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A Reliability-Aware Approach for Resource Efficient Virtual 
Network Function Deployment 

Jian Sun, Guangyang Zhu, Gang Sun, Dan Liao, Yao Li, Arun Kumar Sangaiah, 
Muthu Ramachandran, Victor Chang 

Abstract— Network function virtualization (NFV) is a 
promising technique aimed at reducing capital expenditures 
(CAPEX) and operating expenditures (OPEX), and improving 
the flexibility and scalability of an entire network. In contrast to 
traditional dispatching, NFV can separate network functions 
from proprietary infrastructure and gather these functions into a 
resource pool that can efficiently modify and adjust service 
function chains (SFCs). However, this emerging technique has 
some challenges. A major problem is reliability, which involves 
ensuring the availability of deployed SFCs, namely, the 
probability of successfully chaining a series of virtual network 
functions (VNFs) while considering both the feasibility and the 
specific requirements of clients, because the substrate network 
remains vulnerable to earthquakes, floods and other natural 
disasters. Based on the premise of users’ demands for SFC 
requirements, we present an Ensure Reliability Cost Saving 
(ER_CS) algorithm to reduce the CAPEX and OPEX of 
telecommunication service providers (TSPs) by reducing the 
reliability of the SFC deployments. The results of extensive 
experiments indicate that the proposed algorithms perform 
efficiently in terms of the blocking ratio, resource consumption, 
time consumption and the first block. 

Keywords—Network Function Virtualization, Service Function 
Chains, Reliability, Economical networking. 

I. INTRODUCTION 
Telecommunication service providers (TSPs) desire flexible 

and cost-efficient methods for dispatching network services as 
market demands increase. Network function virtualization 
(NFV) provides an opportunity to efficiently and dynamically 
deploy service function chains (SFCs) [1–6] without modifying 
dedicated infrastructure, which is costly and has become 
complex over time. Due to advances in NFV, network operators 
can implement SFCs to guarantee services that are both elastic 

and agile. Thus, reconfiguring the network topology when 
necessary is more convenient and less expensive. The basic 
idea behind NFV is to decouple these network functions (e.g., 
firewall, WAN optimizers, intrusion prevention systems, 
switches, and proxies) from the underlying customized devices 
and accomplish equivalent network functions via 
software-based functions running in virtual machines (VMs) 
deployed on commercial off-the-shelf (COTS) devices. As 
shown in Fig. 1, one software based virtual machine can 
perform several network functions. Traditionally, TSPs use 
middleware—usually based on dedicated hardware devices or 
software—to deploy network functions. Although TSPs offer 
valuable advantages in terms of function provision, such offers 
consume a non-negligible fraction of network operators' capital 
expenditures (CAPEX) and operating expenditures (OPEX) [7–
9, 13, 16]. Thus, using NFV technology, telecom operators can 
not only deploy network services using a cost-efficient 
approach but also satisfy users’ various requirements, which 
are typically referred to as service level agreements (SLAs) for 
networking.  

RadioSwitchFirewall NAT DHCP
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Virtual Machine

 
Fig. 1 Functions that one virtual machine can accomplish 

Virtualization began in the 1970s; since then, it has attracted 
significant attention for network domains [10-19]. Many 
problems derive from the concept of virtualization such as the 
virtual network mapping problem detailed in [10–13], and the 
migration of VMs described in [15-19]. NFV enables network 
providers to implement scalable network services in an agile 
manner, meaning that TSPs are not inconvenienced by having 
to add or remove network services in the physical layer. Instead, 
they can simply implement new functions or delete redundant 
functions in a virtualized environment (which is in the 
virtualization layer). Thus, this topic has been extensively 
investigated by industry and academia as the potential future of 
networking [20-25]. Many studies of virtual network function 
(VNF) placement have been performed to better serve clients 
and reduce expenditures [25-30]. Some research challenges 
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exist, including NFV management, performance, and 
orchestration for networking [20, 24]. These challenges provide 
valuable opportunities because resolving such issues helps 
NFV to become more mature and applicable.  

Since the emergence of NFV, standard descriptions have 
been developed by the European Telecommunications 
Standards Institute (ETSI) and some studies have investigated 
the architecture of NFV [35-39]. A simple architecture of NFV 
is depicted in Figure 2. The virtualization layer that contains all 
the virtual machines and the physical layer that contains all the 
substrate nodes have compute, storage and network resources 
to serve clients NFV environments. The network function 
virtualization infrastructure (NFVI) is a network service that 
has been referred to as a service function chain and consists of a 
series of VNFs. One VNF represents one real network function, 
as depicted in Fig. 1. 
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VNF 4
DNS
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Fig. 2 Abstract architecture of NFV 

Because the reliability of NFV is critical and is a prerequisite 
for successfully executing SFCs and satisfying SLAs, 
improving reliability while reducing the cost of network 
providers is a research objective in academic and industrial 
arenas. Thus, the more network services that are mapped onto 
the substrate network, the greater the revenue of TSPs. 

Similarly, the high-performance demands of users will 
influence the cost of TSPs. 

In this paper, we investigate how to improve the reliability 
demand for users by mapping users’ requests onto the substrate 
network. We propose an ER algorithm to solve this problem. 
We consider that high request reliability is not always needed 
for TSPs. High reliability requires TSPs to increase CAPEX 
and OPEX. If we can properly reduce the reliability, we can 
also reduce CAPEX and OPEX. We first propose the algorithm 
ER_CS (based on ER) that works in conjunction with the load 
balancing of the substrate network. However, by analyzing the 
deployment scheme in ER_CS, we discover that it does not 
appear to be the best scheme. Therefore, we further propose the 
ER_CS_ADJ algorithm to adjust the deployment scheme by 
minimizing SFC resource consumption in the physical network. 
We conduct massive simulations on arbitrary topologies to 
verify the effectiveness of these algorithms. From the 
simulations and results, we determine that our network 
algorithms are profitable in terms of resource cost, block ratio 
and deployment time. The main contributions in this paper are 
as follows: 

� The primary contribution of this paper is the development 
of the ER_CS algorithm, which reduces the cost of 
resources (both computing resources and bandwidth 
resources), lightening the load on the substrate network. 
Using these uncomplicated operations, we can help TSPs 
reduce user costs and energy consumption. 
Simultaneously, service prices can decrease due to sharing 
and analysis of network intelligence, forming an 
economical strategy and trade-off for both TSPs and 
users. 

