
Citation:
Sun, J and Zhu, G and Sun, G and Liao, D and Li, Y and Sangaiah, AK and Ramachandran, M
and Chang, V (2018) A Reliability-Aware Approach for Resource Efficient Virtual Network Function
Deployment. IEEE Access. ISSN 2169-3536 DOI: https://doi.org/10.1109/ACCESS.2018.2815614

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/4874/

Document Version:
Article (Accepted Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/4874/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2815614, IEEE Access

A Reliability-Aware Approach for Resource Efficient Virtual
Network Function Deployment

Jian Sun, Guangyang Zhu, Gang Sun, Dan Liao, Yao Li, Arun Kumar Sangaiah,
Muthu Ramachandran, Victor Chang

Abstract— Network function virtualization (NFV) is a
promising technique aimed at reducing capital expenditures
(CAPEX) and operating expenditures (OPEX), and improving
the flexibility and scalability of an entire network. In contrast to
traditional dispatching, NFV can separate network functions
from proprietary infrastructure and gather these functions into a
resource pool that can efficiently modify and adjust service
function chains (SFCs). However, this emerging technique has
some challenges. A major problem is reliability, which involves
ensuring the availability of deployed SFCs, namely, the
probability of successfully chaining a series of virtual network
functions (VNFs) while considering both the feasibility and the
specific requirements of clients, because the substrate network
remains vulnerable to earthquakes, floods and other natural
disasters. Based on the premise of users’ demands for SFC
requirements, we present an Ensure Reliability Cost Saving
(ER_CS) algorithm to reduce the CAPEX and OPEX of
telecommunication service providers (TSPs) by reducing the
reliability of the SFC deployments. The results of extensive
experiments indicate that the proposed algorithms perform
efficiently in terms of the blocking ratio, resource consumption,
time consumption and the first block.

Keywords—Network Function Virtualization, Service Function
Chains, Reliability, Economical networking.

I. INTRODUCTION
Telecommunication service providers (TSPs) desire flexible

and cost-efficient methods for dispatching network services as
market demands increase. Network function virtualization
(NFV) provides an opportunity to efficiently and dynamically
deploy service function chains (SFCs) [1–6] without modifying
dedicated infrastructure, which is costly and has become
complex over time. Due to advances in NFV, network operators
can implement SFCs to guarantee services that are both elastic

and agile. Thus, reconfiguring the network topology when
necessary is more convenient and less expensive. The basic
idea behind NFV is to decouple these network functions (e.g.,
firewall, WAN optimizers, intrusion prevention systems,
switches, and proxies) from the underlying customized devices
and accomplish equivalent network functions via
software-based functions running in virtual machines (VMs)
deployed on commercial off-the-shelf (COTS) devices. As
shown in Fig. 1, one software based virtual machine can
perform several network functions. Traditionally, TSPs use
middleware—usually based on dedicated hardware devices or
software—to deploy network functions. Although TSPs offer
valuable advantages in terms of function provision, such offers
consume a non-negligible fraction of network operators' capital
expenditures (CAPEX) and operating expenditures (OPEX) [7–
9, 13, 16]. Thus, using NFV technology, telecom operators can
not only deploy network services using a cost-efficient
approach but also satisfy users’ various requirements, which
are typically referred to as service level agreements (SLAs) for
networking.

RadioSwitchFirewall NAT DHCP

...

Virtual Machine

Fig. 1 Functions that one virtual machine can accomplish

Virtualization began in the 1970s; since then, it has attracted
significant attention for network domains [10-19]. Many
problems derive from the concept of virtualization such as the
virtual network mapping problem detailed in [10–13], and the
migration of VMs described in [15-19]. NFV enables network
providers to implement scalable network services in an agile
manner, meaning that TSPs are not inconvenienced by having
to add or remove network services in the physical layer. Instead,
they can simply implement new functions or delete redundant
functions in a virtualized environment (which is in the
virtualization layer). Thus, this topic has been extensively
investigated by industry and academia as the potential future of
networking [20-25]. Many studies of virtual network function
(VNF) placement have been performed to better serve clients
and reduce expenditures [25-30]. Some research challenges

 This research was partially supported by the National Natural Science
Foundation of China (61571098), Fundamental Research Funds for the
Central Universities (ZYGX2016J217), the 111 Project (B14039).
 Jian Sun, Guangyang Zhu, Dan Liao and Yao Li are with Key Lab of
Optical Fiber Sensing and Communications (Ministry of Education), UESTC,
Chengdu, China (e-mail: sj, liaodan, ly@uestc.edu.cn).
 Gang Sun is with Key Lab of Optical Fiber Sensing and Communications
(Ministry of Education) and Center for Cyber Security, UESTC, Chengdu,
China (e-mail: gangsun@uestc.edu.cn).

Arun Kumar Sangaiah is with School of Computing Science and
Engineering, VIT, India (e-mail: arunkumarsangaiah@gmail.com).
 Muthu Ramachandran is with Leeds Beckett University, United Kingdom
(muthuuk@yahoo.co.uk).

Victor Chang is with Xi’an Jiaotong Liverpool University, Suzhou, China
(e-mail: victorchang.research@gmail.com).

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2815614, IEEE Access

exist, including NFV management, performance, and
orchestration for networking [20, 24]. These challenges provide
valuable opportunities because resolving such issues helps
NFV to become more mature and applicable.

Since the emergence of NFV, standard descriptions have
been developed by the European Telecommunications
Standards Institute (ETSI) and some studies have investigated
the architecture of NFV [35-39]. A simple architecture of NFV
is depicted in Figure 2. The virtualization layer that contains all
the virtual machines and the physical layer that contains all the
substrate nodes have compute, storage and network resources
to serve clients NFV environments. The network function
virtualization infrastructure (NFVI) is a network service that
has been referred to as a service function chain and consists of a
series of VNFs. One VNF represents one real network function,
as depicted in Fig. 1.

Compute Storage Network

Virtualisation Layer

Physical Layer

vCompute vStorage vNetwork

...
Virtual Machines

NFVI (Network Function Virtualisation Infrastructure)

VNF 1

VNF 2

VNF 3

VNF 4
DNS

NAT

Router

Firewall

Service Function Chain

Fig. 2 Abstract architecture of NFV

Because the reliability of NFV is critical and is a prerequisite
for successfully executing SFCs and satisfying SLAs,
improving reliability while reducing the cost of network
providers is a research objective in academic and industrial
arenas. Thus, the more network services that are mapped onto
the substrate network, the greater the revenue of TSPs.

Similarly, the high-performance demands of users will
influence the cost of TSPs.

In this paper, we investigate how to improve the reliability
demand for users by mapping users’ requests onto the substrate
network. We propose an ER algorithm to solve this problem.
We consider that high request reliability is not always needed
for TSPs. High reliability requires TSPs to increase CAPEX
and OPEX. If we can properly reduce the reliability, we can
also reduce CAPEX and OPEX. We first propose the algorithm
ER_CS (based on ER) that works in conjunction with the load
balancing of the substrate network. However, by analyzing the
deployment scheme in ER_CS, we discover that it does not
appear to be the best scheme. Therefore, we further propose the
ER_CS_ADJ algorithm to adjust the deployment scheme by
minimizing SFC resource consumption in the physical network.
We conduct massive simulations on arbitrary topologies to
verify the effectiveness of these algorithms. From the
simulations and results, we determine that our network
algorithms are profitable in terms of resource cost, block ratio
and deployment time. The main contributions in this paper are
as follows:

� The primary contribution of this paper is the development
of the ER_CS algorithm, which reduces the cost of
resources (both computing resources and bandwidth
resources), lightening the load on the substrate network.
Using these uncomplicated operations, we can help TSPs
reduce user costs and energy consumption.
Simultaneously, service prices can decrease due to sharing
and analysis of network intelligence, forming an
economical strategy and trade-off for both TSPs and
users.

