Citation:

Link to Leeds Beckett Repository record:
http://eprints.leedsbeckett.ac.uk/5066/

Document Version:
Monograph

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been checked for copyright and the relevant embargo period has been applied by the Research Services team.

We operate on a standard take-down policy. If you are the author or publisher of an output and you would like it removed from the repository, please contact us and we will investigate on a case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party copyright. If you would like a thesis to be removed from the repository or believe there is an issue with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a case-by-case basis.
Taylor Wimpey – Thermal Imaging Project

Site: Newton Farm
Cambuslang
G72 8QF

Visit Date: 13th November 2017

Plot(s): 268
267

House Type: 268 Fairbairn 2
267 Maxwell 2
Timber Frame, 2-Storey, Detached, Integral Garage

Floor Plans:
268 Fairbairn 2 (handed)
Environmental Conditions:
Internal Temperature 19.8 / 18.0 °C
External Temperature 3.8 / 3.4 °C
Internal RH 51 %
External RH 73 / 72 %
Wind Speed 0.0 ms⁻¹
Wind Direction n/a
Overcast skies, no rain in preceding 36 hours.

Pressure Test Results:

<table>
<thead>
<tr>
<th>268 Fairbairn 2</th>
<th>Depressurisation Only</th>
<th>Pressurisation Only</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>m³/(h.m²)@50Pa</td>
<td>ach⁻¹</td>
<td>r²</td>
<td>m³/(h.m²)@50Pa</td>
</tr>
<tr>
<td>2.82</td>
<td>2.92</td>
<td>1.000</td>
<td>3.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>267 Maxwell 2</th>
<th>Depressurisation Only</th>
<th>Pressurisation Only</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>m³/(h.m²)@50Pa</td>
<td>ach⁻¹</td>
<td>r²</td>
<td>m³/(h.m²)@50Pa</td>
</tr>
<tr>
<td>3.41</td>
<td>3.37</td>
<td>0.998</td>
<td>3.91</td>
</tr>
</tbody>
</table>
Observations:
The thermal images below are shown on varying temperature scales to highlight what was being observed, please take into account these different image spans when directly comparing images. The minimum span used is 5° so as not to over-exaggerate any thermal anomalies observed.

Plot 268
Thermal images under depressurisation were captured at an average pressure of -51.8 Pa.

<table>
<thead>
<tr>
<th>External - Under natural conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

As expected the house appears cooler at loft level on the gables, not so expected was that the gable wall would be warmer than the external surface of the rest of the house. This appeared due to the boiler placement in the garage and the much lower thermal resistance of the external wall at the garage:

A warmer strip was visible on both gable walls around the intermediate floor void, where the floor joists run normal to the walls, but less so on the front and rear façades where the joists run parallel to the external walls. The difference in elevations suggests that may be due to difference in floor perimeter detailing, but is complicated by heating pipes running through the floor void:
The ground floor perimeter was much warmer than the rest of the external wall. It was unclear whether this was expected or unintended heat loss at ground floor perimeter. Additional heat loss was observed at the patio door threshold which was not completely finished.

As the trickle vents had been left open it was difficult to see if the warmer sections of boxed eaves were due to thermal anomalies or due to warm air venting out. As such, any potential difference between the thermal performance of the solid timber above the windows and the insulated panels between them could not be observed from outside:

Similarly, the gable windows on the front elevation appeared to show different levels of thermal performance from outside, particularly at the window heads and gable above. However, on internal inspection it appears most probably due to the trickle vents being left open in Bedroom 2 (above the garage) and closed in Bedroom 1 prior to the thermal survey being undertaken.
Dining – Under natural conditions
Where the internal wall with the hall becomes external wall there is a sharp drop in surface temperature, particularly at patches just above the base of the wall panel.

Even under natural pressures some infiltration could be observed around the window, particularly beneath the sill board edges.

The cooler vertical members of the timber frame were clear on the thermal images, with warmer insulated sections between. Cooler horizontal timers at the ground floor and intermediate floor coincided with warmer areas viewed from outside.