� While restricting access to computing resources and 
bandwidth resources and relaxing reliability requirements 
for users, we can describe the reliability-aware VNF 
deployment problem as a mathematical optimization 
problem. Decreasing the reliability of SFC appropriately 
during deployment is the essence of our work. 

� We propose an algorithm called ER to ensure the 
reliability of the deployment scheme, through which we 
can satisfy users’ demands. We deploy VNF nodes in the 
SFC one by one, deploying one VNF on one substrate 
node. Then, the algorithm finds another unused substrate 
node that has the maximum reliability to the prior node 
and deploys the next VNF node on this substrate. 

� We adjust the ER_CS algorithm to efficiently decrease the 
resource allocation for the substrate network in NFV 
environments. 

The remainder of this paper is organized as follows. In 
Section 2, we analyze related studies. In Section 3, we describe 
the problem in this research with some formulations. In Section 
4, we propose our heuristic algorithm and provide line-by-line 
details. A performance evaluation of our proposed algorithm is 
presented in Section 5, and Section 6 concludes this work. 

II. RELATED WORK 
To satisfy various requests from users, service providers are 

eager to seek a flexible, scalable, agile, effective, 
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resource-efficient and energy-efficient scheme for placing 
VNFs. Ensuring service reliability while finding an economical 
and resource-efficient solution to the problem of VNF 
deployment is the goal of this work. 

Numerous studies are relevant to NFV, including how to 
determine and place network functions. In [2], the authors 
proposed an -based algorithm to provide an efficient method for 
solving the VNF placement problem. However, this work only 
simulates the performance of the convergence time and the 
performance of the acceptance rate for the proposed algorithm 
and two other provided algorithms and does not consider the 
resource consumption and transmission delay of the request. 
Niels Bouten et al. [3] presented a set of affinity and 
anti-affinity constraints that can be used by TSPs to define 
placement constraints. They proposed a semantic conflict 
mechanism to evaluate SFC requests that filters invalid 
mechanisms to reduce the mapping time. Po-Wen Chi et al. [32] 
designed a heuristic NFV deployment algorithm to allocate, 
place, and dispatch the traffic for VNFs. They highlight the 
relationship between the number of VNFs and east-west traffic 
growth, which they claim is at the root of the VNF placement 
problem. 

Some researchers have considered the problem of improving 
NFV performance, for example, by optimizing the stringent 
delay constraints. In [5], the VNF deployment problem was 
solved by considering the optimization of inter-cloud traffic 
and response time in a multi-cloud network in NFV 
environments. The response time includes both link delay and 
compute delay. In [10], the authors focused on the VNF 
scheduling and resource allocation problems as well as on 
transmission and processing delays. They aimed to minimize 
the total network function scheduling latency with strict delay 
constraints by developing a network algorithm. In [14], the 
authors considered that current NFV platforms preclude 
operating at the network edge. They proposed the Glasgow 
Network Function, which is a platform based on container 
VNFs that runs and orchestrates lightweight container VNFs, 
reduces core network utilization and provides lower latency. 
The authors of [33] conducted experiments to study the impact 
of virtualization on network delay; their simulations show that 
end-to-end latency will increase in a virtualized environment.  

The performance of NFVs with regard to resource allocation 
or consumption and the acceptance ratio when mapping VNFs 
has been investigated for years. A comprehensive resource 
allocation survey was conducted in [21]. In [28], the authors 
studied the VNF placement and scheduling problem in the radio 
access network (RAN) domain. They formulated this problem 
as an integer linear programming (ILP) problem and proposed a 
heuristic algorithm to solve it. They demonstrated that their 
algorithm performed better regarding the acceptance ratio, the 
cost of deployment, and the utilization of the nodes and links. 
Windhya Rankothge et al. [29] proposed a genetic algorithm to 
optimize resource allocation. They demonstrated its efficiency 
in optimizing resource allocation via three network function 
centers (NFCs) proposed by the authors.  

Some applications have addressed optical networks [8–9, 22, 
30]. The authors studied how to jointly optimize the VNF 

placement and spectrum assignment, which is a controversial 
topic. In [8–9], the common goal was to cost-effectively realize 
VNF placements. As previously stated, finding economical 
schemes for VNF placement has become a common objective 
for both TSPs and users. The author of [16] recognized that 
reducing CAPEX/OPEX was the main goal. In addition to the 
resource-efficient VNF placement problem, power or 
energy-efficient service request placement is a controversial 
research topic [18]. 

Other research projects have focused on issues such as the 
availability of NFV. Due to potential failures (such as node or 
link failures) that can be caused by earthquakes, floods, or 
malfunctions such as power outages, many researchers have 
expressed interest in the field of high availability (HA) to 
protect data or network functions. Unlike some schemes, which 
aim to solve general  VN mapping problems for unicast services 
(which includes two procedures: virtual node and link mapping) 
such as [10] and [11], Xiujiao Gao et al. proposed the MILP 
model in [13] to maximize the availability using max-min 
fairness for multicast  VN mapping services. The authors of [34] 
proposed an efficient framework for evaluating the reliability of 
NFV deployments; however, they did not investigate how to 
adjust NFV deployments based on their framework. The 
proposed framework can be used only to evaluate deployment 
schemes but was not intended to improve the schemes based on 
its results. Al-Shuwaili et al [35] proposed a novel approach for 
improving the robustness of the substrate equipment by 
employing channel coding to improve the robustness of the 
physical devices in NFV architecture.  

