is 𝑂(𝑛 ×
𝑚) m is the numebr of active features], Dyna Full Replanning for Control 

[complexity is 𝑂(𝑇2)  T is the number of episode step], Sarsa(0)-

Replay(θ0)and Sarsa(λ=0.8). Sarsa(0)-Replay(θt) has done almost the 
same job as Dyna Full Re-Planning with much better cost.in fact it was 

the fastest to converge after 4 episodes. This algorithm is efficent model-
free with reaosnable overhead and maximal performance. Next comes 

Sarsa(0)-Replay(θ0) which has achived very good results compared to the 

other algrithms including true Online TD with minimal overhead and very 
good performance. The learning rates have been chosen to maximise the 

perofrmance of each algorihtm as per the previous set of expeiments, λ is 

set to 0.8 based on previous studies [8]. It should be noted that better 

results may have been obtained by setting 𝛼 to even a lower values for 

both TD-Replay algorithms. 

 

Fig. 9. Compariosn different algorithms execution times.   

IV. CONCLUSION AND FUTURE WORK 

In this paper we have presented three new RL algorithms that 
allow for an efficient and full replay of all past experience in 
every step for a reinforcement learning agent life with 
reasonable and minimal overhead respectively. TD(0)-
Replay(θ0) seems good for prediction while Sarsa(0)-Replay(θt) 
seems best for control. When we add a delta update for the latter 
before the replay process the algorithm becomes suitable for 
planning although it is model-free.  

Sarsa(λ=0.8) 

Sarsa(0)-Replay(θ0) 

Sarsa (0)-Replay(θ0) 

Sarsa (0)-Replay(θt) 

Dyna Planning Full 

True Online TD(0.7) 
TD(0.7) 



The presented algorithms are suitable for real time and 
experience-expensive systems (where learning through 
experience is a hard and expensive process). We showed how to 
deduce a backward view directly form the forward view for the 
online case. We have contrasted the presented algorithms with 
other similar algorithms and showed the differences 
theoretically in terms of mechanics and practically through 
experiments. Our experiments confirm the potential for these 
method to be used in different domains and to overcome other 
existing replay and planning schemes. In the future we will be 
looking towards generalising our algorithm to have a general 
target Ui instead of the one-step target. This new target will 
change the form of the matrix A and special attention would be 
needed to deduce an efficient form for the full replay of past 
experience. Another avenue is to develop the algorithms for a 
non-linear model. Another avenue to develop the algorithms to 
become a multistep RL algorithms suitable for more general 
models include averaging [10][11]. 
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