

Citation:

Miles-Shenton, D (2018) Small Scale Forensic Thermal Imaging Study. Technical Report. Knauf Insulation.

Link to Leeds Beckett Repository record: https://eprints.leedsbeckett.ac.uk/id/eprint/5066/

Document Version: Monograph (Accepted Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been checked for copyright and the relevant embargo period has been applied by the Research Services team.

We operate on a standard take-down policy. If you are the author or publisher of an output and you would like it removed from the repository, please contact us and we will investigate on a case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party copyright. If you would like a thesis to be removed from the repository or believe there is an issue with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a case-by-case basis.

Taylor Wimpey – Thermal Imaging Project

- Site: Newton Farm Cambuslang G72 8QF
- Visit Date: 13th November 2017
- Plot(s): 268 267
- House Type: 268 Fairbairn 2 267 Maxwell 2 Timber Frame, 2-Storey, Detached, Integral Garage

Floor Plans:

Environmental Conditions:

Internal Temperature	19.8 / 18.0 °C	External Temperature	3.8 / 3.4 °C					
Internal RH	51 %	External RH	73 / 72 %					
Wind Speed	0.0 ms ⁻¹	Wind Direction	n/a					
Overcast skies, no rain in proceeding 26 hours								

Overcast skies, no rain in preceding 36 hours.

Pressure Test Results:

268 Fairbairn	2						
Depressurisation Only		Pressurisation Only			Mean		
m³/(h.m²)@50Pa	ach ⁻¹	r ²	m³/(h.m²)@50Pa	ach⁻¹	r ²	m³/(h.m²)@50Pa	ach ⁻¹
2.82	2.92	1.000	3.11	3.22	1.000	2.96	3.07
267 Maxwell	2						
Depressurisation Only		Pressurisation Only		Mean			
m³/(h.m²)@50Pa	ach ⁻¹	r ²	m³/(h.m²)@50Pa	ach ⁻¹	r ²	m³/(h.m²)@50Pa	ach ⁻¹
3.41	3.37	0.998	3.91	3.86	0.999	3.66	3.61

Observations:

The thermal images below are shown on varying temperature scales to highlight what was being observed, please take into account these different image spans when directly comparing images. The minimum span used is 5° so as not to over-exaggerate any thermal anomalies observed.

Plot 268

Thermal images under depressurisation were captured at an average pressure of -51.8 Pa.

External - Under natural conditions

The ground floor perimeter was much warmer than the rest of the external wall. It was unclear whether this was expected or unintended heat loss at ground floor perimeter.

Additional heat loss was observed at the patio door threshold which was not completely finished.

As the trickle vents had been left open it was difficult to see if the warmer sections of boxed eaves were due to thermal anomalies or due to warm air venting out. As such, any potential difference between the thermal performance of the solid timber above the windows and the insulated panels between them could not be observed from outside:

Similarly, the gable windows on the front elevation appeared to show different levels of thermal performance from outside, particularly at the window heads and gable above. However, on internal inspection it appears most probably due to the trickle vents being left open in Bedroom 2 (above the garage) and closed in Bedroom 1 prior to the thermal survey being undertaken.

Where the internal wall with the hall becomes external wall there is a sharp drop in surface temperature, particularly at patches just above the base of the wall panel.

Even under natural pressures some infiltration could be observed around the window, particularly beneath the sill board edges.

The cooler vertical members of the timber frame were clear on the thermal images, with warmer insulated sections between. Cooler horizontal timers at the ground floor and intermediate floor coincided with warmer areas viewed from outside.

Stratification of the voids between the joists in the intermediate floor appeared to be driven by the positioning of the heating system pipework.

Dining – Under depressurisation

The differences in surface temperature of the hall/external sections of the same wall appeared to increase under depressurisation, with a number of points at the top and bottom of the external wall section indicating air movement into the wall panels.

Although the window seals appeared to work well, infiltration between the window frame and opening was apparent, particularly around the sill board.

The stratification of the intermediate floor void and cooler sections at the floor junctions did not seem to change much under depressurisation for their appearances under natural pressures, suggesting these were due to thermal issues rather than air movement.

Ground Floor WC – Under natural conditions

Ground Floor WC – Under depressurisation

Again, there is increased air movement around the floor plate, but this appears to move into the wall panels and not around the skirting into the room itself.

At the intermediate floor above the garage cooler air is also observed.

In the cupboard under the stairs that backs onto the garage the only

15.5

Air infiltration around the soil pipe penetration appears significantly worse, as does the air flow from the loft being drawn in around the central light fixing.

Air is also detected entering at the intermediate floor junction with the external wall, it is unclear whether this is entering around the soil pipe penetration and tracking across

Under depressurisation cold air could be observed spreading out from the previously identified colder areas and being drawn down the external wall panels.