� While restricting access to computing resources and
bandwidth resources and relaxing reliability requirements
for users, we can describe the reliability-aware VNF
deployment problem as a mathematical optimization
problem. Decreasing the reliability of SFC appropriately
during deployment is the essence of our work.

� We propose an algorithm called ER to ensure the
reliability of the deployment scheme, through which we
can satisfy users’ demands. We deploy VNF nodes in the
SFC one by one, deploying one VNF on one substrate
node. Then, the algorithm finds another unused substrate
node that has the maximum reliability to the prior node
and deploys the next VNF node on this substrate.

� We adjust the ER_CS algorithm to efficiently decrease the
resource allocation for the substrate network in NFV
environments.

The remainder of this paper is organized as follows. In
Section 2, we analyze related studies. In Section 3, we describe
the problem in this research with some formulations. In Section
4, we propose our heuristic algorithm and provide line-by-line
details. A performance evaluation of our proposed algorithm is
presented in Section 5, and Section 6 concludes this work.

II. RELATED WORK
To satisfy various requests from users, service providers are

eager to seek a flexible, scalable, agile, effective,

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2815614, IEEE Access

resource-efficient and energy-efficient scheme for placing
VNFs. Ensuring service reliability while finding an economical
and resource-efficient solution to the problem of VNF
deployment is the goal of this work.

Numerous studies are relevant to NFV, including how to
determine and place network functions. In [2], the authors
proposed an -based algorithm to provide an efficient method for
solving the VNF placement problem. However, this work only
simulates the performance of the convergence time and the
performance of the acceptance rate for the proposed algorithm
and two other provided algorithms and does not consider the
resource consumption and transmission delay of the request.
Niels Bouten et al. [3] presented a set of affinity and
anti-affinity constraints that can be used by TSPs to define
placement constraints. They proposed a semantic conflict
mechanism to evaluate SFC requests that filters invalid
mechanisms to reduce the mapping time. Po-Wen Chi et al. [32]
designed a heuristic NFV deployment algorithm to allocate,
place, and dispatch the traffic for VNFs. They highlight the
relationship between the number of VNFs and east-west traffic
growth, which they claim is at the root of the VNF placement
problem.

Some researchers have considered the problem of improving
NFV performance, for example, by optimizing the stringent
delay constraints. In [5], the VNF deployment problem was
solved by considering the optimization of inter-cloud traffic
and response time in a multi-cloud network in NFV
environments. The response time includes both link delay and
compute delay. In [10], the authors focused on the VNF
scheduling and resource allocation problems as well as on
transmission and processing delays. They aimed to minimize
the total network function scheduling latency with strict delay
constraints by developing a network algorithm. In [14], the
authors considered that current NFV platforms preclude
operating at the network edge. They proposed the Glasgow
Network Function, which is a platform based on container
VNFs that runs and orchestrates lightweight container VNFs,
reduces core network utilization and provides lower latency.
The authors of [33] conducted experiments to study the impact
of virtualization on network delay; their simulations show that
end-to-end latency will increase in a virtualized environment.

The performance of NFVs with regard to resource allocation
or consumption and the acceptance ratio when mapping VNFs
has been investigated for years. A comprehensive resource
allocation survey was conducted in [21]. In [28], the authors
studied the VNF placement and scheduling problem in the radio
access network (RAN) domain. They formulated this problem
as an integer linear programming (ILP) problem and proposed a
heuristic algorithm to solve it. They demonstrated that their
algorithm performed better regarding the acceptance ratio, the
cost of deployment, and the utilization of the nodes and links.
Windhya Rankothge et al. [29] proposed a genetic algorithm to
optimize resource allocation. They demonstrated its efficiency
in optimizing resource allocation via three network function
centers (NFCs) proposed by the authors.

Some applications have addressed optical networks [8–9, 22,
30]. The authors studied how to jointly optimize the VNF

placement and spectrum assignment, which is a controversial
topic. In [8–9], the common goal was to cost-effectively realize
VNF placements. As previously stated, finding economical
schemes for VNF placement has become a common objective
for both TSPs and users. The author of [16] recognized that
reducing CAPEX/OPEX was the main goal. In addition to the
resource-efficient VNF placement problem, power or
energy-efficient service request placement is a controversial
research topic [18].

Other research projects have focused on issues such as the
availability of NFV. Due to potential failures (such as node or
link failures) that can be caused by earthquakes, floods, or
malfunctions such as power outages, many researchers have
expressed interest in the field of high availability (HA) to
protect data or network functions. Unlike some schemes, which
aim to solve general VN mapping problems for unicast services
(which includes two procedures: virtual node and link mapping)
such as [10] and [11], Xiujiao Gao et al. proposed the MILP
model in [13] to maximize the availability using max-min
fairness for multicast VN mapping services. The authors of [34]
proposed an efficient framework for evaluating the reliability of
NFV deployments; however, they did not investigate how to
adjust NFV deployments based on their framework. The
proposed framework can be used only to evaluate deployment
schemes but was not intended to improve the schemes based on
its results. Al-Shuwaili et al [35] proposed a novel approach for
improving the robustness of the substrate equipment by
employing channel coding to improve the robustness of the
physical devices in NFV architecture.

Although numerous studies have considered the reliability of
deployed SFCs, few studies have considered the needs of users
while also considering the TSP revenues. In other words, few
studies have focused on building an economical network
environment. Therefore, we propose the ER-CS algorithm to
reduce reliability under the premise of guaranteeing users’
demands while also considering economical VNF deployments.

III. PROBLEM STATEMENT AND FORMULATION
A. Network Model

i) Substrate Network: A substrate network consists of the
underlying nodes that are directly connected via physical links
between the nodes. Each physical node has a set of service
functions with resource attributes, and every physical link has a
corresponding bandwidth capacity. We represent the
underlying network as the graph GP = (VP, EP), where VP = {v1,
v2 … v|VP|} is the set of substrate nodes, |VP| represents the
number of physical nodes, EP = {e1, e2,…,e|EP|} is the set of
edges, and |EP| denotes the number of physical links.

ii) SFC Request: An SFC request typically consists of
multiple virtual nodes interconnected by virtual links. These
virtual nodes have specific network functions. Different SFCs
may have the same function and are likely to share the same
underlying physical nodes, which reduces network resource
usage. This paper does consider the functionality of VNF in
SFC, assuming that a virtual machine can be mapped to
different network functions as long as the conditions imposed

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2815614, IEEE Access

by the underlying resources are satisfied. A virtual machine
corresponds to a node in the underlying layer. Here, we use SR
= (NS, LS, s, t) as the SFC request. NS = {f1, f2 … f|NS|} is a
collection of network functions, and |NS| represents the number
of functions of the request. LS = {l1, l2 … l|LS|} denotes the set of
SFC links, and |LS| is the number of service links involved in
the request. The symbols “s” and “t” in SR respectively denote
the source and destination nodes of the request and represent
two nodes in the underlying network.

iii) SFC mapping: The process of mapping SFC requests to
physical networks is called SFC mapping. The resources and
functions of the assigned underlying nodes must meet the needs
of the virtual nodes. The bandwidth capacity of allocated
physical links should be no less than the required bandwidth
capacity of the virtual links. In this paper, the achieved SFC
deployment scheme can be represented as PS = (V S

N, E S
L). V S

N =
V S

t + V S
f represents the collection of all underlying nodes

involved in the deployment scheme, which consists of two parts:
V S

t represents the deployed SFC’s forwarding node set, and V S
f

represents the function node set. E S
L is the set of deployed

paths for each service link.

