

Citation:

White, H (2018) Optimising nutrition in adults with cystic fibrosis. In: 41st European Cystic Fibrosis Conference, 06 June 2018 - 09 June 2018, Belgrade. (Unpublished)

Link to Leeds Beckett Repository record: https://eprints.leedsbeckett.ac.uk/id/eprint/5157/

Document Version:
Conference or Workshop Item (Presentation)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by funder policies and permitted by publishers and copyright law.

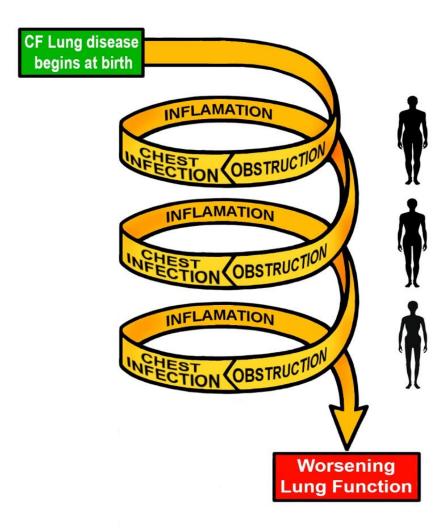
The Leeds Beckett repository holds a wide range of publications, each of which has been checked for copyright and the relevant embargo period has been applied by the Research Services team.

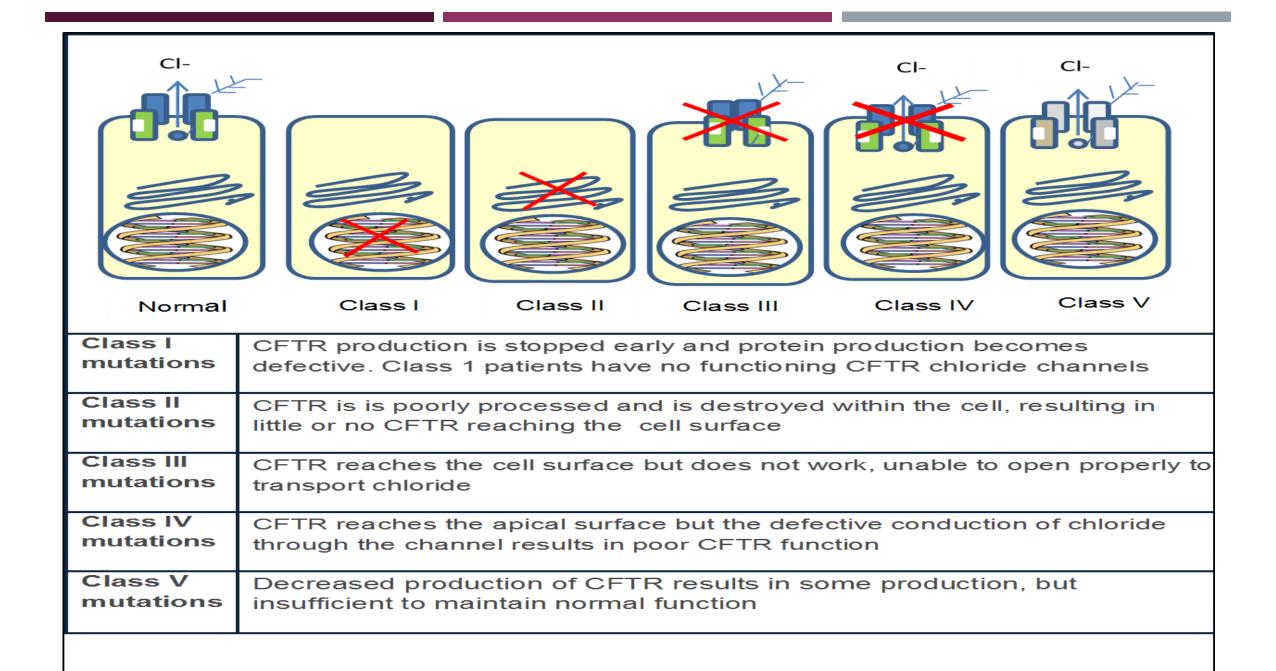
We operate on a standard take-down policy. If you are the author or publisher of an output and you would like it removed from the repository, please contact us and we will investigate on a case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party copyright. If you would like a thesis to be removed from the repository or believe there is an issue with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a case-by-case basis.