Air infiltration was detected again around the window and at the intermediate floor junctions with the external walls

Bedroom 4 – Under natural conditions

As observed in Bedroom 1, with cold sections of ceiling, at the floor and external wall junctions and issues at the eaves. The loft insulation at the eaves again appears not to form a complete and continuous thermal layer with sections of the ceiling appearing cooler than the window again.

An area of floor that backed onto the En-suite near the toilet also appeared markedly cooler.

It is possible to see some difference between the top of the external wall at the eaves over the window and to the side of the window (as

Bedroom 3 – Under natural conditions

Some air leakage was also detected at the intermediate floor junctions with the external walls and at the internal wall backing on to the builtin wardrobe in Bedroom 2 above the garage.

As observed in Bedroom 1; again there are issues at either side of the ceiling above the window and issues at the intermediate floor junction with the gable wall appear slightly worse.

Bedroom 2 – Under depressurisation

Repeating what was seen in the other bedrooms; however, with increased infiltrations observed around the intermediate floor perimeter, particularly at the builtin wardrobe.

Significant infiltration was observed drawn down from the loft under depressurisation which was not visible under natural conditions as this was then an exfiltration zone. Air can be seen entering the landing around the ceiling penetrations and being drawn into some of the internal partition walls.

Dominic Miles-Shenton

Plot 267

Thermal images under depressurisation were captured at an average pressure of -51.7 Pa. Unfortunately, I was not informed that this property had not yet had loft insulation installed. The heating was turned off by site staff shortly after 10:30 am, by the time I conducted the survey just over 2 hours later the house had cooled considerably, particularly upstairs where there was no thermal mass to retain the heat. No trickle vents had been fitted in the windows, these were sealed using airtightness sealing film on entering the dwelling immediately after completing the external thermographic survey.

20.5 °C

Lounge – Under natural conditions

With lower internal temperatures, and hence a lower internal/external temperature differential, similar issues were observed as in plot 268 but do not show up on the thermal images quite as strikingly.

The timber frames were again clearly visible, and some infiltration observed around the window and at the open pattress box on the external wall.

Again, there were no major issues detected on a 5° span, there may be some air infiltration into the wall around the penetration for the extract fan but nothing significant.

Family / Kitchen – Under natural conditions

Family / Kitchen – Under depressurisation

Bathroom – Under natural conditions

No significant issues with the thermal imaging on a 5° span.

Bathroom – Under depressurisation

Bedroom 4 – Under natural conditions

As seen in previous bedrooms.

The pipework from the boiler to the cylinder cupboard retained heat much better than the rest of the upstairs without loft insulation installed.

Bedroom 4 – Under depressurisation

As in Bedroom 1, cooler air was seen tracking down the wall the external wall along the cabling route for an electrical socket.

Cooler air could be seen infiltrating around the window and at the intermediate floor perimeter.

Bedroom 2 – Under natural conditions

The heating pipework routes were clearly visible in the intermediate floor void but otherwise there were no significant issues with the thermal imaging on a 5° span.

Looking towards the opposing gable wall it is quite easy to see how some of the cold areas of ceiling observed in plot 268 came about. With so many nogs, braces and additional timbers, as well as electrical cabling, it is understandable that gaps between loft insulation and the ceiling will result, compromising the performance of the loft insulation.