Although numerous studies have considered the reliability of 
deployed SFCs, few studies have considered the needs of users 
while also considering the TSP revenues. In other words, few 
studies have focused on building an economical network 
environment. Therefore, we propose the ER-CS algorithm to 
reduce reliability under the premise of guaranteeing users’ 
demands while also considering economical VNF deployments. 

III. PROBLEM STATEMENT AND FORMULATION 
A. Network Model 

i) Substrate Network: A substrate network consists of the 
underlying nodes that are directly connected via physical links 
between the nodes. Each physical node has a set of service 
functions with resource attributes, and every physical link has a 
corresponding bandwidth capacity. We represent the 
underlying network as the graph GP = (VP, EP), where VP = {v1, 
v2 … v|VP|} is the set of substrate nodes, |VP| represents the 
number of physical nodes, EP = {e1, e2,…,e|EP|} is the set of 
edges, and |EP| denotes the number of physical links. 

ii) SFC Request: An SFC request typically consists of 
multiple virtual nodes interconnected by virtual links. These 
virtual nodes have specific network functions. Different SFCs 
may have the same function and are likely to share the same 
underlying physical nodes, which reduces network resource 
usage. This paper does consider the functionality of VNF in 
SFC, assuming that a virtual machine can be mapped to 
different network functions as long as the conditions imposed 
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by the underlying resources are satisfied. A virtual machine 
corresponds to a node in the underlying layer. Here, we use SR 
= (NS, LS, s, t) as the SFC request. NS = {f1, f2 … f|NS|} is a 
collection of network functions, and |NS| represents the number 
of functions of the request. LS = {l1, l2 … l|LS|} denotes the set of 
SFC links, and |LS| is the number of service links involved in 
the request. The symbols “s” and “t” in SR respectively denote 
the source and destination nodes of the request and represent 
two nodes in the underlying network. 

iii) SFC mapping: The process of mapping SFC requests to 
physical networks is called SFC mapping. The resources and 
functions of the assigned underlying nodes must meet the needs 
of the virtual nodes. The bandwidth capacity of allocated 
physical links should be no less than the required bandwidth 
capacity of the virtual links. In this paper, the achieved SFC 
deployment scheme can be represented as PS = (V S 

N, E S 
L ). V S 

N = 
V S 

t + V S 
f  represents the collection of all underlying nodes 

involved in the deployment scheme, which consists of two parts: 
V S 

t  represents the deployed SFC’s forwarding node set, and V S 
f  

represents the function node set.   E S 
L  is the set of deployed 

paths for each service link. 

 
Fig. 3 Example of mapped VNFs 

B. Problem Statement 
As described in Figure 3, an SFC request consists of several 

VNFs, a source node s and a destination node t. Each of these 
VNFs represents a network function, as described above. The 
thick blue dashed line represents another scheme whose 
reliability is 0.94 and resource consumption is 202, called 
service function forwarding path 1 (SFP1). The thick red dotted 
line represents one deployment scheme for the request whose 

reliability is 0.97 and resource consumption is 232, called 
service function forwarding path 2 (SFP2). We assume that the 
demand reliability of users is 0.90. The thin blue dashed line, 
which represents a VNF in SFC, is deployed on a substrate 
network in SFP1. The red line will yield the best experience for 
the users, whereas the blue line will generate a better balance 
for the network providers because the network can hold more 
requests, which allows greater potential profits for TSPs. The 
goal of this paper is to find a deployment scheme that both 
satisfies users’ reliability demands and minimizes resource 
consumption to reduce costs (i.e., resource consumption and 
load balancing). 

This paper focuses on solving the reliability-aware problem, 
in which SFCs are mapped to the substrate network in a NFV 
scenario. The high reliability requirements of users usually 
demand expensive and high-performance physical equipment 
provided by operators, which significantly increases the cost 
for TSPs and prevents users from enjoying high-quality 
network services at low prices. To achieve effective and 
reliable network services while deploying SFC requests, we 
need to deploy VNFs to more reliable nodes and attempt to 
maximize the total availability of the deployment of SFC. This 
goal can be notated as follows: 

max

     ,  0 1.0

    ,  0 <  r 1.0

p p
S S

p N p L

p

p

S
v e

v V e E

p P v

p P e

R r r

v V r

e E

∈ ∈

⎧ ⎫⎪ ⎪
= ×⎨ ⎬

⎪ ⎪⎩ ⎭
∀ ∈ < <

∀ ∈ <

∏ ∏

                  (1)	

where rvp and	 rep represent the reliability of the nodes and links 
deployed for SFC requests, respectively, vp denotes any node in 
the underlying network, and ep denotes any link in the 
underlying network. The reliability of each node and link in the 
underlying network is denoted by a positive number less than 1 
according to the constraint behind the optimization objective. 
This paper estimates the total reliability of SFC by calculating 
the product of the reliability of each substrate node and link 
involved in a	SFC deployment scheme. 	

Due to limited resources, considering only the reliability of 
SFC may cause enormous resource consumption and reduce the 
mapping success rate. Therefore, the paper aims to solve the 
contradiction between the reliability and the bandwidth 
consumption, maintaining a balance between resource 
consumption and service reliability to ensure the effective use 
of resources.  