Fig. 3 Example of mapped VNFs

B. Problem Statement
As described in Figure 3, an SFC request consists of several

VNFs, a source node s and a destination node t. Each of these
VNFs represents a network function, as described above. The
thick blue dashed line represents another scheme whose
reliability is 0.94 and resource consumption is 202, called
service function forwarding path 1 (SFP1). The thick red dotted
line represents one deployment scheme for the request whose

reliability is 0.97 and resource consumption is 232, called
service function forwarding path 2 (SFP2). We assume that the
demand reliability of users is 0.90. The thin blue dashed line,
which represents a VNF in SFC, is deployed on a substrate
network in SFP1. The red line will yield the best experience for
the users, whereas the blue line will generate a better balance
for the network providers because the network can hold more
requests, which allows greater potential profits for TSPs. The
goal of this paper is to find a deployment scheme that both
satisfies users’ reliability demands and minimizes resource
consumption to reduce costs (i.e., resource consumption and
load balancing).

This paper focuses on solving the reliability-aware problem,
in which SFCs are mapped to the substrate network in a NFV
scenario. The high reliability requirements of users usually
demand expensive and high-performance physical equipment
provided by operators, which significantly increases the cost
for TSPs and prevents users from enjoying high-quality
network services at low prices. To achieve effective and
reliable network services while deploying SFC requests, we
need to deploy VNFs to more reliable nodes and attempt to
maximize the total availability of the deployment of SFC. This
goal can be notated as follows:

max

 , 0 1.0

 , 0 < r 1.0

p p
S S

p N p L

p

p

S
v e

v V e E

p P v

p P e

R r r

v V r

e E

∈ ∈

⎧ ⎫⎪ ⎪
= ×⎨ ⎬

⎪ ⎪⎩ ⎭
∀ ∈ < <

∀ ∈ <

∏ ∏

 (1)	

where rvp and	 rep represent the reliability of the nodes and links
deployed for SFC requests, respectively, vp denotes any node in
the underlying network, and ep denotes any link in the
underlying network. The reliability of each node and link in the
underlying network is denoted by a positive number less than 1
according to the constraint behind the optimization objective.
This paper estimates the total reliability of SFC by calculating
the product of the reliability of each substrate node and link
involved in a	SFC deployment scheme. 	

Due to limited resources, considering only the reliability of
SFC may cause enormous resource consumption and reduce the
mapping success rate. Therefore, the paper aims to solve the
contradiction between the reliability and the bandwidth
consumption, maintaining a balance between resource
consumption and service reliability to ensure the effective use
of resources.

The problem involves designing algorithms to obtain the
optimal SFC deployment scheme to satisfy users' high
reliability requirements while effectively reducing resource
consumption. In this paper, we address three specific problems:

Problem 1: A specific number of SFC requests, physical
nodes and links with certain reliability, computing resources
and bandwidth, and the source and destination nodes of each
SFC are given. The objective is to find the optimum scheme for
SFC mapping PS that maximizes the total availability of every
SFC. In this scheme, each physical node is matched to only one
function for each SFC but it can be regarded as a switch node
while calculating PS.

A

B C

D

E

F

(b) mapped SFC on the substrate network

G

H

s

t

VNF 1 VNF 2 VNF 3

Service Function Forwarding Path 1 (SFP1)

Service Function Forwarding Path 2 (SFP2)

A VNF is mapped on a substrate node in SFP1

A VNF is mapped on a substrate node in SFP2

s VNF 1 VNF 2 VNF 3 t

(a) Service Function Chain request

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2815614, IEEE Access

Problem 2: The SFC requests are the same as those
described in Problem 1. To guarantee a certain degree of
reliability, the objective is to achieve an ideal scheme of SFC
mapping PS using a load balancing method. Each node is
matched to only one function in each SFC.

Problem 3: Based on Problem 2, we consider resource
consumption. When given the optimal scheme provided by
Problem 2, the objective is to find one feasible strategy to
improve this scheme in terms of reducing resource
consumption.		
C. Variable Definitions and Constraints
(1) Variable definitions:

We define the variables and parameters in this paper as
follows:

� RS = {SR1, SR2,…, SRn }: the request set;
� GP: the topology graph GP = (VP, EP) represents the

physical network;
� RU: the reliability request of a user;
� s

t tv V∈ : the deployed SFC’s forwarding node;
� s

f fv V∈ : the node onto which the VNF is deployed;

�
i

r
vw : The remaining computing resources of vi, i Pv V∈ ;

� o
vi

r
e
m : the remaining bandwidth resource of the out-degree

edge of vertex vi;
�

i

s
le : the physical edge in the SFC deployment path of the

link li in the physical network,
i Sl L∈ ;

�
i

s
lλ : the SFC deployment path of the link li in the physical

network;
� Vremain: the set of remaining vertexes that are not deployed

as VNFs in the physical graph,
remain PV V∈ ;

� sov
vr : the total reliability from node v to the source node,

Pv V∀ ∈ ;
� siv

vr : the total reliability from node v to the destination
node;	

� v∞ : a node that does not exist in the substrate graph;
� e

sov : the source node of edge e in the substrate graph;
� e

siv : the destination node of edge e in the substrate graph.

(2) Network resource constraints:
Different virtual links may be mapped onto the same

underlying physical path and share the underlying physical
resources. However, they are independent, and the same
bandwidth resources cannot be simultaneously employed by
different virtual links.
(3) Node or link capacity constraints:

, , s i ini

r s S
n n t i Sv

w w v V n N≥ ∈ ∈ (2)

, s
nir

i f

r total
v Pv

r RS n V

w w v V
∈ ∈

≤ ∀ ∈∑ ∑ (3)

, s i i ili

r s s S
l l l Le

m m e Eλ≥ ∈ ∈ (4)

, s
lir

i L

r total
e Pe

r RS l E

m m e E
∈ ∈

≤ ∀ ∈∑ ∑ (5)

1 , if VNF is deployed on node
0 , otherwisef

fv
n

n v
ζ

⎧
= ⎨
⎩

 (6)

1 , if node is forwarding node of the request
0 , otherwiset

v
n

v
ζ

⎧
= ⎨
⎩

(7)

0 1,
f

P

v
n f S

v V
n Nζ

∈

≤ ≤ ∀ ∈∑ (8)

0 1
t f

v v
n nζ ζ≤ + ≤ (9)

0 1, , (,) ,
i j

v v
n n S Pi j i j N v Vζ ζ≤ + ≤ ≠ ∀ ∈ ∀ ∈ (10)

The constraints (2) and (3) ensure the computing resources of
the substrate node. Constraint (2) indicates that the remaining
computing capacity of the physical node which the VNF is
deployed onto must be greater than the required computing
resources of the VNF node. For all substrate nodes, constraint
(3) ensures that the sum of the computing resources required by
all the VNF instances from various SFC requests deployed on it
does not exceed its availability resource. Constraints (4) and (5)
represent bandwidth resource constraints. Constraint (4)
denotes that the remaining bandwidth resource of the physical
edge eli satisfies the bandwidth demand of the virtual link li in
the SFC. For all substrate end-to-end paths, Constraint (5)
guarantees that the sum of the bandwidths required by all the
virtual links deployed to it does not exceed its available
capacity. A virtual node or link can be successfully mapped to a
physical node or link of the underlying network only when both
the computing capacity and bandwidth capacity conditions are
satisfied. When a SFC request arrives, the physical network
must allocate the corresponding nodes or links that satisfy the
node and link resource requirements. When the physical
network resources are insufficient, the SFC request should be
rejected or delayed.