Pressure Test Spreadsheet: 268

		DS								D	EPRESSURI	SATION		
	BEC	VERSIT	Leeds Sustainability Institute					6.9 6.8 - 6.7 -			_	<u>ب</u> ۴		
MINNEAPOLIS BLOWER	DOOR D								6.6 -					
date:	13/11/2017		Version 16d	LAHON	19 June 2017				~ ` `			1		
test house address:		Thistledown Dv. 0		72.6AE	10 00110 2011				ς ^{0.3}]			¥		
company:		tion - Taylor Wimp		12 0/4					6.4		_			
house type:	Fairbairn 2	aon - rayior winip	6y						6.3 -					
tester:	DMS								6.2 -					
test reference number:	DIVIO		Blower Door &	Gauge Lleed		Model 3 wit	b DG700				_			
outdoor temp (°C)	3.8	۰C			ETTINGS ARE IN m3/h			0.00000	6.1 🕂				1	
indoor temp (°C)	19.8				nent for minimum 60s				2.0		3.0 Ln.∆	P	4.0	5.0
outdoor humidity (%rh)		%RH	rotating	ressure aujusti	Tentior minimum 003	and i an awite		not						
indoor humidity (%rh)	51.4										PRESSURIS	ATION		
outdoor barometric pressure		mbar or hPa	Calculated Out	door Air Density	/			kg/m ³	1 70	-				
indoor barometric pressure	1018	mbar or hPa	Calculated Ind	oor Air Density				kg/m ³	7.0					
temperature corr. fact. depress.	0.945			descri	ption of main construct	ion details:			6.9 -					
temperature corr. fact. press.	1.058		New build, tim	ber frame, detao	ched, integral garage								7	
wind speed (m/s):	0	Conditions							6.8 -					
baseline pressure diff (Pa) (+/-)	7.005	Pa							6.7 -					
house width: house depth:	7.265								a			- 1 - E		
house height:	4.923											¥		
floor area:	114.5		•						5 0.0			I = 1		
volume:	280.17								6.5 -		<u>-</u>			
envelope area including floor:	290.26								6.4 -					
Pressure Difference for ELA		Pa												
RESULTS:									6.3 -		-			
Q50 Mean Flow at 50Pa =	860.51	m³/h							6.2					
Mean Air Leakage at 50Pa =	3.07	h ⁴							2.0		3.0 In A	-	4.0	5.0
Mean Air Permeability at 50 Pa =	2.96	m/h or m ³ h/m ²							2.0		^{3.0} Ln ∆	P	4.0	5.0
Equivalent Leakage Area =	0.034	m ² at	10	Pa										
DEPRESSURISATION	RING -	MEASURED FAN	MEASURED	ADJUSTED	FLOW RANGE OK	Adjusted	Ln delta	Ln Q	Q50 Calculated	Permeability	Air Leakage		Depressurisati	on
	O,A,B,C,D,E	PRESSURE (Pa)	FLOW (m ³ /h)	FLOW (m ³ /h)	FOR SELECTED	Pressure	Р		Flow at 50Pa	Depressurisation	Depressurisation	1000.0		
	for BD3	Max. 90 Pa			RING?	(Pa)			(m ³ /h)	Only (m ³ /(h.m ²))	Only (h ⁻¹)	900.0		
	0,1,2,3 for											700.0	1	
4 45 5	DuctBB	00.5				00.5	4.400	0.040				600.0		
Approx 65 Pa	b	60.5	964	909.3	OK	60.5	4.103	6.813	818.68	2.82	2.92	500.0		
Approx 57 Pa	b	53.8	892	841.4	OK	53.8	3.985	6.735	r ²	1.000		400.0		
Approx 49 Pa	b	48.6	838	790.5	ОК	48.6	3.884	6.673	Cen	57.375	m³/h.Pa <i>n</i>	200.0		
Approx 41 Pa	b	42	757	714.1	ОК	42	3.738	6.571	n	0.674		100.0		
Approx 33 Pa	b	35.3	673	634.8	ОК	35.3	3.564	6.453				0.0	25 50	75 100
Approx 25 Pa	b	30.4	608	573.5	ОК	30.4	3.414	6.352	C _L (corrected)	58.560	m³/h.Pa <i>n</i>	ľ	23 30 Δ P	.0 .00
Approx 20 Pa	b	24.8	529	499.0	ОК	24.8	3.211	6.213					<u> </u>	
													Pressurisatio	
PRESSURISATION	RING -	MEASURED FAN		ADJUSTED	FLOW RANGE OK	Adjusted	Ln delta	Ln Q	Q50 Calculated	Permeability	Air Leakage	1200.0 -	FIESSUISAUO	
	O,A,B,C,D,E for BD3	PRESSURE (Pa) Max. 90 Pa	FLOW (m [®] /h)	FLOW (m ³ /h)	FOR SELECTED RING?	Pressure (Pa)	P		Flow at 50Pa	Pressurisation	Pressurisation			
	0,1,2,3 for	wax 90 Pa			KING?	(Pa)			(m³/h)	Only (m³/(h.m²))	Only (h ⁻¹)	1000.0		
	DuctBB											800.0	-	
Approx 65 Pa	b	57.4	925	980.6	ОК	57.4	4.050	6.888	902.33	3.11	3.22	60.0		
Approx 57 Pa	b	51.6	870	922.3	OK	51.6	3.944	6.827	2	1.000			•	
Approx 49 Pa	b	46.1	806	854.5	OK	46.1	3.831	6.750	Cen	75.895	m³/h.Pa <i>n</i>	400.0		
Approx 41 Pa	b	40.9	746	790.9	OK	40.9	3.711	6.673	n Cen	0.632		200.0		
Approx 33 Pa	b	35.7	691	732.6	OK	35.7	3.575	6.597		0.032		0.0		
Approx 33 Pa Approx 25 Pa	b	30.6	622	659.4	OK	30.6	3.575	6.491	C (correcte d)	76.046	m³/h.Pa <i>n</i>	0.0	25 50	75 100
THE STATE STATE			1		OK				C _L (corrected)	70.016	m /n.Pan	-	ΔP	
Approx 20 Pa	b	23.6	528	559.8	OK	23.6	3.161	6.328						