The problem involves designing algorithms to obtain the 
optimal SFC deployment scheme to satisfy users' high 
reliability requirements while effectively reducing resource 
consumption. In this paper, we address three specific problems: 

Problem 1: A specific number of SFC requests, physical 
nodes and links with certain reliability, computing resources 
and bandwidth, and the source and destination nodes of each 
SFC are given. The objective is to find the optimum scheme for 
SFC mapping PS that maximizes the total availability of every 
SFC. In this scheme, each physical node is matched to only one 
function for each SFC but it can be regarded as a switch node 
while calculating PS. 

A

B C
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(b) mapped SFC on the substrate network 
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Problem 2: The SFC requests are the same as those 
described in Problem 1. To guarantee a certain degree of 
reliability, the objective is to achieve an ideal scheme of SFC 
mapping PS using a load balancing method. Each node is 
matched to only one function in each SFC. 

Problem 3: Based on Problem 2, we consider resource 
consumption. When given the optimal scheme provided by 
Problem 2, the objective is to find one feasible strategy to 
improve this scheme in terms of reducing resource 
consumption.		
C. Variable Definitions and Constraints 
(1) Variable definitions: 

We define the variables and parameters in this paper as 
follows: 

� RS = {SR1, SR2,…, SRn }: the request set; 
� GP: the topology graph GP = (VP, EP) represents the 

physical network; 
� RU: the reliability request of a user; 
� s

t tv V∈ : the deployed SFC’s forwarding node; 
� s

f fv V∈ : the node onto which the VNF is deployed; 

� 
i

r
vw : The remaining computing resources of vi, i Pv V∈ ; 

� o
vi

r
e
m : the remaining bandwidth resource of the out-degree 

edge of vertex vi; 
� 

i

s
le : the physical edge in the SFC deployment path of the 

link li in the physical network, 
i Sl L∈ ; 

� 
i

s
lλ : the SFC deployment path of the link li in the physical 

network; 
� Vremain: the set of remaining vertexes that are not deployed 

as VNFs in the physical graph, 
remain PV V∈ ; 

� sov
vr : the total reliability from node v to the source node, 

Pv V∀ ∈ ; 
� siv

vr : the total reliability from node v to the destination 
node;	

� v∞ : a node that does not exist in the substrate graph; 
� e

sov : the source node of edge e in the substrate graph; 
� e

siv : the destination node of edge e in the substrate graph. 

(2) Network resource constraints:  
Different virtual links may be mapped onto the same 

underlying physical path and share the underlying physical 
resources. However, they are independent, and the same 
bandwidth resources cannot be simultaneously employed by 
different virtual links. 
(3) Node or link capacity constraints: 

,  ,  s i ini

r s S
n n t i Sv
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n
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⎧
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          (6) 

1 ,  if node  is forwarding node of the request
0 ,  otherwiset

v
n

v
ζ

⎧
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⎩

(7) 

0 1,  
f

P

v
n f S

v V
n Nζ

∈

≤ ≤ ∀ ∈∑                            (8) 

0 1
t f

v v
n nζ ζ≤ + ≤                                   (9) 

0 1,  ,  ( ,  ) ,  
i j

v v
n n S Pi j i j N v Vζ ζ≤ + ≤ ≠ ∀ ∈ ∀ ∈             (10) 

The constraints (2) and (3) ensure the computing resources of 
the substrate node. Constraint (2) indicates that the remaining 
computing capacity of the physical node which the VNF is 
deployed onto must be greater than the required computing 
resources of the VNF node. For all substrate nodes, constraint 
(3) ensures that the sum of the computing resources required by 
all the VNF instances from various SFC requests deployed on it 
does not exceed its availability resource. Constraints (4) and (5) 
represent bandwidth resource constraints. Constraint (4) 
denotes that the remaining bandwidth resource of the physical 
edge eli satisfies the bandwidth demand of the virtual link li in 
the SFC. For all substrate end-to-end paths, Constraint (5) 
guarantees that the sum of the bandwidths required by all the 
virtual links deployed to it does not exceed its available 
capacity. A virtual node or link can be successfully mapped to a 
physical node or link of the underlying network only when both 
the computing capacity and bandwidth capacity conditions are 
satisfied. When a SFC request arrives, the physical network 
must allocate the corresponding nodes or links that satisfy the 
node and link resource requirements. When the physical 
network resources are insufficient, the SFC request should be 
rejected or delayed. 

Formulas (6) and (7) mathematically describe the VNF nodes, 
forwarding nodes and substrate nodes. If a VNF node is 
mapped onto a substrate node, the value of the variable in (6) is 
one. If a substrate node is a forwarding node, the value of this 
variable in (7) is one. Constraint (8) ensures that any VNF node 
can be deployed on only one or no nodes in the physical 
network. Constraint (9) indicates that the nodes in the physical 
network can be deployed only as either function nodes or 
forwarding nodes. The underlying nodes cannot be both 
function nodes and forwarding nodes. In (10), no two different 
VNF nodes in a SFC request can be deployed on the same 
physical node. 

IV.  ALGORITHM DESIGN 
In this section, we describe our proposed algorithms for the 

reliability-aware SFC mapping problem. We present three main 
algorithms: the heuristic algorithm ER, based on reliability 
guarantee; the heuristic algorithm ER-CS, which is based on 
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load balancing while ensuring reliability and reducing the cost 
of TSPs; and the bandwidth-optimizing algorithm ER_CS_ADJ. 
We assume that the reliability of all the substrate nodes and 
links are known and can be used to compute the reliability of 
the complete mapping path. 
A.   Reliability-guaranteed Algorithm ER 

In a NFV environment, many virtual networks share one 
substrate network; consequently, the failure of one substrate 
link or substrate node may cause massive failures in virtual 
networks, have a large-scale impact, and reduce network 
stability. Therefore, we propose a heuristic algorithm referred 
to as ER based on the reliability-aware SFC mapping problem. 