Formulas (6) and (7) mathematically describe the VNF nodes,
forwarding nodes and substrate nodes. If a VNF node is
mapped onto a substrate node, the value of the variable in (6) is
one. If a substrate node is a forwarding node, the value of this
variable in (7) is one. Constraint (8) ensures that any VNF node
can be deployed on only one or no nodes in the physical
network. Constraint (9) indicates that the nodes in the physical
network can be deployed only as either function nodes or
forwarding nodes. The underlying nodes cannot be both
function nodes and forwarding nodes. In (10), no two different
VNF nodes in a SFC request can be deployed on the same
physical node.

IV. ALGORITHM DESIGN
In this section, we describe our proposed algorithms for the

reliability-aware SFC mapping problem. We present three main
algorithms: the heuristic algorithm ER, based on reliability
guarantee; the heuristic algorithm ER-CS, which is based on

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2815614, IEEE Access

load balancing while ensuring reliability and reducing the cost
of TSPs; and the bandwidth-optimizing algorithm ER_CS_ADJ.
We assume that the reliability of all the substrate nodes and
links are known and can be used to compute the reliability of
the complete mapping path.
A. Reliability-guaranteed Algorithm ER

In a NFV environment, many virtual networks share one
substrate network; consequently, the failure of one substrate
link or substrate node may cause massive failures in virtual
networks, have a large-scale impact, and reduce network
stability. Therefore, we propose a heuristic algorithm referred
to as ER based on the reliability-aware SFC mapping problem.

The ER algorithm aims to improve the reliability of an SFC
mapping scheme. In the ER algorithm, we map the VNFs in an
SFC one by one. One VNF mapped to one substrate vertex and
the virtual link between two VNFs may be a either a single
substrate link or a path composed of several links. When one
VNF is deployed, we choose the substrate vertex that enables
the entire scheme to achieve maximum reliability based on the
premise that the vertex has sufficient computing resources and
bandwidth resources relative to the last VNF mapping vertex to
satisfy the SFC demand. The pseudo-code is presented in
Algorithm 1.

Algorithm 1: Ensure reliability (ER)
Input: 1. Substrate network GP = (VP, EP);

2. SFC request SR = (NS, LS, s, t).
Output: SFC deployment scheme PS, vso = s, vsi = t.
1: Initialization: let Vremain = VP;
2: for all VNF nf in SR, do
3: if nf is not the last VNF of SFC, then
4: initiateAllVertex() and let so

so so

v
v vr r= ;

5: Call URSO procedure 1 to update the information;
6: let

rκ = −∞and tempv v∞= ;
7: for each vertex v in VP, do
8: if

siv v≠ and
f

r
v nw w≥ and sov

r vrκ < , then

9: , vsov
r v tempr vκ = = ;

10: end if
11: end for
12: if

rκ = −∞ , then
13: return null;
14: end if
15: generateScheme(rκ , nf)
16: else
17: repeat the process in line 4 and 5, si

si si

v
v vr r=

18: call URSI procedure 2 to update the information;
19: for each vertex v in VP , do
20: if

f

r
v nw w≥ and /si sov v

r v v vr r rκ < × , then

21: /si sov v
r v v vr r rκ = × , tempv v= ;

22: end if
23: end for
24: repeat the process in line 12 to line 15;
25: end for

When receiving an SFC request, including its source and
destination, the ER algorithm deploys the VNFs one by one and
simultaneously maps the related virtual links. The initial source
in this algorithm is the source vertex of one SFC. When one
VNF is deployed, the source is set to the mapping vertex of this
VNF to become the source of the next VNF. When mapping
VNFs, the mapping method for the last VNF of an SFC request
differs from the mapping method for previous VNFs in the ER
algorithm.

For all the VNFs other than the last one, the ER algorithm
initializes the reliability of all vertexes to the source to be
negative infinity and the reliability of the source vertex to be its
vertex’s reliability. Then, it initializes their prior vertex on the
path to the source to be an inaccessible node (i.e., a node not in
this network). Next, it calls procedure 1—update all reliability
to source (URSO)—to update the reliabilities of all nodes to the
SFC source, based on the premise that the bandwidth of each
link on the path from the source to these nodes satisfies the SFC
request. In lines 6 to 11, we initialize the maximum reliability
variable and the substrate node that has the maximum reliability
to map the VNF, and traverse all the nodes in the network
topology graph to find the variable defined in line 6, which
cannot be the sink vertex, and has sufficient computing
resources to satisfy the SFC demand. We generate the mapping
scheme and map the VNF onto the vertex vtemp with the
reliability calculated in the previous procedure. Then,
information about the path from the source to the vtemp is
recorded in URSO. If the reliability variable remains negative
infinity, we are unable to find a mapping vertex that satisfies the
demands for mapping this VNF.

To map the last VNF in an SFC we must not only consider
the mapping vertex’s reliability to the previous VNF mapping
vertex but also its accessibility and reliability at the destination
node of the SFC. Similar to the previously described algorithm,
we update the reliabilities of all nodes to the SFC’s destination
after updating the reliabilities to the SFC’s source. When
computing the reliability of the mapping vertex of the last VNF,
the computational formula is expressed as follows:

/si sov v
r v v vr r rκ = × , (11)

where the first symbol to the right of equation (11) denotes the
reliability to the sink node of the SFC, the second symbol
denotes the reliability to the previous VNF’s mapping vertex in
the substrate network, and the last symbol denotes the mapping
vertex’s own reliability.

Next, we present the pseudo-code for Procedure 1.

Procedure 1: Update all reliability to source (URSO) values
Input: 1. Vertex set Vremain;

2. Source vertex vso; (i-1)th SFC link li-1
Output: Updated GP
1: let temp

so sov v= ;
2: while

remainV ≠∅
3: for all out-degree edges ei of vtemp

so , do
4: if

i i

r
e lm m≥ and ie

si remainv V∈ then

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2815614, IEEE Access

5: if ()so so
temp e ei iiso s si i

v v
ev v v

t r r r r= × × > and t > RU，then

6: let so
ei
si

v
v
r t= , and vtemp

so be the prior vertex of ie
siv on

whose path to the source;
7: end if
8: end if
9: end for
10: find the maximal reliability (to the source vertex) of vertex

vmax in Vremain;
11: vtemp

so = vmax;
12: delete vertex v in Vremain;
13: end while

Procedure 1 updates the reliabilities of all nodes to the source
node (i.e., the substrate node mapped by the previously mapped
VNF). Similar to [40], we create the vertex set Vremain, which
initially added all vertexes VP of the network graph GP in
Algorithm 1. We set vtemp

so to be the mapping vertex of the
previously deployed VNF (initially, it is the source node of
SFC). While Vremain is not empty, we traverse all the out-degree
edges of vtemp