Stratification of the voids between the joists in the intermediate floor appeared to be driven by the positioning of the heating system pipework.
Dining – Under depressurisation

<table>
<thead>
<tr>
<th>Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The differences in surface temperature of the hall/external sections of the same wall appeared to increase under depressurisation, with a number of points at the top and bottom of the external wall section indicating air movement into the wall panels.</td>
</tr>
<tr>
<td></td>
<td>Although the window seals appeared to work well, infiltration between the window frame and opening was apparent, particularly around the sill board.</td>
</tr>
<tr>
<td></td>
<td>The stratification of the intermediate floor void and cooler sections at the floor junctions did not seem to change much under depressurisation for their appearances under natural pressures, suggesting these were due to thermal issues rather than air movement.</td>
</tr>
</tbody>
</table>
Family / Kitchen – Under natural conditions

As in the Dining Room, cooler areas where noticeable at both the ground floor and intermediate floor junctions. This was most severe at the patio door threshold and the infilled section of floor between the slab and patio door frame.
Family / Kitchen – Under depressurisation
Under depressurisation air infiltration was detected emerging around a number of service penetrations; above the kitchen units this air appeared to be drawn from the intermediate floor perimeter as this was where it looked coolest, below the kitchen units the emerging air appeared to be spreading up from the ground floor.

Infiltration around the patio doors was also observed; directly into the room around the doors and frame, and indirectly into the walls around the solid timber lintel and at the base of the jambs.
Some cooler patches were evident at the sill board, as seen in the dining room.

Infiltration detected around the window as previously observed; around the window frame, at the sill board and window head.

Slightly lower temperatures of the intermediate floor void appear to be spreading inwards from the external wall junction.
The cold spot on the rear wall near the ceiling coincides with the position of the external light.

The gable wall and wall to the garage show similar internal surface temperatures at the bottom and middle of the panels.

The compartmentation temperatures across the intermediate floor void is amplified by heating pipes running through the void from the adjacent garage with a large temperature gradient observed over the short distance to the gable wall:

Lounge – Under depressurisation

Air infiltration at the external light is significantly worse.

Increased air infiltration is also seen again around the window; around the frame, beneath the sill and indirectly around the lintel.

Increased heat loss was detected at the floor plate on the rear wall, gable wall and the wall to the garage, due to infiltration.
As in the Lounge, there is a cold spot on the external wall which corresponds to the position of the exterior light.
Cupboard under the stairs backing onto the garage shows similar pattern to that observed from the Lounge.

As in the Lounge, the exterior light fitting/penetration appears to be a greater issue under depressurisation.

Again, there is increased air movement around the floor plate, but this appears to move into the wall panels and not around the skirting into the room itself.

At the intermediate floor above the garage cooler air is also observed.

In the cupboard under the stairs that backs onto the garage the only
noticeable change appears to be at the floor junction, with a cooler spot in the corner and a thermal gradient going across the cupboard floor of greater than 3°.
Colder areas are visible around the wall penetration to the external soil pipe from the toilet and on the ceiling where the loft insulation might not be in direct contact with the ceiling plasterboard.

Under depressurisation the usual issues are apparent around the window as seen elsewhere throughout the house.

Air infiltration around the soil pipe penetration appears significantly worse, as does the air flow from the loft being drawn in around the central light fixing.

Air is also detected entering at the intermediate floor junction with the external wall, it is unclear whether this is entering around the soil pipe penetration and tracking across...
behind the skirting and there is a only a very slight increase in emerging air temperature moving away from the penetration.

The ceiling at the eaves junction is very cold in places suggesting that there is a lack of insulation in places, with additional roof timbers present to support the gable roof this may have presented difficulty in installing the loft insulation adequately. The result is a 6° difference between surface
temperatures at the centre and sides of the ceiling directly in front of the window:

With ceiling temperatures actually appearing colder than temperatures at the window frame.

Another issue with the loft insulation was seen with colder strips observed in a number of places.

Bedroom 1 – Under depressurisation
Under depressurisation cold air could be observed spreading out from the previously identified colder areas and being drawn down the external wall panels.

Air infiltration was detected again around the window and at the intermediate floor junctions with the external walls.
Bedroom 4 – Under natural conditions

As observed in Bedroom 1, with cold sections of ceiling, at the floor and external wall junctions and issues at the eaves. The loft insulation at the eaves again appears not to form a complete and continuous thermal layer with sections of the ceiling appearing cooler than the window again.

An area of floor that backed onto the En-suite near the toilet also appeared markedly cooler.

It is possible to see some difference between the top of the external wall at the eaves over the window and to the side of the window (as
Most of the observations made under natural conditions were exacerbated under depressurisation. Air infiltration was again detected around the window and intermediate floor perimeter.
The cooler areas in the middle of the ceiling identified previously appeared to spread under depressurisation.

Once again there are questions about cold areas at the eaves junction and at the penetration for the external soil pipe.
As previously observed but worsened.