The ER algorithm aims to improve the reliability of an SFC 
mapping scheme. In the ER algorithm, we map the VNFs in an 
SFC one by one. One VNF mapped to one substrate vertex and 
the virtual link between two VNFs may be a either a single 
substrate link or a path composed of several links. When one 
VNF is deployed, we choose the substrate vertex that enables 
the entire scheme to achieve maximum reliability based on the 
premise that the vertex has sufficient computing resources and 
bandwidth resources relative to the last VNF mapping vertex to 
satisfy the SFC demand. The pseudo-code is presented in 
Algorithm 1. 

Algorithm 1: Ensure reliability (ER) 
Input: 1. Substrate network GP = (VP, EP);  

2. SFC request SR = (NS, LS, s, t). 
Output: SFC deployment scheme PS, vso = s, vsi = t.  
1: Initialization: let Vremain = VP; 
2: for all VNF nf in SR, do 
3:      if nf is not the last VNF of SFC, then 
4:           initiateAllVertex() and let so

so so

v
v vr r= ; 

5:           Call URSO procedure 1 to update the information; 
6:           let 

rκ = −∞and tempv v∞= ; 
7:           for each vertex v in VP,  do 
8:                 if 

siv v≠ and 
f

r
v nw w≥ and sov

r vrκ < , then 

9:                ,  vsov
r v tempr vκ = = ; 

10:               end if 
11:         end for 
12:         if 

rκ = −∞ , then  
13:     return null; 
14:    end if 
15:    generateScheme( rκ , nf) 
16:   else 
17:      repeat the process in line 4 and 5, si

si si

v
v vr r=  

18:    call URSI procedure 2 to update the information; 
19:    for each vertex v in VP , do 
20:     if 

f

r
v nw w≥ and /si sov v

r v v vr r rκ < × , then 

21:      /si sov v
r v v vr r rκ = × , tempv v= ; 

22:     end if 
23:    end for 
24:    repeat the process in line 12 to line 15; 
25: end for 

When receiving an SFC request, including its source and 
destination, the ER algorithm deploys the VNFs one by one and 
simultaneously maps the related virtual links. The initial source 
in this algorithm is the source vertex of one SFC. When one 
VNF is deployed, the source is set to the mapping vertex of this 
VNF to become the source of the next VNF. When mapping 
VNFs, the mapping method for the last VNF of an SFC request 
differs from the mapping method for previous VNFs in the ER 
algorithm. 

For all the VNFs other than the last one, the ER algorithm 
initializes the reliability of all vertexes to the source to be 
negative infinity and the reliability of the source vertex to be its 
vertex’s reliability. Then, it initializes their prior vertex on the 
path to the source to be an inaccessible node (i.e., a node not in 
this network). Next, it calls procedure 1—update all reliability 
to source (URSO)—to update the reliabilities of all nodes to the 
SFC source, based on the premise that the bandwidth of each 
link on the path from the source to these nodes satisfies the SFC 
request. In lines 6 to 11, we initialize the maximum reliability 
variable and the substrate node that has the maximum reliability 
to map the VNF, and traverse all the nodes in the network 
topology graph to find the variable defined in line 6, which 
cannot be the sink vertex, and has sufficient computing 
resources to satisfy the SFC demand. We generate the mapping 
scheme and map the VNF onto the vertex vtemp with the 
reliability calculated in the previous procedure. Then, 
information about the path from the source to the vtemp is 
recorded in URSO. If the reliability variable remains negative 
infinity, we are unable to find a mapping vertex that satisfies the 
demands for mapping this VNF. 

To map the last VNF in an SFC we must not only consider 
the mapping vertex’s reliability to the previous VNF mapping 
vertex but also its accessibility and reliability at the destination 
node of the SFC. Similar to the previously described algorithm, 
we update the reliabilities of all nodes to the SFC’s destination 
after updating the reliabilities to the SFC’s source. When 
computing the reliability of the mapping vertex of the last VNF, 
the computational formula is expressed as follows: 

/si sov v
r v v vr r rκ = × ,                                 (11) 

where the first symbol to the right of equation (11) denotes the 
reliability to the sink node of the SFC, the second symbol 
denotes the reliability to the previous VNF’s mapping vertex in 
the substrate network, and the last symbol denotes the mapping 
vertex’s own reliability. 

Next, we present the pseudo-code for Procedure 1. 

Procedure 1: Update all reliability to source (URSO) values 
Input: 1. Vertex set Vremain;  

2. Source vertex vso; (i-1)th SFC link li-1 
Output: Updated GP 
1:  let temp

so sov v= ; 
2: while 

remainV ≠∅  
3:  for all out-degree edges ei of vtemp 

so , do 
4:       if 

i i

r
e lm m≥ and ie

si remainv V∈  then 
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5:  if ( )so so
temp e ei iiso s si i

v v
ev v v

t r r r r= × × >  and t > RU，then 

6:  let so
ei
si

v
v
r t= , and vtemp 

so  be the prior vertex of ie
siv on 

whose path to the source; 
7:            end if 
8:             end if 
9:      end for 
10:    find the maximal reliability (to the source vertex) of vertex 

vmax in Vremain; 
11:     vtemp 

so = vmax; 
12:     delete vertex v in Vremain; 
13: end while 

Procedure 1 updates the reliabilities of all nodes to the source 
node (i.e., the substrate node mapped by the previously mapped 
VNF). Similar to [40], we create the vertex set Vremain, which 
initially added all vertexes VP of the network graph GP in 
Algorithm 1. We set vtemp 

so  to be the mapping vertex of the 
previously deployed VNF (initially, it is the source node of 
SFC). While Vremain is not empty, we traverse all the out-degree 
edges of vtemp 

so  to determine whether the edge satisfies the SFC’s 
bandwidth demand and the user’s reliability request. The 
formula in line 4 indicates that the remaining bandwidth 
resource of edge ei satisfies the bandwidth demand of li in the 
SFC. The subscript of the last symbol in (12) denotes the 
destination vertex of ei. The formula for computing the 
reliability of the node in line 4 to the source vertex of SFC is 
expressed as follows: 