so to determine whether the edge satisfies the SFC’s
bandwidth demand and the user’s reliability request. The
formula in line 4 indicates that the remaining bandwidth
resource of edge ei satisfies the bandwidth demand of li in the
SFC. The subscript of the last symbol in (12) denotes the
destination vertex of ei. The formula for computing the
reliability of the node in line 4 to the source vertex of SFC is
expressed as follows:

so
temp eiiso si

v
ev v

t r r r= × × , (12)

where the first symbol on the right-hand side of equation (12)
represents the reliability of vtemp

so to the source of the SFC, the
second symbol denotes the reliability of edge ei, and the third
symbol represents the reliability of the node in line 4. In lines
4–8, we estimate whether the edge’s remaining bandwidth
resource satisfies the demand of link li, and whether its
destination vertex is in Vremain. If the requirement is satisfied, we
continue to compute t and determine whether t satisfies the
user’s reliability request RU. Then, we update the variable
described in line 6 and record the prior vertex on its path to the
source. After traversing all the out-degree edges of vtemp

so , we
assign vmax, which has the maximal reliability to the source, to v
temp
so . Finally, we delete vertex vmax from Vremain. Because we
record the prior vertex on its path to the source, we eventually
obtain a complete path from the source to the destination from
Algorithm 1.

Procedure 2 (i.e., update all reliability to sink (URSI)) is
similar to Procedure 1; the only difference is that rather than
computing the reliability to the source, it computes the
reliability to the destination.
B. Reliability-guaranteed Algorithm ER-SC based on Load
Balancing

To maximize the reliability, SFC functions should be
deployed on vertexes with high reliability, which may cause
imbalanced loading in the network. Because the network
resources are limited and loads characteristically increase

suddenly, imbalanced loading can waste resources and cause
network congestion and instability, which will reduce TSP
profits. Based on the reliability-guarantee algorithm ER, we
introduce the idea of load balance and present the
reliability-guarantee heuristic algorithm ER-RB, which is based
on load balance.

In this thesis, the objective of load balance is to assign
service flow transport to links with lighter loads to reduce the
possibility of congestion caused by load imbalance. The
following mathematical model describes load improvement:

1 1 , so

i
o o ov ii i vi

v
v i Pr r

e ev e

m v V
w m

δ
∈

= + + ∀ ∈∑ (13)

where the denominator of the first fraction represents the
remaining computing resources of vi, eo

i denotes the set of the
out-degree edge of vertex vi, the denominator in the second
fraction denotes the remaining bandwidth resource of the
out-degree edge of vertex vi, and the last symbol denotes the
sum of the bandwidth cost of the path from vertex vi to the
source, vso. The smaller the value of δ (load factor) is, the
lighter the network load is. As expressed by the formula, the
smaller the load factor is, the larger the vertex’s remaining
computing resource is, and the larger the remaining bandwidth
resource of the out-degree is, the smaller the total bandwidth
cost of the vertex to the source is. To achieve load balance, we
should prefer the vertexes with smaller load factors for
deploying SFC functions.

Therefore, we adjust the ER algorithm to compute theδ of
all the vertexes that satisfy the criteria based on satisfying RU,
the node’s computing resource demands and the link’s
bandwidth resource demands. We add a comparison of the
values of δ to line 5 in URSO to find the vertexes with
smaller δ values to host VNFs. Thus, we obtain a new
deployment scheme that considers load balance based on the
scheme generated by ER.
C. Bandwidth Optimization Algorithm ER_SC_ADJ

The SFC mapping problem can be divided into two parts:
SFC virtual node mapping and SFC virtual link mapping. SFC
virtual node mapping requires that the substrate vertexes satisfy
the virtual nodes’ resource constrains and function demands,
whereas SFC virtual link mapping requires that the substrate
links of the substrate path satisfy the bandwidth resource
demands of the virtual links. One virtual link in SFC can be
mapped onto just one substrate link or onto several substrate
links (one substrate path): the selection depends on the
substrate vertexes onto which the VNF's virtual link
connections are deployed. If we map the virtual link with the
highest bandwidth demand onto the shortest possible substrate
path, the bandwidth cost of this SFC mapping scheme can be
reduced considerably.

Therefore, we improve the ER_SC algorithm through
bandwidth cost reduction, and we propose the bandwidth
optimizing algorithm ER_SC_ADJ. We skillfully adjust the
VNFs’ mapping position based on the mapping scheme
generated by ER_SC to lengthen the mapping paths of virtual
links with low bandwidth-demands and shorten the mapping
path of the virtual links with high bandwidth demands;

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2815614, IEEE Access

consequently, we reduce the bandwidth cost. The pseudocode
for the algorithm is shown in Algorithm 2.

Algorithm 2: ER_SC adjust (ER_SC_ADJ)
Input: SFC deployment scheme PS.
Output: Adjusted SFC deployment scheme PS.
1:

moveχ = findMinLink(SR);
2: if

moveχ = 0, then
3: return;
4: end if
5: while

moveχ > 0
6: for all nf need to be removed, do
7: for all forwarding vertex v between two related

function vertex, do
8: if

f

r
v nw w≥ and min

remain requestB B≥ , then

9: deploy nf on vertex v;
10: end if
11: end for
12: end for
13:

moveχ --;
14: end while

The function findMinLink(SFC) finds the virtual link with
the minimum bandwidth request in the SFC. The VNFs behind
this link are the VNFs that must be moved; we denote these as
χmove. When moving these VNFs, if we start at the first VNF,
the previous VNFs may not have sufficient options to map,
which may cause failure. Thus, we need to traverse the VNFs in
reverse order. When we adjust the mapping position of one
VNF, we traverse all the forwarding vertexes on the path
between this VNF and the updated VNF in reverse order. For
example, when moving the last VNF, we traverse forward from
the first forwarding vertex prior to the destination of the SFC.
When moving the penultimate VNF, the deployment position
of the last VNF is determined; thus, we traverse forward from
the deployment position of the last VNF. The remaining steps
can be performed in the same manner.

In line 8, while traversing the forwarding vertexes, we need
to estimate whether the vertex’s remaining computing resource
satisfies the VNF’s demand and whether the bandwidth
resource of the links between this vertex and the two VNFs’
deployed immediately before and immediately after it satisfy
the request. When we find a forwarding vertex that can satisfy
these requirements, we deploy the VNF on this vertex as the
new function vertex and deploy the old function vertex (the one
on which this VNF was previously deployed) as the forwarding
vertex. Finally, we obtain a new SFC deployment scheme.

Note that the ER_SC_ADJ algorithm only adjusts the
positions of forwarding vertexes and function vertexes locally
based on the existing deployment scheme: the deployment path
of the SFC has not changed. The reliability of the new SFC
deployment scheme remains the same, which satisfies the user
requirements. ER_SC_ADJ simply increases the utilization of
bandwidth and reduces costs.