Cooler air could also be observed being drawn down the boxed-in service void, emerging at the intermediate floor.
Bedroom 3 – Under natural conditions

As Bedroom 4, but loft insulation issues at the eaves appear even more severe.
The temperature compartmentation of the intermediate floor void observed from below in the Lounge was equally visible from above:

<table>
<thead>
<tr>
<th>Bedroom 3 – Under depressurisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold air could be seen coming down from the loft and emerging at the electrical socket on the rear wall. Once again there was infiltration all around the window, and air from the window sill could be seen moving through the wall panel beneath.</td>
</tr>
</tbody>
</table>
Some air leakage was also detected at the intermediate floor junctions with the external walls and at the internal wall backing on to the built-in wardrobe in Bedroom 2 above the garage.
As observed in Bedroom 1; again there are issues at either side of the ceiling above the window and issues at the intermediate floor junction with the gable wall appear slightly worse.
Repeating what was seen in the other bedrooms; however, with increased infiltrations observed around the intermediate floor perimeter, particularly at the built-in wardrobe.
Landing – Under natural conditions
Some colder areas are visible where the loft insulation appears to not be in direct contact with the ceiling plasterboard.
Significant infiltration was observed drawn down from the loft under depressurisation which was not visible under natural conditions as this was then an exfiltration zone. Air can be seen entering the landing around the ceiling penetrations and being drawn into some of the internal partition walls.
Looking towards the gable wall above garage hot spots can be seen around the angled junctions of the trussed rafters and between gaps in the uppermost layer of loft insulation between the rolls.

Looking towards the opposing gable wall similar observations are made.
Plot 267
Thermal images under depressurisation were captured at an average pressure of -51.7 Pa. Unfortunately, I was not informed that this property had not yet had loft insulation installed. The heating was turned off by site staff shortly after 10:30 am, by the time I conducted the survey just over 2 hours later the house had cooled considerably, particularly upstairs where there was no thermal mass to retain the heat. No trickle vents had been fitted in the windows, these were sealed using airtightness sealing film on entering the dwelling immediately after completing the external thermographic survey.

External - Under natural conditions

The garage was open in this property so it was possible to also look inside and see the extent to which the boiler and heat transfer from inside the property were heating the garage. Again the garage appeared warmer than the rest of the house from the external imaging of the gable wall. The thermal gradient across the garage floor is only 3° but looks more severe due to the colder temperatures around it:

The heating and hot water pipes from the boiler can be seen providing additional heat to the garage.
The gable wall at the loft appears warmer due to there being no insulation in the loft with a cold strip directly underneath where the rigid board insulation extended up above the wallplate.

As in plot 268, warmer strips could be seen at the intermediate floor level and at the ground floor perimeter on all sides of the house.
With lower internal temperatures, and hence a lower internal/external temperature differential, similar issues were observed as in plot 268 but do not show up on the thermal images quite as strikingly.

The timber frames were again clearly visible, and some infiltration observed around the window and at the open pattress box on the external wall.
Under depressurisation the previously observed infiltration paths understandably worsened, as in plot 268 there were noticeable air paths around the sill board.

<table>
<thead>
<tr>
<th>Lounge – Under depressurisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Dining – Under natural conditions</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
The patio doors appeared much like those in the Family/Breakfast Room in plot 268, with a very cold section at the infilled section at the threshold.

<table>
<thead>
<tr>
<th>Dining – Under depressurisation</th>
</tr>
</thead>
</table>

The patio doors themselves appeared to prevent air movement through them very well, with just a small amount coming through at the top and bottom of the doors; however there was more significant air movement around the frame and up into the walls on either side of the infilled section between the floor slab and door frame.
<table>
<thead>
<tr>
<th>Ground Floor WC – Under natural conditions</th>
<th>No significant issues with the thermal imaging on a 5° span.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Floor WC – Under depressurisation</td>
<td></td>
</tr>
</tbody>
</table>
Again, there were no major issues detected on a 5° span, there may be some air infiltration into the wall around the penetration for the extract fan but nothing significant.

The patio doors appeared to be marginally better than in the Dining Room and there appeared to be some air movement into the wall around the extract fan, nut otherwise there were again no significant issues with the thermal imaging on a 5° span.
Under depressurisation the previously observed infiltration paths worsened and air leakage around and below the windows were now apparent.

The garage wall appeared to have a similar surface temperature to the other internal walls.

Without loft insulation the temperature of the wall surface backing onto the Lounge going up the stairs:
The ground floor and the water in the heating/DHW system appeared to have retained their heat more than the rest of the dwelling, with the floor and the section of intermediate floor containing the pipework remaining the warmest areas in the images opposite.

The internal walls did not lose much additional heat over the 40 minutes between the thermal survey under natural conditions and under depressurisation:
En-Suite – Under natural conditions

No significant issues with the thermal imaging on a 5° span and the loft un-insulated. However, the crossed timbers seen through the ceiling plasterboard may explain why some of the cooler patches of ceiling were observed in plot 268; as these would likely allow air gaps between the ceiling plasterboard and insulation, impairing the performance of the insulation.