so
temp eiiso si

v
ev v

t r r r= × × ,                                   (12) 

where the first symbol on the right-hand side of equation (12) 
represents the reliability of vtemp 

so  to the source of the SFC, the 
second symbol denotes the reliability of edge ei, and the third 
symbol represents the reliability of the node in line 4. In lines 
4–8, we estimate whether the edge’s remaining bandwidth 
resource satisfies the demand of link li, and whether its 
destination vertex is in Vremain. If the requirement is satisfied, we 
continue to compute t and determine whether t satisfies the 
user’s reliability request RU. Then, we update the variable 
described in line 6 and record the prior vertex on its path to the 
source. After traversing all the out-degree edges of vtemp 

so , we 
assign vmax, which has the maximal reliability to the source, to v
temp 
so . Finally, we delete vertex vmax from Vremain. Because we 
record the prior vertex on its path to the source, we eventually 
obtain a complete path from the source to the destination from 
Algorithm 1. 

Procedure 2 (i.e., update all reliability to sink (URSI)) is 
similar to Procedure 1; the only difference is that rather than 
computing the reliability to the source, it computes the 
reliability to the destination. 
B. Reliability-guaranteed Algorithm ER-SC based on Load 
Balancing 

To maximize the reliability, SFC functions should be 
deployed on vertexes with high reliability, which may cause 
imbalanced loading in the network. Because the network 
resources are limited and loads characteristically increase 

suddenly, imbalanced loading can waste resources and cause 
network congestion and instability, which will reduce TSP 
profits. Based on the reliability-guarantee algorithm ER, we 
introduce the idea of load balance and present the 
reliability-guarantee heuristic algorithm ER-RB, which is based 
on load balance. 

In this thesis, the objective of load balance is to assign 
service flow transport to links with lighter loads to reduce the 
possibility of congestion caused by load imbalance. The 
following mathematical model describes load improvement: 

1 1 ,  so

i
o o ov ii i vi

v
v i Pr r

e ev e

m v V
w m

δ
∈

= + + ∀ ∈∑                (13) 

where the denominator of the first fraction represents the 
remaining computing resources of vi, eo 

i  denotes the set of the 
out-degree edge of vertex vi, the denominator in the second 
fraction denotes the remaining bandwidth resource of the 
out-degree edge of vertex vi, and the last symbol denotes the 
sum of the bandwidth cost of the path from vertex vi to the 
source, vso. The smaller the value of δ  (load factor) is, the 
lighter the network load is. As expressed by the formula, the 
smaller the load factor is, the larger the vertex’s remaining 
computing resource is, and the larger the remaining bandwidth 
resource of the out-degree is, the smaller the total bandwidth 
cost of the vertex to the source is. To achieve load balance, we 
should prefer the vertexes with smaller load factors for 
deploying SFC functions. 

Therefore, we adjust the ER algorithm to compute theδ  of 
all the vertexes that satisfy the criteria based on satisfying RU, 
the node’s computing resource demands and the link’s 
bandwidth resource demands. We add a comparison of the 
values of δ  to line 5 in URSO to find the vertexes with 
smaller δ  values to host VNFs. Thus, we obtain a new 
deployment scheme that considers load balance based on the 
scheme generated by ER. 
C.  Bandwidth Optimization Algorithm ER_SC_ADJ 

The SFC mapping problem can be divided into two parts: 
SFC virtual node mapping and SFC virtual link mapping. SFC 
virtual node mapping requires that the substrate vertexes satisfy 
the virtual nodes’ resource constrains and function demands, 
whereas SFC virtual link mapping requires that the substrate 
links of the substrate path satisfy the bandwidth resource 
demands of the virtual links. One virtual link in SFC can be 
mapped onto just one substrate link or onto several substrate 
links (one substrate path): the selection depends on the 
substrate vertexes onto which the VNF's virtual link 
connections are deployed. If we map the virtual link with the 
highest bandwidth demand onto the shortest possible substrate 
path, the bandwidth cost of this SFC mapping scheme can be 
reduced considerably. 

Therefore, we improve the ER_SC algorithm through 
bandwidth cost reduction, and we propose the bandwidth 
optimizing algorithm ER_SC_ADJ. We skillfully adjust the 
VNFs’ mapping position based on the mapping scheme 
generated by ER_SC to lengthen the mapping paths of virtual 
links with low bandwidth-demands and shorten the mapping 
path of the virtual links with high bandwidth demands; 
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consequently, we reduce the bandwidth cost. The pseudocode 
for the algorithm is shown in Algorithm 2. 

Algorithm 2: ER_SC adjust (ER_SC_ADJ) 
Input: SFC deployment scheme PS. 
Output: Adjusted SFC deployment scheme PS. 
1: 

moveχ = findMinLink(SR); 
2: if 

moveχ = 0, then 
3:    return; 
4: end if 
5: while 

moveχ > 0 
6:   for all nf need to be removed, do 
7: for all forwarding vertex v between two related 

function vertex, do 
8:      if 

f

r
v nw w≥  and min

remain requestB B≥ , then 

9:      deploy nf on vertex v; 
10:     end if 
11:   end for 
12:  end for 
13:  

moveχ --; 
14: end while 

The function findMinLink(SFC) finds the virtual link with 
the minimum bandwidth request in the SFC. The VNFs behind 
this link are the VNFs that must be moved; we denote these as 
χmove. When moving these VNFs, if we start at the first VNF, 
the previous VNFs may not have sufficient options to map, 
which may cause failure. Thus, we need to traverse the VNFs in 
reverse order. When we adjust the mapping position of one 
VNF, we traverse all the forwarding vertexes on the path 
between this VNF and the updated VNF in reverse order. For 
example, when moving the last VNF, we traverse forward from 
the first forwarding vertex prior to the destination of the SFC. 
When moving the penultimate VNF, the deployment position 
of the last VNF is determined; thus, we traverse forward from 
the deployment position of the last VNF. The remaining steps 
can be performed in the same manner. 