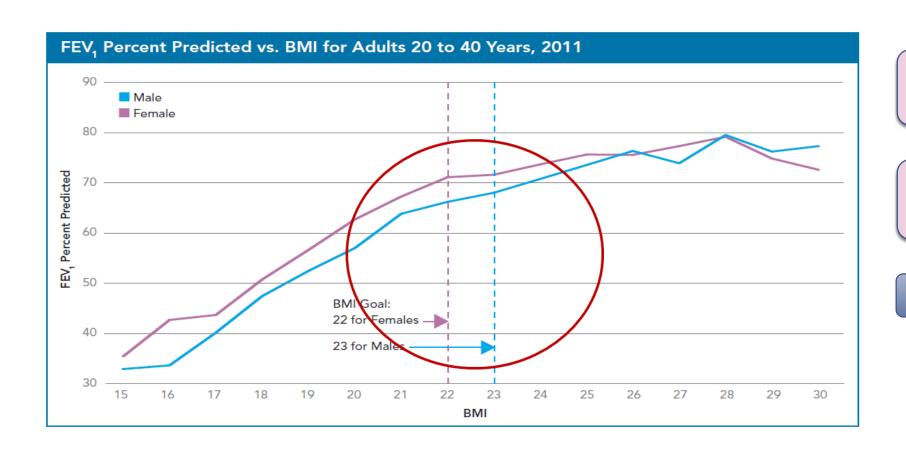
OPTIMISING NUTRITION IN CF ADULTS

DR HELEN WHITE

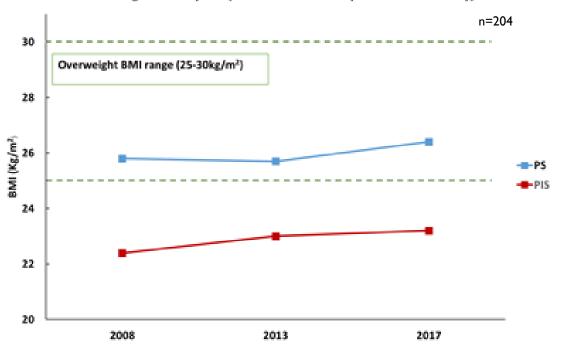



MULTISYSTEM DISEASE

TIGETIST	
Pancreatic insufficiency	Nutritional status CF related diabetes Fat soluble vitamin status Bone health
Increased requirements	Nutritional status
CFTR	Differing nutritional needs between Genotype
CF Related liver disease	
Pregnancy	
Transplantation	


Greater complexity of care in adulthood

REASONS FOR NEW TARGETS?


Lesser gains above BMI 22 (women), 23 (men)

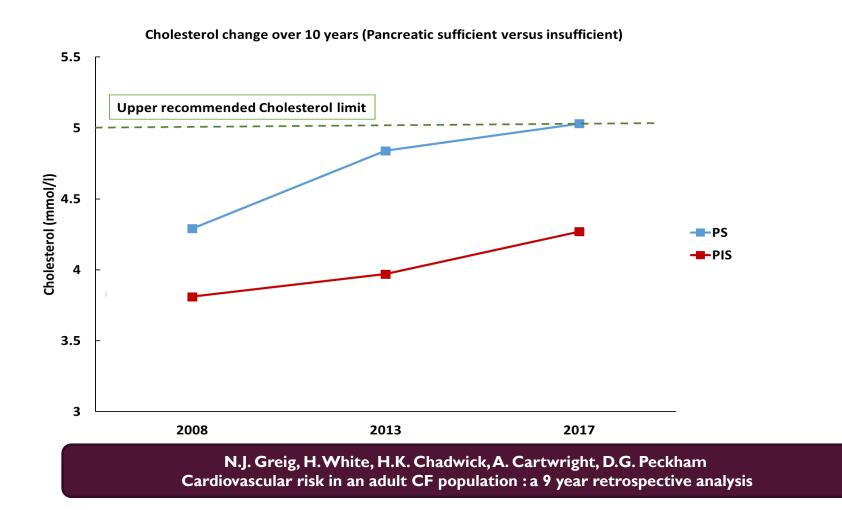
Advantages reduce as BMI reaches 30

Adults

LONGITUDINAL CHANGES IN BMI

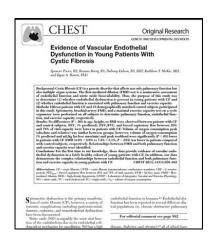
BMI change over 10 years (Pancreatic sufficiency versus insufficiency)

ENERGY & MACRONUTRIENT TARGETS DIETARY EMPHASIS ON FATS



Fat 35-40% of intake

DIFFERING ADULT POPULATIONS

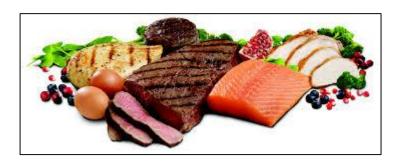

WHAT TYPES OF FAT?