En-Suite – Under depressurisation

As above, but with cooler air entering around the temporarily sealed extract fan and perhaps down the partition walls and boxed-in services.

Without loft insulation the air being drawn in from the loft is not that much cooler than the room.
<table>
<thead>
<tr>
<th>Room</th>
<th>Condition</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedroom 1</td>
<td>Under natural conditions</td>
<td>No significant issues with the thermal imaging on a 5° span.</td>
</tr>
<tr>
<td>Bedroom 1</td>
<td>Under depressurisation</td>
<td>Infiltration at the ceiling penetration, window jamb were now perceptible. Air could also be seen being drawn into the wall panel at the side of the gable window where issues had been seen in plot 268.</td>
</tr>
</tbody>
</table>

Temperature so is difficult to determine with certainty, air infiltration from outside is still clearly visible.
Bedroom 3 – Under natural conditions

As Bedroom 1.

Bedroom 3 – Under depressurisation

As Bedroom 1; again some air was observed being drawn into the wall panels, but was difficult to detect entering the actual room as it was emerging at the intermediate floor perimeter at room temperature (so not showing up on the thermal camera).
Bathroom – Under natural conditions

No significant issues with the thermal imaging on a 5° span.

Bathroom – Under depressurisation

The direct infiltration from outside around the extract fan was clearly visible, as was some air movement at the window head.

As in Bedroom 3, some air was detected emerging from beneath the shower tray but did not show on the thermal image as it was at room temperature.

Bedroom 4 – Under natural conditions
As seen in previous bedrooms. The pipework from the boiler to the cylinder cupboard retained heat much better than the rest of the upstairs without loft insulation installed.

Bedroom 4 – Under depressurisation

As in Bedroom 1, cooler air was seen tracking down the wall the external wall along the cabling route for an electrical socket. Cooler air could be seen infiltrating around the window and at the intermediate floor perimeter.
Bedroom 2 – Under natural conditions

The heating pipework routes were clearly visible in the intermediate floor void but otherwise there were no significant issues with the thermal imaging on a 5° span.
As in previous bedrooms: infiltration at ceiling penetrations, around the window, at the intermediate floor perimeter and tracking the cabling down the wall towards the electrical socket.
No significant issues with the thermal imaging on a 5° span.

Landing – Under depressurisation

Under depressurisation the usual issues at the window and around ceiling penetrations became apparent.
Looking towards the gable wall above garage the additional rigid board insulation on the outside of the timber frame is easily discernible:

Without insulation the loft itself is around 9~10°C, compared to ~4°C in plot 268.
Looking towards the opposing gable wall it is quite easy to see how some of the cold areas of ceiling observed in plot 268 came about. With so many nogs, braces and additional timbers, as well as electrical cabling, it is understandable that gaps between loft insulation and the ceiling will result, compromising the performance of the loft insulation.
MINNEAPOLIS BLOWER DOOR DATA INPUT AND CALCULATION

Test Date: 19 June 2017

Company: Shenton

Building Details:
- New build, timber frame, detached, integral garage
- Test reference number: 41

Conditions:
- Pressure test at +5°C
- Extreme test
- Test reference number: 41

Test Setup:
- Blower door & gauge head
- Test 3 using ISO

Results:

PRESSURISATION

<table>
<thead>
<tr>
<th>Fan Speed (m/s)</th>
<th>Mean Air Permeability at 50 Pa =</th>
<th>Mean Air Leakage at 50Pa =</th>
<th>Equivalent Leakage Area =</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.133</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEPRESSURISATION

<table>
<thead>
<tr>
<th>Fan Speed (m/s)</th>
<th>Mean Air Permeability at 50 Pa =</th>
<th>Mean Air Leakage at 50Pa =</th>
<th>Equivalent Leakage Area =</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.267</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Q50 Mean Flow at 50Pa
- Perfomance on Test: OK
- outdoor temp (°C)
- indoor barometric pressure
- outdoor barometric pressure
- indoor humidity (%rh)
- Calculated Outdoor Air Density

Summary:
- Mean Air Permeability at 50 Pa = 0.034 m3/s/h
- Mean Air Leakage at 50 Pa = 0.067 m3/s/h
- Equivalent Leakage Area = 0.067 m2

Additional Notes:
- Calculated Outdoor Air Density
- Note: Ensure that flow settings are in m3/h - When using the DG700 gauge
- The DG700 gauge Model 3 with DG700
- Blower Door & Gauge Used