In line 8, while traversing the forwarding vertexes, we need 
to estimate whether the vertex’s remaining computing resource 
satisfies the VNF’s demand and whether the bandwidth 
resource of the links between this vertex and the two VNFs’ 
deployed immediately before and immediately after it satisfy 
the request. When we find a forwarding vertex that can satisfy 
these requirements, we deploy the VNF on this vertex as the 
new function vertex and deploy the old function vertex (the one 
on which this VNF was previously deployed) as the forwarding 
vertex. Finally, we obtain a new SFC deployment scheme. 

Note that the ER_SC_ADJ algorithm only adjusts the 
positions of forwarding vertexes and function vertexes locally 
based on the existing deployment scheme: the deployment path 
of the SFC has not changed. The reliability of the new SFC 
deployment scheme remains the same, which satisfies the user 
requirements. ER_SC_ADJ simply increases the utilization of 
bandwidth and reduces costs. 

V. SIMULATION RESULTS AND ANALYSIS 
This section describes extensive simulation experiments 

conducted to evaluate the performance of the proposed 
algorithms. The simulation environment is introduced, and 
several performance parameters in the simulation are described, 
including i) block rate, ii) reliability, iii) resource consumption, 
iv) time consumption, and (v) the CDF of the first block. The 
simulation results are presented and analyzed. 
A. Simulation Environment 

To evaluate the schemes described in Section IV, we 
implemented an event simulation in Java. To demonstrate the 
applicability of the algorithm for all circumstances, we employ 
the Waxman 2 model from the Georgia Tech Internetwork 
Topology Models (GT-ITM) [41] to randomly generate small 
and large network instances as substrate networks. The small 
substrate network includes 20 nodes and the large substrate 
network contains 100 nodes. The connectivity probability of 
both the small networks and large networks is 0.7. The diameter 
of the small network is 6, whereas the diameter of the large 
network is 30. Considering that the time consumption for 
deploying a SFC request in the small network is small, we 
chose to evaluate the approaches in this 20-node network using 
a machine with an Intel Core 2 CPU and 4 GB of RAM. For the 
100-node network, the simulations were solved using an Intel i7 
CPU with 9.8 GB of RAM. The computing capacity of every 
underlying node takes a random integer in the range [5, 10], and 
the bandwidth capacity of each node is distributed within the 
range [20, 50]. The bandwidth resources of the virtual links are 
distributed within the range [5, 20], and the computing capacity 
of the functional nodes ranges within [1, 2]. 
B. Comparisons with Other Algorithms 

During the simulation process, to compare and evaluate the 
performance of the three algorithms, we modified Compute 
followed by Network Load Balance (CNLB) [19] to the Link 
Mapping First (LMF) algorithm [27] without changing its core 
concept to be the compared algorithm in this paper. In the LMF 
approach, the virtual links are selected in descending order in 
terms of the requested bandwidth. The link with the largest 
requested bandwidth has priority for being mapped onto the 
physical links that have the largest amount of remaining 
computing resources. This approach is referenced in [27], 
where it is employed as a basic deployment algorithm. 
C. Simulation Results and Analysis 

Fig. 4 shows the simulation results of the SFC block rate 
when deploying SFC requests for these four algorithms. We 
vary the number of functions of each SFC from 3 to 12 and 
randomly generate 10,000 SFC requests for each number of 
functions. The block rate denotes the proportion of the failed 
SFC deployment requests in all 10,000 SFC requests. As shown 
in the graph, for the three algorithms presented in this paper, 
especially ER_SC and ER_SC_ADJ, the performance of the 
block rate is better than that of the LMF algorithm. The 
comparisons shown in 2(a) and 2(b) indicate that the three 
algorithms have a distinct advantage in block rate as the 
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network size increases. The ER_SC and ER_SC_ADJ 
algorithms introduce the load balancing theory, which aims to 
transfer the service flow to links with light loads and reduce the 
possibility of congestion caused by unbalanced traffic 
distribution. Based on the premise that the availability satisfies 
the RU, nodes with light loads are more likely to be chosen as 
function nodes, which prevents the emergence of hot spots in 
the underlying network. This result reduces the blocking rate 
and guarantees a high deployment success rate for SFCs.  

As the length of the SFC increases, the probability of SFC 
deployment failure also increases. In Fig. 4(a), as the lengths of 
the SFC requests increase, the block rate initially remains stable 
and then increases for different ranges starting at a length of 
approximately 6. As shown in Fig. 4(b), prior to a certain point 
almost all the tested algorithms can successfully deploy the 
SFC requests. The reliability of both the physical nodes and 
links is distributed within the range of [0, 1]. The larger the 
number of physical nodes is onto which an SFC request is 
deployed and the smaller the availability resulting from the 
SFC request, the greater the likelihood is that SFC deployment 
will fail to satisfy RU and be successful. Thus, the block rates of 
SFC requests are related to not only the size of the underlying 
network but also to the length of an SFC request. 
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(a) Small simulation topology 
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(b) Big simulation topology 

Fig. 4 Block rates of SFCs in different topology 
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(a) Small simulation topology 
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(b) Big simulation topology 

Fig. 5 Reliability of SFCs in different topologies 

Fig. 5 shows the simulation results of the SFC reliability for 
SFC mapping algorithms, which were achieved by calculating 
the reliability product of all underlying network nodes and links 
traversed by the SFC deployment scheme. As shown in Fig. 5, 
the ER algorithm has the best reliability performance among 
the four algorithms. However, the total reliability performance 
of the ER_SC algorithm and the ER_SC_ADJ algorithm is 
slightly worse than the reliability performance of the LMF 
algorithm. When solving the SFC mapping problem, the ER 
algorithm deploys service chains with the primary objective of 
reliability maximization, which yields excellent performance in 
terms of reliability, while for the ER_SC algorithm and 
ER_SC_ADJ algorithm, we ensure only the basic RU. 