Pressure Test Spreadsheet: 267

A P	LEEDS									DEPRESSURISATION					
		VERSITY	Leeds Sustainability						7.0 - 6.9 -				•		
MINNEAPOLIS BLOWER	DOOR D	ATA INPUT A	ND CALCU	LATION					6.8 -						
date:	13/11/2017		Version 16d		19 June 2017				or 6.7		/				
test house address:	Plot 267 - 51	Thistledown Dv. C	ambuslang G	72 6AF					<u>5</u> 6.6 -		l de la compañía de l				
company:		tion - Taylor Wimp							6.5 -						
house type:	Maxwell 2		-)						6.4 -						
tester:	DMS										1				
test reference number:	DING		Blower Door &	Gauge Lleed		Model 3 wit	b DG700		6.3 -		-				
outdoor temp (°C)	3.4	<u>ا</u> د			ETTINGS ARE IN m3/h			0 00000	6.2 🕂		1		1		
indoor temp (°C)		°C			nent for minimum 60s				2.0		3.0 Ln 2	P	4.0	5.0	
outdoor humidity (%rh)		%RH	rotating												
indoor humidity (%rh)		%RH									PRESSURIS	ATION	1		
outdoor barometric pressure	1019			tdoor Air Densit	y .			kg/m ³	7.2						
indoor barometric pressure	1019	mbar or hPa	Calculated Ind	1.21 kg/m ³			7.3				_				
temperature corr. fact. depress.	0.950	WARNING!!			iption of main construct	tion details:			7.2 -				1		
temperature corr. fact. press.	1.053		New build, tim	ber frame, deta	ched, integral garage				7.1 -			1			
wind speed (m/s):	0		4						7.0 -			1			
baseline pressure diff (Pa) (+/-) house width:	8.728	Pa	4									1			
house width:	9.963		1						o 6.9						
house height:	4.927								6.8 - ۲		- ×				
floor area:	137.95								- _{6.7}						
volume:	338.34										s se				
envelope area including floor:	333.8		1						6.6 -						
Pressure Difference for ELA		Pa	1						6.5 -						
RESULTS:									6.4 -						
Q50 Mean Flow at 50Pa =	1222.74	m³/h							6.3						
Mean Air Leakage at 50Pa =	3.61	h ⁻¹							2.0		3.0 In A	-	4.0	5.0	
Mean Air Permeability at 50 Pa =	3.66	m/h or m ³ h/m ²							2.0		^{3.0} Ln ∆	NP	4.0	5.0	
Equivalent Leakage Area =	0.048	m ² at	10	Pa											
DEPRESSURISATION	RING -	MEASURED FAN	MEASURED	ADJUSTED	FLOW RANGE OK	Adjusted	Ln delta	Ln Q	Q50 Calculated	Permeability	Air Leakage		Depressurisatio	on	
	O,A,B,C,D,E	PRESSURE (Pa)	FLOW (m ³ /h)	FLOW (m ³ /h)	FOR SELECTED	Pressure	P			Depressurisation					
	for BD3	Max. 90 Pa			RING?				Flow at 50Pa		Depressurisation	1200.0			
	0,1,2,3 for				KING?	(Pa)			riow at 50Pa (m ³ /h)	Only (m ³ /(h.m ²))	Depressurisation Only (h ⁻¹)		1		
					KING?	(Pa)	ľ.					1000.0			
4 05.0	DuctBB	50.0		4400.0				7.000	(m³/h)	Only (m³/(h.m²))	Only (h ⁻¹)	1000.0 800.0			
Approx 65 Pa	DuctBB b	50.3	1195	1133.0	ОК	50.3	3.918	7.033		Only (m ³ /(h.m ²)) 3.41		1000.0			
Approx 57 Pa	DuctBB b b	44.5	1075	1019.2	OK OK	50.3 44.5	3.795	6.927	(m³/h) 1139.54	Only (m ³ /(h.m ²)) 3.41 0.998	Only (h ⁻¹) 3.37	1000.0 800.0			
Approx 57 Pa Approx 49 Pa	DuctBB b b b	44.5 38.3	1075 999	1019.2 947.2	OK OK OK	50.3 44.5 38.3	3.795 3.645	6.927 6.853	(m³/h)	Only (m³/(h.m²)) 3.41 0.998 85.241	Only (h ⁻¹)	1000.0 800.0			