V. SIMULATION RESULTS AND ANALYSIS
This section describes extensive simulation experiments

conducted to evaluate the performance of the proposed
algorithms. The simulation environment is introduced, and
several performance parameters in the simulation are described,
including i) block rate, ii) reliability, iii) resource consumption,
iv) time consumption, and (v) the CDF of the first block. The
simulation results are presented and analyzed.
A. Simulation Environment

To evaluate the schemes described in Section IV, we
implemented an event simulation in Java. To demonstrate the
applicability of the algorithm for all circumstances, we employ
the Waxman 2 model from the Georgia Tech Internetwork
Topology Models (GT-ITM) [41] to randomly generate small
and large network instances as substrate networks. The small
substrate network includes 20 nodes and the large substrate
network contains 100 nodes. The connectivity probability of
both the small networks and large networks is 0.7. The diameter
of the small network is 6, whereas the diameter of the large
network is 30. Considering that the time consumption for
deploying a SFC request in the small network is small, we
chose to evaluate the approaches in this 20-node network using
a machine with an Intel Core 2 CPU and 4 GB of RAM. For the
100-node network, the simulations were solved using an Intel i7
CPU with 9.8 GB of RAM. The computing capacity of every
underlying node takes a random integer in the range [5, 10], and
the bandwidth capacity of each node is distributed within the
range [20, 50]. The bandwidth resources of the virtual links are
distributed within the range [5, 20], and the computing capacity
of the functional nodes ranges within [1, 2].
B. Comparisons with Other Algorithms

During the simulation process, to compare and evaluate the
performance of the three algorithms, we modified Compute
followed by Network Load Balance (CNLB) [19] to the Link
Mapping First (LMF) algorithm [27] without changing its core
concept to be the compared algorithm in this paper. In the LMF
approach, the virtual links are selected in descending order in
terms of the requested bandwidth. The link with the largest
requested bandwidth has priority for being mapped onto the
physical links that have the largest amount of remaining
computing resources. This approach is referenced in [27],
where it is employed as a basic deployment algorithm.
C. Simulation Results and Analysis

Fig. 4 shows the simulation results of the SFC block rate
when deploying SFC requests for these four algorithms. We
vary the number of functions of each SFC from 3 to 12 and
randomly generate 10,000 SFC requests for each number of
functions. The block rate denotes the proportion of the failed
SFC deployment requests in all 10,000 SFC requests. As shown
in the graph, for the three algorithms presented in this paper,
especially ER_SC and ER_SC_ADJ, the performance of the
block rate is better than that of the LMF algorithm. The
comparisons shown in 2(a) and 2(b) indicate that the three
algorithms have a distinct advantage in block rate as the

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2815614, IEEE Access

network size increases. The ER_SC and ER_SC_ADJ
algorithms introduce the load balancing theory, which aims to
transfer the service flow to links with light loads and reduce the
possibility of congestion caused by unbalanced traffic
distribution. Based on the premise that the availability satisfies
the RU, nodes with light loads are more likely to be chosen as
function nodes, which prevents the emergence of hot spots in
the underlying network. This result reduces the blocking rate
and guarantees a high deployment success rate for SFCs.

As the length of the SFC increases, the probability of SFC
deployment failure also increases. In Fig. 4(a), as the lengths of
the SFC requests increase, the block rate initially remains stable
and then increases for different ranges starting at a length of
approximately 6. As shown in Fig. 4(b), prior to a certain point
almost all the tested algorithms can successfully deploy the
SFC requests. The reliability of both the physical nodes and
links is distributed within the range of [0, 1]. The larger the
number of physical nodes is onto which an SFC request is
deployed and the smaller the availability resulting from the
SFC request, the greater the likelihood is that SFC deployment
will fail to satisfy RU and be successful. Thus, the block rates of
SFC requests are related to not only the size of the underlying
network but also to the length of an SFC request.

2 4 6 8 10 12
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Bl
oc

ki
ng

 R
at

io

Length of SFC

 ER
 ER_CS
 ER_CS_ADJ
 LMF

(a) Small simulation topology

2 4 6 8 10 12
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Bl
oc

ki
ng

 R
at

io

Length of SFC

 ER
 ER_CS
 ER_CS_ADJ
 LMF

(b) Big simulation topology

Fig. 4 Block rates of SFCs in different topology

2 4 6 8 10 12
0.940

0.945

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

R
el

ia
bi

lit
y

Length of SFC

 ER
 ER_CS
 ER_CS_ADJ
 LMF

(a) Small simulation topology

2 4 6 8 10 12
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

R
el

ia
bi

lit
y

Length of SFC

 ER
 ER_CS
 ER_CS_ADJ
 LMF

(b) Big simulation topology

Fig. 5 Reliability of SFCs in different topologies

Fig. 5 shows the simulation results of the SFC reliability for
SFC mapping algorithms, which were achieved by calculating
the reliability product of all underlying network nodes and links
traversed by the SFC deployment scheme. As shown in Fig. 5,
the ER algorithm has the best reliability performance among
the four algorithms. However, the total reliability performance
of the ER_SC algorithm and the ER_SC_ADJ algorithm is
slightly worse than the reliability performance of the LMF
algorithm. When solving the SFC mapping problem, the ER
algorithm deploys service chains with the primary objective of
reliability maximization, which yields excellent performance in
terms of reliability, while for the ER_SC algorithm and
ER_SC_ADJ algorithm, we ensure only the basic RU.

During the process of load balancing, to enable network
functions to be deployed onto nodes with light loads, parts of
the virtual links may be mapped to the underlying path using
more hops, which decreases the reliability of SFC requests. The
two algorithms are adjusted based on ER, which reduces the
reliability. Although it may affect the user experience, the total
reliability is capable of satisfying user requirements.
Consequently, TSP costs will be reduced, which is the purpose
of this study.

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2815614, IEEE Access

6 7 8 9 10 11 12
90

100

110

120

130

140

150

160

170

180

190

200

210

R
es

ou
rc

e
C

on
su

m
pt

io
n

Length of SFC

 ER
 ER_CS
 ER_CS_ADJ
 LMF

(a) Small simulation topology

2 4 6 8 10 12

60

80

100

120

140

160

180

200

220

240

260

R
es

ou
rc

e
C

on
su

m
pt

io
n

Length of SFC

 ER
 ER_CS
 ER_CS_ADJ
 LMF

(b) Large simulation topology

Fig. 6 Average resource consumption (i.e., computing resource and
bandwidth resource) of SFCs in different topologies

The results of the bandwidth overhead for SFC requests,
shown in Fig. 6, reveal that the three algorithms proposed in
this paper have an advantage over the LMF scheme in terms of
bandwidth consumption, and that the ER_SC_ADJ algorithm
performs the best. Under the same conditions, lower bandwidth
overhead improves network resource utilization because the
mapping positions of the VNFs for the ER_SC_ADJ algorithm
are adjusted to lengthen the mapping paths of virtual links have
low bandwidth-demands and shorten the mapping paths of
virtual link that have high bandwidth demands while
maintaining the total reliability achieved from the stationary
ER_SC. In the small network, the difference among the
bandwidth cost of three types of algorithms is small due to the
relatively small size of the underlying network. Although
adjustments were made based on the ER_SC algorithm, these
adjustments are slight; thus, the gap is not distinct. However,
the results are more distinct in the 100-node network.

Because the three algorithms proposed in this paper are
similar in terms of resource consumption, especially in the
small simulation topology, they are almost parallel. From a
large number of tests, we determine that a line graph cannot
adequately highlight the distinctions among the four algorithms.
Thus, we separately employ a bar chart to show these data. If

we start the X-axis at three, the histogram will be very dense
and affect the sharpness of the data. Consequently, we employ a
different method to display the data, as shown in Fig. 6(a).