Pressure Test Spreadsheet: 268

<table>
<thead>
<tr>
<th>Test Speed (m/s)</th>
<th>Mean Air Permeability at 50 Pa =</th>
<th>Mean Air Leakage at 50 Pa =</th>
<th>Equivalent Leakage Area =</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.133</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graphs:
- DEPRESSURISATION
- PRESSURISATION

Calculations:
- Pressure Test Spreadsheet:
 - Mean Air Permeability at 50 Pa =
 - Mean Air Leakage at 50 Pa =
 - Equivalent Leakage Area =

Test Results:
- Indoor barometric pressure
- Outdoor barometric pressure
- Indoor humidity (%rh)
- Calculated Outdoor Air Density

Additional Information:
- Pressure Test Spreadsheet:
 - Mean Air Permeability at 50 Pa =
 - Mean Air Leakage at 50 Pa =
 - Equivalent Leakage Area =

Graphs:
- DEPRESSURISATION
- PRESSURISATION

Note:
- Mean Air Permeability at 50 Pa = 0.034 m3/s/h
- Mean Air Leakage at 50 Pa = 0.067 m3/s/h
- Equivalent Leakage Area = 0.067 m2
Results

Electronic Test dictionaries for EN 13829.

- **Test Reference Number:** 16.10.000.01.12.000.00
- **Test Description:** Fan in operation, no flow through building

<table>
<thead>
<tr>
<th>House Height (m)</th>
<th>House Width (m)</th>
<th>Volume (m³)</th>
<th>Floor Area (m²)</th>
<th>Envelope Area Including Floor (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>5.2</td>
<td>10.95</td>
<td>11.2</td>
<td>18.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature Corr. Fact Press.</th>
<th>Indoor Barometric Pressure (Pa)</th>
<th>Outdoor Barometric Pressure (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.999</td>
<td>852</td>
<td>958</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Air Permeability at 50 Pa</th>
<th>Mean Air Leakage at 50 Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.072</td>
<td>1.053</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equivalent Leakage Area</th>
<th>Dominic Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.541</td>
<td>Dominick Miles</td>
</tr>
</tbody>
</table>

Calculations

- **Depressurisation**
 - **Pressure (Pa)**: 0.0, 1.0, 2.0, 3.0, 4.0, 5.0
 - **Flow (m³/h)**: 0.0, 1.0, 2.0, 3.0, 4.0, 5.0

- **Pressurisation**
 - **Pressure (Pa)**: 0.0, 1.0, 2.0, 3.0, 4.0, 5.0
 - **Flow (m³/h)**: 0.0, 1.0, 2.0, 3.0, 4.0, 5.0

- **Depressurisation**
 - **Pressure (Pa)**: 0.0, 1.0, 2.0, 3.0, 4.0, 5.0
 - **Flow (m³/h)**: 0.0, 1.0, 2.0, 3.0, 4.0, 5.0

- **Pressurisation**
 - **Pressure (Pa)**: 0.0, 1.0, 2.0, 3.0, 4.0, 5.0
 - **Flow (m³/h)**: 0.0, 1.0, 2.0, 3.0, 4.0, 5.0

Charts

- **Depressurisation**
 - Depressurisation
 - Pressure against Ln AP
 - Flow against Ln AP

- **Pressurisation**
 - Pressurisation
 - Pressure against Ln AP
 - Flow against Ln AP

Notes

- **Approx 57 Pa**
- **Approx 20 Pa**
- **Approx 33 Pa**
- **Approx 49 Pa**

MINNEAPOLIS BLOWER DOOR DATA INPUT AND CALCULATION

Leeds Sustainability Institute

test reference number: 16.10.000.01.12.000.00

<table>
<thead>
<tr>
<th>Building Data</th>
<th>Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Height: 2.5 m</td>
<td>Test Height: 2.5 m</td>
</tr>
<tr>
<td>Building Width: 5.2 m</td>
<td>Test Width: 5.2 m</td>
</tr>
<tr>
<td>Volume: 10.95 m³</td>
<td>Flow: 0.0 m³/h</td>
</tr>
<tr>
<td>Floor Area: 11.2 m²</td>
<td>Flow: 1.0 m³/h</td>
</tr>
<tr>
<td>Envelope Area Including Floor: 18.1 m²</td>
<td>Flow: 2.0 m³/h</td>
</tr>
</tbody>
</table>

Notes:

- **Test Reference Number:** 16.10.000.01.12.000.00
- **Test Description:** Fan in operation, no flow through building

<table>
<thead>
<tr>
<th>Pressure (Pa)</th>
<th>Flow (m³/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Pressure Test Spreadsheet: 267