Approx 57 Pa Approx 49 Pa Approx 41 Pa	DuctBB b b b b b	44.5 38.3 32.5	1075 999 874	1019.2 947.2 828.7	OK OK OK	50.3 44.5 38.3 32.5	3.795 3.645 3.481	6.927 6.853 6.720	(m³/h) 1139.54	Only (m ³ /(h.m ²)) 3.41 0.998	Only (h ⁻¹) 3.37	1000.0 800.0 600.0 400.0 200.0			
Approx 57 Pa Approx 49 Pa Approx 41 Pa Approx 33 Pa	DuctBB b b b b b b b	44.5 38.3 32.5 27	1075 999 874 776	1019.2 947.2 828.7 735.7	ОК ОК ОК ОК	50.3 44.5 38.3 32.5 27	3.795 3.645 3.481 3.296	6.927 6.853 6.720 6.601	(m ³ /h) 1139.54 7 <u>Con</u> n	Only (m ³ /(h.m ²)) 3.41 0.998 85.241 0.657	Only (h ⁻¹) 3.37 m ³ /h.Pa <i>n</i>	1000.0 800.0 600.0 400.0 200.0 0.0	25 50	75 100	
Approx 57 Pa Approx 49 Pa Approx 41 Pa Approx 33 Pa Approx 25 Pa	DuctBB b b b b b b b b b	44.5 38.3 32.5 27 22	1075 999 874 776 689	1019.2 947.2 828.7 735.7 653.3	ОК ОК ОК ОК ОК	50.3 44.5 38.3 32.5 27 22	3.795 3.645 3.481 3.296 3.091	6.927 6.853 6.720 6.601 6.482	(m³/h) 1139.54	Only (m³/(h.m²)) 3.41 0.998 85.241	Only (h ⁻¹) 3.37	1000.0 800.0 600.0 400.0 200.0 0.0	0 25 50 AP	75 100	
Approx 57 Pa Approx 49 Pa Approx 41 Pa Approx 33 Pa	DuctBB b b b b b b b	44.5 38.3 32.5 27	1075 999 874 776	1019.2 947.2 828.7 735.7	ОК ОК ОК ОК	50.3 44.5 38.3 32.5 27	3.795 3.645 3.481 3.296	6.927 6.853 6.720 6.601	(m ³ /h) 1139.54 7 <u>Con</u> n	Only (m ³ /(h.m ²)) 3.41 0.998 85.241 0.657	Only (h ⁻¹) 3.37 m ³ /h.Pa <i>n</i>	1000.0 800.0 600.0 400.0 200.0 0.0	0 25 50 ΔP	75 100	
Approx 57 Pa Approx 49 Pa Approx 41 Pa Approx 33 Pa Approx 25 Pa Approx 20 Pa	DuctBB b b b b b b b	44.5 38.3 32.5 27 22 16.8	1075 999 874 776 689 577	1019.2 947.2 828.7 735.7 653.3 547.1	OK OK OK OK OK OK	50.3 44.5 38.3 32.5 27 22 16.8	3.795 3.645 3.481 3.296 3.091 2.821	6.927 6.853 6.720 6.601 6.482 6.305	(m ³ /h) 1139.54 C _{en} C _L (corrected)	Only (m ³ /(h.m ²)) 3.41 0.998 85.241 0.657 87.171	Only (h ⁻¹) 3.37 m ³ /h.Pa <i>n</i> m ³ /h.Pa <i>n</i>	1000.0 800.0 600.0 400.0 200.0 0.0	ΔP		
Approx 57 Pa Approx 49 Pa Approx 41 Pa Approx 33 Pa Approx 25 Pa	DuctBB b b b b b b b b b c c c c c c c c c c	44.5 38.3 32.5 27 22 16.8 MEASURED FAN	1075 999 874 776 689 577 MEASURED	1019.2 947.2 828.7 735.7 653.3 547.1 ADJUSTED	OK OK OK OK OK FLOW RANGE OK	50.3 44.5 38.3 32.5 27 22 16.8 Adjusted	3.795 3.645 3.481 3.296 3.091	6.927 6.853 6.720 6.601 6.482	(m ³ /h) 1139.54 r ² C _{en} n C _L (corrected) Q50 Calculated	Only (m ³ /(h.m ²)) 3.41 0.998 85.241 0.657 87.171 Permeability	Only (h ⁻¹) 3.37 m ³ /h.Pa <i>n</i> M ³ /h.Pa <i>n</i> Air Leakage	1000.0 800.0 600.0 200.0 0.0			
Approx 57 Pa Approx 49 Pa Approx 41 Pa Approx 33 Pa Approx 25 Pa Approx 20 Pa	DuctBB b b b b b b RING - O,AB,C,D,E	44.5 38.3 32.5 27 22 16.8 MEASURED FAN PRESSURE (Pa)	1075 999 874 776 689 577 MEASURED	1019.2 947.2 828.7 735.7 653.3 547.1	OK OK OK OK OK FLOW RANGE OK FOR SELECTED	50.3 50.3 44.5 38.3 32.5 27 22 16.8 Adjusted Pressure	3.795 3.645 3.481 3.296 3.091 2.821	6.927 6.853 6.720 6.601 6.482 6.305	(m ³ /h) 1139.54 r ² C _{en} n C _L (corrected) Q50 Calculated Flow at 50Pa	Only (m ³ /(h,m ²)) 3.41 0.998 85.241 0.667 87.171 Permeability Pressurisation	Only (h ⁻¹) <u>3.37</u> m ³ h.Pan m ³ h.Pan Air Leakage Pressurisation	1000.0 800.0 600.0 200.0 0.0 1600.0	ΔP		