2 4 6 8 10 12 14 16

0

2

4

6

8

10

2 4 6 8 10 12
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Ti
m

e
C

on
su

m
pt

io
n

(m
s)

Length of SFC

 ER
 ER_CS
 ER_CS_ADJ
 LMF

(a) Small simulation topology

2 4 6 8 10 12 14 16

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

2 4 6 8 10 12
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ti
m

e
C

on
su

m
pt

io
n

(m
s)

Length of SFC

 ER
 ER_CS
 ER_CS_ADJ
 LMF

(b) Large simulation topology

Fig. 7 Average time consumed when SFCs are deployed

The time consumption of each SFC mapping algorithm was
evaluated by gradually increasing the number of service
function chain requests, as shown in Fig. 7. The average time
overhead of the SFC requests deployed by the three algorithms
proposed in this paper is substantially lower than the average
time overhead of the LMF algorithm. As the size of the
underlying network increases, the difference in time
consumption between the proposed schemes and the LMF
algorithm increases from two orders of magnitude to a
minimum of four orders of magnitude; thus, the performance
advantages of the three types of algorithms become more
distinct. This occurs because they are heuristic algorithms: all
we need to do is evaluate a suitable path node from a certain
node to the destination node. Conversely, in the LMF algorithm,
each deployment of a virtual link requires traversing all the
physical nodes to find node pairs that satisfy the requirements
of node computing capacity and the shortest path between the
node pairs given the bandwidth capacity conditions. Thus, the
search efficiency of the LMF algorithm is relatively low, and
the algorithm running time is relatively long.

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2815614, IEEE Access

We executed the algorithms for 10,000 trials for each SFC
length and show the cumulative distribution function (CDF) of
the first block, as discussed in [19]. Because computing this
indicator on the big topology requires a vast amount of
time—and considering that the small topology can also
describe this problem—we chose only the small topology for
this simulation. The Y-axis denotes the number of SFCs that
deployed successfully without any failure. The lower the
number is, the worse the performance is. When the length of the
SFC ranges from 5 to 8, the four algorithms appear to fluctuate.
When the length is greater, the LMF algorithm shows a greater
disadvantage. These results can be inferred from the prior
indicators. With a poor success rate and higher resource
consumption, LMF will fail at a faster rate.

4 5 6 7 8 9 10 11 12 13 14 15 16

0

500

1000

1500

2000

2500

3000

3500

8 9 10 11 12
10

20

30

40

50

60

70

80

C
D

F
of

 th
e

Fi
rs

t B
lo

ck
in

g

Length of SFC

 ER
 ER_CS
 ER_CS_ADJ
 LMF

Fig. 8 CDF of first block over the different lengths of SFCs

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we identified a problem: the high reliability

requests of users reduce the CAPEX and OPEX of TSPs. Thus,
we proposed ER to guarantee the basic reliability needs of users.
However, considering the revenue of the TSPs, we discover
that network imbalances will influence the request success rate
and the resource utilization rate. Therefore, we proposed
ER_SC, which is based on ER and considers the load balance
factor. Although this algorithm achieved substantial progress,
we discovered that the scheme used for ER_SC can be
improved. Thus, we proposed ER_SC_ADJ. The simulation
results indicate that ER_SC_ADJ achieves the objectives of this
study. We demonstrated that our network algorithms can
successfully work in a range of test environments and satisfy
user demands. Our future work will include integrating our
approach with data and network security to ensure that our
services are robust and resilient [42-45]. We will integrate data
fusion with MapReduce and advanced frameworks to
accelerate network virtualization, data processing and analysis
in big data networked environments [46]. We plan to develop
business intelligence as a service to enable scientists and users
to track changes in real time and understand all the
interpretations within a few seconds [47], including the use of
advanced big data network algorithms and services [48].

REFERENCES
[1] Hendrik Moens, Filip De Turck. Customizable Function Chains:

Managing Service Chain Variability in Hybrid NFV Networks.
IEEE Transactions on Network and Service Management, 13(4),
pp: 711-724, 2016.

[2] Jin Li, Yinghui Zhang, Xiaofeng Chen, Yang Xiang. Secure
attribute-based data sharing for resource-limited users in cloud
computing. Computers & Security, 72, pp: 1-12, 2018.

[3] Ping Li, Jin Li, Zhengan Huang, Chong-Zhi Gao, Wen-Bin Chen,
Kai Chen. Privacy-preserving outsourced classification in cloud
computing. Cluster Computing, pp: 1-10, 2017.

[4] Jin Li, Jingwei Li, Xiaofeng Chen, Chunfu Jia and Wenjing Lou.
Identity-based Encryption with Outsourced Revocation in Cloud
Computing. IEEE Transactions on Computers, 64(2), pp:
425-437, 2015.

[5] Ping Li, Jin Li, Zhengan Huang, Tong Li, Chong-Zhi Gao,
Siu-Ming Yiu, Kai Chen. Multi-key privacy-preserving deep
learning in cloud computing. Future Generation Computer
Systems, 74, pp: 76-85, 2017.

[6] Michael Till Beck, Juan Felipe Botero. Scalable and coordinated
allocation of service function chains. Computer Communications,
102, pp: 78-88, 2017.

[7] Jun Wu, Zhifeng Zhang, Yu Hong, et al. Cloud radio access
network (C-RAN): a primer. IEEE Network, 29(1), pp: 35-41,
2015.

[8] Jin Li, Zheli Liu, Xiaofeng Chen, Xiao Tan, Duncan S. Wong.
L-EncDB: A Lightweight Framework for Privacy-Preserving
Data Queries in Cloud Computing. Knowledge-based Systems,
79, pp: 18-26, 2015.

[9] Yinghui Zhang, Xiaofeng Chen, Jin Li, Duncan S. Wong, Hui Li,
Ilsun You. Ensuring attribute privacy protection and fast
decryption for outsourced data security in mobile cloud
computing. Information Sciences, 379, pp: 42-61, 2017.

[10] N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, Virtual
Network Embedding with Coordinated Node and Link Mapping.
IEEE International Conference on Computer Communications
(INFOCOM), pp: 783-791, 2009.

[11] Jingwei Li, Jin Li, Dongqing Xie and Zhang Cai. Secure Auditing
and Deduplicating Data in Cloud. IEEE Transactions on
Computers, 65(8), pp: 2386-2396, 2016.

[12] Zhengan Huang, Shengli Liu, Xianping Mao, Kefei Chen, and Jin
Li. Insight of the Protection for Data Security under Selective
Opening Attacks. Information Sciences, 412-413, pp: 223-241,
2017.

[13] Xiujiao Gao, Zilong Ye, et al. Virtual Network Mapping for
Multicast Services With Max–Min Fairness of Reliability.
IEEE/OSA Journal of Optical Communications and Networking,
7(9), pp: 942-951, 2015.

[14] Jin Li, Xiaofeng Chen, Mingqiang Li, Jingwei Li, Patrick Lee,
Wenjing Lou. Secure Deduplication with Efficient and Reliable
Convergent Key Management. IEEE Transactions on Parallel and
Distributed Systems, 25(6), pp: 1615-1625, 2014.

[15] Gang Sun, Dan Liao, Dongcheng Zhao, Zichuan Xu, Hongfang
Yu. Live Migration for Multiple Correlated Virtual Machines in
Cloud-based Data Centers. IEEE Transactions on Services
Computing, pp: 1-14, 2016.

[16] Jin Li, Yatkit Li, Xiaofeng Chen, Patrick Lee, Wenjing Lou. A
Hybrid Cloud Approach for Secure Authorized Deduplication.
IEEE Transactions on Parallel and Distributed Systems, 26(5),
pp: 1206-1216, 2015.