During the process of load balancing, to enable network 
functions to be deployed onto nodes with light loads, parts of 
the virtual links may be mapped to the underlying path using 
more hops, which decreases the reliability of SFC requests. The 
two algorithms are adjusted based on ER, which reduces the 
reliability. Although it may affect the user experience, the total 
reliability is capable of satisfying user requirements. 
Consequently, TSP costs will be reduced, which is the purpose 
of this study. 
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(a) Small simulation topology 
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(b) Large simulation topology 

Fig. 6 Average resource consumption (i.e., computing resource and 
bandwidth resource) of SFCs in different topologies 

The results of the bandwidth overhead for  SFC requests, 
shown in Fig. 6, reveal that the three algorithms proposed in 
this paper have an advantage over the LMF scheme in terms of 
bandwidth consumption, and that the ER_SC_ADJ algorithm 
performs the best. Under the same conditions, lower bandwidth 
overhead improves network resource utilization because the 
mapping positions of the VNFs for the ER_SC_ADJ algorithm 
are adjusted to lengthen the mapping paths of virtual links have 
low bandwidth-demands and shorten the mapping paths of 
virtual link that have high bandwidth demands while 
maintaining the total reliability achieved from the stationary 
ER_SC. In the small network, the difference among the 
bandwidth cost of three types of algorithms is small due to the 
relatively small size of the underlying network. Although 
adjustments were made based on the ER_SC algorithm, these 
adjustments are slight; thus, the gap is not distinct. However, 
the results are more distinct in the 100-node network. 

Because the three algorithms proposed in this paper are 
similar in terms of resource consumption, especially in the 
small simulation topology, they are almost parallel. From a 
large number of tests, we determine that a line graph cannot 
adequately highlight the distinctions among the four algorithms. 
Thus, we separately employ a bar chart to show these data. If 

we start the X-axis at three, the histogram will be very dense 
and affect the sharpness of the data. Consequently, we employ a 
different method to display the data, as shown in Fig. 6(a). 

2 4 6 8 10 12 14 16

0

2

4

6

8

10

2 4 6 8 10 12
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

 

 

Ti
m

e 
C

on
su

m
pt

io
n 

(m
s)

Length of SFC

 ER
 ER_CS
 ER_CS_ADJ
 LMF

 

 

 

 

 
(a) Small simulation topology  
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(b) Large simulation topology 

Fig. 7 Average time consumed when SFCs are deployed 

The time consumption of each SFC mapping algorithm was 
evaluated by gradually increasing the number of service 
function chain requests, as shown in Fig. 7. The average time 
overhead of the SFC requests deployed by the three algorithms 
proposed in this paper is substantially lower than the average 
time overhead of the LMF algorithm. As the size of the 
underlying network increases, the difference in time 
consumption between the proposed schemes and the LMF 
algorithm increases from two orders of magnitude to a 
minimum of four orders of magnitude; thus, the performance 
advantages of the three types of algorithms become more 
distinct. This occurs because they are heuristic algorithms: all 
we need to do is evaluate a suitable path node from a certain 
node to the destination node. Conversely, in the LMF algorithm, 
each deployment of a virtual link requires traversing all the 
physical nodes to find node pairs that satisfy the requirements 
of node computing capacity and the shortest path between the 
node pairs given the bandwidth capacity conditions. Thus, the 
search efficiency of the LMF algorithm is relatively low, and 
the algorithm running time is relatively long. 
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We executed the algorithms for 10,000 trials for each SFC 
length and show the cumulative distribution function (CDF) of 
the first block, as discussed in [19]. Because computing this 
indicator on the big topology requires a vast amount of 
time—and considering that the small topology can also 
describe this problem—we chose only the small topology for 
this simulation. The Y-axis denotes the number of SFCs that 
deployed successfully without any failure. The lower the 
number is, the worse the performance is. When the length of the 
SFC ranges from 5 to 8, the four algorithms appear to fluctuate. 
When the length is greater, the LMF algorithm shows a greater 
disadvantage. These results can be inferred from the prior 
indicators. With a poor success rate and higher resource 
consumption, LMF will fail at a faster rate. 
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Fig. 8 CDF of first block over the different lengths of SFCs 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we identified a problem: the high reliability 

requests of users reduce the CAPEX and OPEX of TSPs. Thus, 
we proposed ER to guarantee the basic reliability needs of users. 
However, considering the revenue of the TSPs, we discover 
that network imbalances will influence the request success rate 
and the resource utilization rate. Therefore, we proposed 
ER_SC, which is based on ER and considers the load balance 
factor. Although this algorithm achieved substantial progress, 
we discovered that the scheme used for ER_SC can be 
improved. Thus, we proposed ER_SC_ADJ. The simulation 
results indicate that ER_SC_ADJ achieves the objectives of this 
study. We demonstrated that our network algorithms can 
successfully work in a range of test environments and satisfy 
user demands. Our future work will include integrating our 
approach with data and network security to ensure that our 
services are robust and resilient [42-45]. We will integrate data 
fusion with MapReduce and advanced frameworks to 
accelerate network virtualization, data processing and analysis 
in big data networked environments [46]. We plan to develop 
business intelligence as a service to enable scientists and users 
to track changes in real time and understand all the 
interpretations within a few seconds [47], including the use of 
advanced big data network algorithms and services [48]. 
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