Approx 57 Pa Approx 49 Pa Approx 41 Pa Approx 33 Pa Approx 25 Pa Approx 20 Pa	DuctBB b b b b b b b b c c RING - O,AB,C,D,E for BD3	44.5 38.3 32.5 27 22 16.8 MEASURED FAN	1075 999 874 776 689 577 MEASURED	1019.2 947.2 828.7 735.7 653.3 547.1 ADJUSTED	OK OK OK OK OK FLOW RANGE OK	50.3 44.5 38.3 32.5 27 22 16.8 Adjusted	3.795 3.645 3.481 3.296 3.091 2.821	6.927 6.853 6.720 6.601 6.482 6.305	(m ³ /h) 1139.54 r ² C _{en} n C _L (corrected) Q50 Calculated	Only (m ³ /(h.m ²)) 3.41 0.998 85.241 0.657 87.171 Permeability	Only (h ⁻¹) 3.37 m ³ /h.Pa <i>n</i> M ³ /h.Pa <i>n</i> Air Leakage	1000.0 800.0 600.0 200.0 0.0 1600.0 1400.0	ΔP		
Approx 57 Pa Approx 49 Pa Approx 41 Pa Approx 33 Pa Approx 25 Pa Approx 20 Pa	DuctBB b b b b b b b b c c c c c c c c c c c	44.5 38.3 32.5 27 22 16.8 MEASURED FAN PRESSURE (Pa)	1075 999 874 776 689 577 MEASURED	1019.2 947.2 828.7 735.7 653.3 547.1 ADJUSTED	OK OK OK OK OK FLOW RANGE OK FOR SELECTED	50.3 50.3 44.5 38.3 32.5 27 22 16.8 Adjusted Pressure	3.795 3.645 3.481 3.296 3.091 2.821	6.927 6.853 6.720 6.601 6.482 6.305	(m ³ /h) 1139.54 r ² C _{en} n C _L (corrected) Q50 Calculated Flow at 50Pa	Only (m ³ /(h,m ²)) 3.41 0.998 85.241 0.667 87.171 Permeability Pressurisation	Only (h ⁻¹) <u>3.37</u> m ³ h.Pan m ³ h.Pan Air Leakage Pressurisation	1000.0 800.0 600.0 200.0 0.0 1600.0 1400.0 1400.0 1200.0	ΔP		
Approx 57 Pa Approx 49 Pa Approx 41 Pa Approx 33 Pa Approx 25 Pa Approx 20 Pa PRESSURISATION	DuctBB b b b b b b c c c c c c c c c c c c c	44.5 38.3 32.5 27 22 16.8 MEASURED FAN PRESSURE (Pa) Max 90 Pa	1075 999 874 776 689 577 MEASURED FLOW (m ³ /h)	1019.2 947.2 828.7 735.7 653.3 547.1 ADJUSTED FLOW (m ³ ħ)	OK OK OK OK OK FLOW RANGE OK FOR SELECTED RING?	50.3 44.5 38.3 32.5 27 22 16.8 Adjusted Pressure (Pa)	3.795 3.645 3.481 3.296 3.091 2.821 Ln delta P	6.927 6.853 6.720 6.601 6.482 6.305	(m ³ /h) 1139.54 C _{cn} C _c C _c (corrected) C _c (corrected) (correct	Only (m ³ /(h.m ³)) 3.41 0.998 85.241 0.657 87.171 Permeability Pressurisation Only (m ³ /(h.m ²))	Only (h ⁻¹) <u>3.37</u> m ³ /h.Pa <i>n</i> m ³ /h.Pa <i>n</i> Air Leakage Pressurisation Only (h ⁻¹)	1000.0 800.0 600.0 200.0 200.0 100.0 1600.0 1400.0 1400.0 1400.0 1200.0 1000.0	ΔP		
Approx 57 Pa Approx 49 Pa Approx 49 Pa Approx 33 Pa Approx 25 Pa Approx 20 Pa PRESSURISATION	DuctBB b b b b b b RING - O,AB,C,D,E for BD3 0,1,2,3 for DuctBB b	44.5 38.3 32.5 27 22 16.8 MEASURE FAN PRESSURE (Pa) Max 90 Pa 54.3	1075 999 874 776 689 577 MEASURED FLOW (m ³ /h) 1291	1019.2 947.2 828.7 735.7 653.3 547.1 ADJUSTED FLOW (m ³ /h) 1361.6	OK OK OK OK OK FLOW RANGE OK FOR SELECTED RING?	50.3 44.5 38.3 32.5 27 22 16.8 Adjusted Pressure (Pa) 54.3	3.795 3.645 3.481 3.296 3.091 2.821 Ln delta P	6.927 6.853 6.720 6.601 6.482 6.305 Ln Q	(m ³ /h) 1139.54 r ² C _{en} n C _L (corrected) Q50 Calculated Flow at 50Pa	Only (m ³ /(h.m ³)) 3.41 0.998 85.241 0.657 87.171 Permeability Pressurisation Only (m ³ /(h.m ²)) 3.91	Only (h ⁻¹) <u>3.37</u> m ³ h.Pan m ³ h.Pan Air Leakage Pressurisation	1000.0 800.0 400.0 200.0 0.0 1600.0 1400.0 1400.0 1200.0 1200.0 1000.0 800.0	ΔP		