[17] Gang Sun, Dan Liao, Vishal Anand, Dongcheng Zhao, Hongfang
Yu. A New Technique for Efficient Live Migration of Multiple

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2815614, IEEE Access

Virtual Machines. Future Generation Computer Systems, 55, pp:
74-86, 2016.

[18] Gang Sun, Vishal Anand, Dan Liao, Chuan Lu, Xiaoning Zhang,
and Ning-Hai Bao. Power-efficient provisioning for online virtual
network requests in cloud-based datacenters. IEEE Systems
Journal, 9(2), pp: 427-441, 2015.

[19] Jin Li, Xiaofeng Chen, Xinyi Huang, Shaohua Tang and Yang
Xiang, Mohammad Mehedi Hassan and Abdulhameed Alelaiwi.
Secure Distributed Deduplication Systems with Improved
Reliability. IEEE Transactions on Computers, 64(12), pp:
3569-3579, 2015.

[20] ETSI Industry Specification Group (ISG) NFV. (Dec. 2014).
ETSI GS NFV-MAN 001: Network Functions Virtualization
(NFV): Management and orchestration. [Online]. Available:
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.
01.01_60/gs_NFV-MAN001v010101p.pdf.

[21] Jin Li, Xinyi Huang, Jingwei Li, Xiaofeng Chen, Yang Xiang.
Securely Outsourcing Attribute-based Encryption with
Checkability. IEEE Transactions on Parallel and Distributed
Systems, 25(8), pp: 2201-2210, 2014.

[22] Xiaofeng Chen, Jin Li, Jian Weng, Jianfeng Ma, Wenjing Lou.
Verifiable Computation over Large Database with Incremental
Updates. IEEE Transactions on Computers, 65(10), pp:
3184-3195, 2016.

[23] Weiwei Lin, Ziming Wu, Longxin Lin, Angzhan Wen, Jin Li. An
Ensemble Random Forest Algorithm for Insurance Big Data
Analysis. IEEE Access, 5, pp: 16568-16575, 2017.

[24] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, et al. Network
Function Virtualization: State-of-the-Art and Research
Challenges. IEEE Communications Surveys & Tutorials, 18(1),
pp: 236-262, 2016.

[25] Jin Li, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-an,
and Heng Ye. Significant permission identification for machine
learning based android malware detection. IEEE Transactions on
Industrial Informatics, DOI: 10.1109/TII.2017.2789219.

[26] Ya Li, Guangrun Wang, Lin Nie, Qing Wang. Distance Metric
Optimization Driven Convolutional Neural Network for Age
Invariant Face Recognition. Pattern Recognition. 75, pp: 51-62,
2018.

[27] Zilong Ye, Xiaojun Cao, Jianping Wang, et al. Joint Topology
Design and Mapping of Service Function Chains for Efficient,
Scalable, and Reliable Network Functions Virtualization. IEEE
Network, 30(3), pp: 81-87, 2016.

[28] L. Fan, X. Lei, N. Yang, T. Q. Duong, and G. K. Karagiannidis.
Secure Multiple Amplify-and-Forward Relaying with Cochannel
Interference. IEEE Journal of Selected Topics in Signal
Processing, 10(8), pp: 1494-1505, 2016.

[29] Jin Li, Xiaofeng Chen, Fatos Xhafa, Leonard Barolli. Secure
Deduplication Storage Systems Supporting Keyword Search.
Journal of Computer and System Sciences. 81(8), pp: 1532-1541,
2015.

[30] Wenjian Fang, Menglu Zeng, Xiahe Liu, et al. Joint Spectrum and
IT Resource Allocation for Efficient VNF Service Chaining in
Inter-Datacenter Elastic Optical Networks. IEEE
Communications Letters, 20(8), pp: 1539-1542, 2016.

[31] Marcelo Caggiani Luizelli, Weverton Luis da Costa Cordeiro,
Luciana S. Buriol, et al. A fix-and-optimize approach for efficient

and large scale virtual network function placement and chaining.
Computer Communications, 102, pp: 67-77, 2017.

[32] Zheli Liu, Yanyu Huang, Jin Li, Xiaochun Cheng, Chao Shen.
DivORAM: Towards a Practical Oblivious RAM with Variable
Block Size. Information Sciences, 2018.

[33] Dejene Boru Oljira, Anna Brunstrom, Javid Taheri, et al. Analysis
of Network Latency in Virtualized Environments. IEEE Global
Communications Conference (GLOBECOM), pp: 1-6, 2016.

[34] Yuan-Gen Wang, Guopu Zhu, and Yun-Qing Shi. Transportation
spherical watermarking. IEEE Transactions on Image Processing,
27(4), pp: 2063- 2077, 2018.

[35] Alex F.R. Trajano, Marcial P, et al. Two-phase load balancing of
In-Memory Key-Value Storages using Network Functions
Virtualization (NFV), Journal of Network and Computer
Applications, 69, pp: 1-13, 2016.

[36] Qun Lin, Hongyang Yan, Zhengan Huang, Wenbin Chen, Jian
Shen, Yi Tang. An ID-based linearly homomorphic signature
scheme and its application in blockchain. IEEE Access. DOI:
10.1109/ACCESS.2018.2809426.

[37] Marouen Mechtri, Chaima Ghribi, Oussama Soualah, et al. NFV
Orchestration Framework Addressing SFC Challenges. IEEE
Communications Magazine, 55(6), pp: 16-23, 2017.

[38] Hyuncheol Kim, Seunghyun Yoon, Hongseok Jeon, et al. Service
platform and monitoring architecture for network function
virtualization (NFV). Cluster Computing, 19, pp: 1-7, 2016.

[39] Chengwei Wang, Oliver Spatscheck, Vijay Gopalakrishnan, et al.
Toward High-Performance and Scalable Network Functions
Virtualization. IEEE Internet Computing, 20(6), pp: 10-20, 2016.

[40] Donald E.Knuth. A generalization of Dijkstra’s algorithm.
Information Processing Letters, 6(1), pp: 1-5, 1977.

[41] Kenneth L. Calvert, Ellen Zegura. Gt-itm: Georgia tech
internetwork topology models (Software). Georgia Tech,
[Online]. Available:
http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/gt-itm.tar.gz.

[42] Shadi A. Aljawarneh, Ali Alawneh, Reem Jaradat. Cloud security
engineering: Early stages of SDLC. Future Generation Computer
Systems, 74, pp: 385-392, 2016.

[43] Shadi Aljawarneh, Muneer Bani Yassein, We’am Adel Talafha. A
resource-efficient encryption algorithm for multimedia big data.
Multimedia Tools and Applications, pp: 1-22, 2017.

[44] Shadi A. Aljawarneh, Raja A. Moftah, Abdelsalam M. Maatuk.
Investigations of automatic methods for detecting the
polymorphic worms signatures. Future Generation Computer
Systems, 60, pp: 67-77, 2016.

[45] Victor Chang, Muthu Ramachandran. Towards achieving data
security with the cloud computing adoption framework. IEEE
Transactions on Services Computing, 9(1), pp: 138-151, 2016.

[46] Gang Sun, Victor Chang, Guanghua Yang, et al. The
cost-efficient deployment of replica servers in virtual content
distribution networks for data fusion. Information Sciences, pp:
1-21, 2017.

[47] Victor Chang. The business intelligence as a service in the cloud.
Future Generation Computer Systems, 37, pp: 512-534, 2014.

[48] Victor Chang, Gary Wills. A model to compare cloud and
non-cloud storage of big data. Future Generation Computer
Systems, 57, pp: 56-76, 2016.