Арргох 57 Ра Арргох 49 Ра Арргох 41 Ра Арргох 33 Ра Арргох 25 Ра Арргох 20 Ра PRESSURISATION Арргох 65 Ра Арргох 65 Ра Арргох 57 Ра	DuctBB b b b b b b b c RING - 0,AB,C,D,E for BD3 0,1,2,3 for DuctBB b b	44.5 38.3 32.5 27 22 16.8 MEASURED FAN PRESSURE (Pa) Max 90 Pa 54.3 47.1	1075 999 874 776 689 577 MEASURED FLOW (m ³ /h) 1291 1195	1019.2 947.2 828.7 735.7 653.3 547.1 ADJUSTED FLOW (m ³ /h) 1361.6 1260.4	OK OK OK OK OK CK FLOW RANGE OK FOR SELECTED RING?	50.3 44.5 38.3 32.5 27 22 16.8 Adjusted Pressure (Pa) 54.3 47.1	3.795 3.645 3.481 3.296 3.091 2.821 Ln delta P	6.927 6.853 6.720 6.601 6.482 6.305 Ln Q 7.216 7.139	(m ³ /h) 1139.54 r ² C _{on} C _L (corrected) C _L (corrected)	Only (m ² (h.m ²)) 3.41 0.998 85.241 0.657 87.171 Permeability Permeability Pressurisation Only (m ² (h.m ²)) 3.91 0.999	Only (h ⁻¹) <u>3.37</u> m ³ /h.Pan m ³ /h.Pan Air Leakage Pressurisation Only (h ⁻¹) <u>3.86</u>	1000.0 800.0 400.0 200.0 0.0 1600.0 1400.0 1400.0 1400.0 1200.0 1000.0 600.0	ΔP		
Approx 57 Pa Approx 49 Pa Approx 41 Pa Approx 32 Pa Approx 25 Pa Approx 20 Pa PRESSURISATION Approx 65 Pa Approx 57 Pa Approx 57 Pa Approx 49 Pa	DuctBB b b b b b B RING - O,AB,C,D,E for BD3 0,1,2,3 for DuctBB b b	44.5 38.3 32.5 27 22 16.8 MEASURED FAN PRESSURE (Pa) Max 90 Pa 54.3 47.1 41.1	1075 999 874 776 689 577 MEASURED FLOW (m ³ /h) 1291 1195 1084	1019.2 947.2 828.7 735.7 653.3 547.1 ADJUSTED FLOW (m ³ ħ) 1361.6 1260.4 1143.3	OK OK OK OK OK FLOW RANGE OK FOR SELECTED RING?	50.3 44.5 38.3 32.5 27 22 16.8 Adjusted Pressure (Pa) 54.3 47.1 41.1	3.795 3.645 3.481 3.296 3.091 2.821 Ln delta P 3.995 3.852 3.716	6.927 6.853 6.720 6.601 6.482 6.305 Ln Q 7.216 7.139 7.042	(m ³ /h) 1139.54 r ² Com Com Com Com Com Com Com Com	Only (m ² /(h,m ²)) 3.41 0.998 85.241 0.65 ² 87.171 Permeability Pressuriation Only (m ² /(h,m ²)) 3.91 0.999 98.442	Only (h ⁻¹) <u>3.37</u> m ³ /h.Pa <i>n</i> m ³ /h.Pa <i>n</i> Air Leakage Pressurisation Only (h ⁻¹)	1000.0 800.0 600.0 200.0 200.0 0.0 1600.0 1400.0 1400.0 1400.0 1200.0 1000.0 600.0 400.0	ΔP		
Approx 57 Pa Approx 49 Pa Approx 49 Pa Approx 23 Pa Approx 25 Pa Approx 20 Pa PRESSURISATION Approx 65 Pa Approx 65 Pa Approx 57 Pa Approx 49 Pa Approx 49 Pa	DuctBB b b b b b b b b CNAB.C.D.E for BD3 0.1.2.3 for 0.1.2.3 for b b b b b b b b b b	44.5 38.3 32.5 27 22 16.8 MEASURED FAN PRESSURE (Pa) Max 90 Pa 54.3 47.1 41.1 34.1	1075 999 874 776 689 577 MEASURED FLOW (m ³ /h) 1291 1195 1084 958	1019.2 947.2 828.7 735.7 653.3 547.1 ADJUSTED FLOW (m ³ /h) 1361.6 1260.4 1143.3 1010.4	OK OK OK OK OK FLOW RANGE OK FOR SELECTED RING? OK OK	50.3 44.5 38.3 32.5 27 22 16.8 	3.795 3.645 3.481 3.296 3.091 2.821 2.821 Ln delta P 3.995 3.852 3.716 3.529	6.927 6.853 6.720 6.601 6.482 6.305 Ln Q 7.216 7.139 7.042 6.918	(m ³ /h) 1139.54 r ² C _{on} C _L (corrected) C _L (corrected)	Only (m ² (h m ²)) 3.41 0.998 85.241 0.657 87.171 Permeability Pressurisation Only (m ² (h m ²)) 3.91 0.999 98.442	Only (h ⁻¹) <u>3.37</u> m ³ /h.Pan m ³ /h.Pan Air Leakage Pressurisation Only (h ⁻¹) <u>3.86</u>	1000.0 800.0 400.0 200.0 200.0 0.0 100.0 1400.0 1400.0 1200.0 1400.0 1200.0 1000.0 900.0 900.0 200.0	ΔP		
Approx 57 Pa Approx 49 Pa Approx 41 Pa Approx 25 Pa Approx 20 Pa PRESSURISATION Approx 65 Pa Approx 57 Pa Approx 49 Pa Approx 49 Pa Approx 37 Pa	DuctBB b b b b b b b b b c AB.C,D.E for B03 0,1,2,3 for DuctBB b b b b b b b b b b b b b b b b b b	44.5 38.3 32.5 27 22 16.8 MEASURED FAN MEASURED FAN Max. 90 Pa 54.3 47.1 41.1 34.1 29	1075 999 874 776 689 577 MEASURED FLOW (m ³ /h) 1291 1195 1084 958 868	1019.2 947.2 828.7 735.7 653.3 547.1 ADJUSTED FLOW (m ³ /h) 1361.6 1260.4 1143.3 1010.4 915.5	OK OK OK OK OK OK FLOW RANGE OK FOR SELECTED RING? OK OK OK	50.3 44.5 38.3 32.5 27 22 16.8 Adjusted Pressure (Pa) 54.3 47.1 41.1 34.1 29	3.795 3.645 3.481 3.296 3.091 2.821 2.821 Ln delta P 3.995 3.852 3.716 3.529 3.367	6.927 6.853 6.720 6.601 6.482 6.305 7.05 7.216 7.139 7.042 6.918 6.819	(m ³ /h) 1139.54 r ² C _{on} C _L (corrected) C _L (corrected)	Only (m ² (h.m ²)) 3.41 0.998 65.241 0.657 87.171 Permeability Pressurisation Only (m ² (h.m ²)) 3.91 0.999 98.442 0.660	Only (h ⁻¹) <u>3.37</u> m ³ /h.Pa <i>n</i> ^{m3} /h.Pa <i>n</i> Air Leakage Pressurisation Only (h ⁻¹) <u>3.86</u> m ³ /h.Pa <i>n</i>	1000.0 800.0 400.0 200.0 200.0 1000.0 1400.0 1400.0 1200.0 1000.0 600.0 400.0 200.0 0.0 0.0	ΔP		
Approx 57 Pa Approx 49 Pa Approx 41 Pa Approx 33 Pa Approx 25 Pa Approx 20 Pa PRESSURISATION Approx 65 Pa Approx 65 Pa Approx 57 Pa Approx 49 Pa Approx 49 Pa Approx 41 Pa	DuctBB b b b b b b b b CNAB.C.D.E for BD3 0.1.2.3 for 0.1.2.3 for b b b b b b b b b b	44.5 38.3 32.5 27 22 16.8 MEASURED FAN PRESSURE (Pa) Max 90 Pa 54.3 47.1 41.1 34.1	1075 999 874 776 689 577 MEASURED FLOW (m ³ /h) 1291 1195 1084 958	1019.2 947.2 828.7 735.7 653.3 547.1 ADJUSTED FLOW (m ³ /h) 1361.6 1260.4 1143.3 1010.4	OK OK OK OK OK FLOW RANGE OK FOR SELECTED RING? OK OK	50.3 44.5 38.3 32.5 27 22 16.8 	3.795 3.645 3.481 3.296 3.091 2.821 2.821 Ln delta P 3.995 3.852 3.716 3.529	6.927 6.853 6.720 6.601 6.482 6.305 Ln Q 7.216 7.139 7.042 6.918	(m ³ /h) 1139.54 r ² Com Com Com Com Com Com Com Com	Only (m ² (h.m ²)) 3.41 0.998 65.241 0.657 87.171 Permeability Pressurisation Only (m ² (h.m ²)) 3.91 0.999 98.442 0.660	Only (h ⁻¹) <u>3.37</u> m ³ /h.Pan m ³ /h.Pan Air Leakage Pressurisation Only (h ⁻¹) <u>3.86</u>	1000.0 800.0 400.0 200.0 200.0 1000.0 1400.0 1400.0 1200.0 1000.0 600.0 400.0 200.0 0.0 0.0	Δ P Pressurisation		