- Greater longevity
- Vascular endothelial dysfunction shown in children with CF (2013)

Ischaemic heart disease reported in

CF(2010)

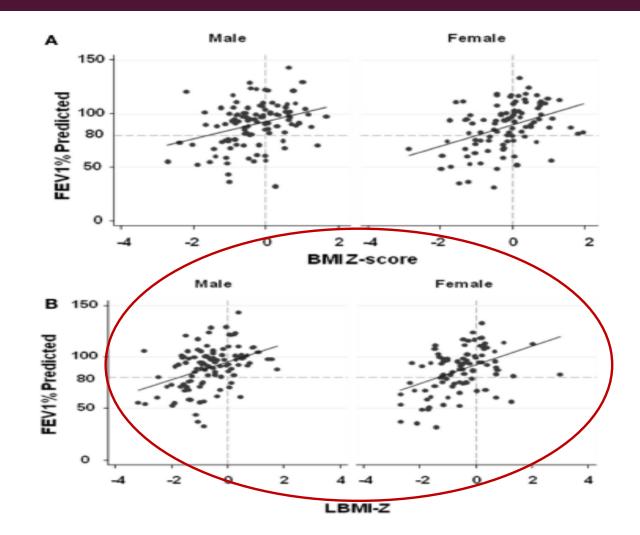
- Greater emphasis on polyunsaturated and monounsaturated fats
- May also improve essential fatty acid status



- CF Trust (2016) &
- ESPEN-ESPGHAN-ECFS guidelines (2016)

HIGH PROTEIN....?

Protein


No evidence based recommendations for daily protein intake for CF (CF Trust 2016)
20% energy ESPEN-ESPGHAN-ECFS (2016)
0.83g protein/kg

- Low muscle mass is consistently associated with pulmonary decline
- Protein digestion capacity is severely impaired in CF

SHEIKH ET AL, 2014

 High likelihood of normal lung function, targeting BMI z-score > 0

Improved further, by targeting LBM z-score >0

SUPPLEMENTS – WHICH ONES?

Fat free supplement

– no enzymes

required

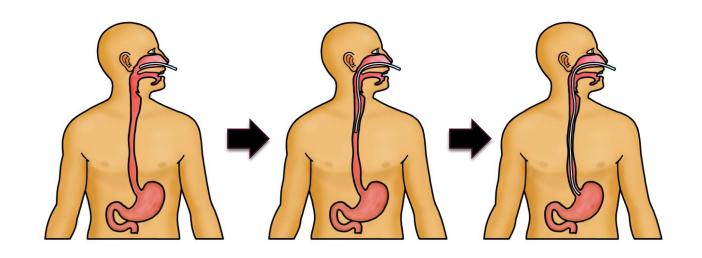
Complete supplement – 200ml volume

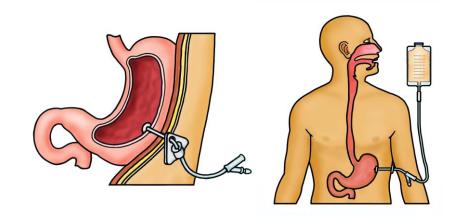
High calorie, high fat supplement (600kcal/240ml drink)

ORAL CALORIE SUPPLEMENTS – COCHRANE REVIEW (2014)

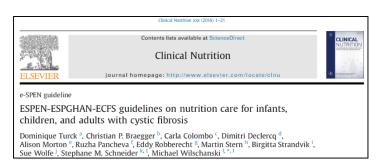
Limited trials

- Kalnins et al (2005)
 - 21 %, 28% intake from oral calorie supplements at 1 and 3 months (mean 1.6 cans/day)
 - No change in weight or height z-score
- Hanning et al (2005)
 - 25 % of EAR energy intake from supplements additional to normal diet
 - No change in weight or height z-score at 6 months
- Poustie et al (2006) Oral protein energy supplements for children with cystic fibrosis: CALICO multicentre randomised controlled trial
 - No improvements in children with cystic fibrosis who were moderately malnourished

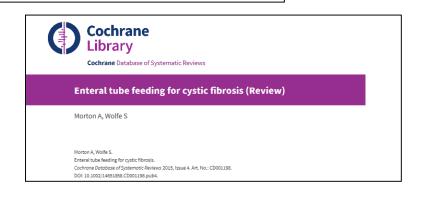




ENTERAL TUBE FEEDING FOR INDIVIDUALS WITH CF: CF FOUNDATION EVIDENCE INFORMED GUIDELINES (2016)


- ETF can improve age dependent anthropometrics
- ETF is given as a continuous overnight infusion

- Cannot recommend ETF to improve or stabilise lung function
- Recommends against FEV₁ being used as a contraindication to PEG or G-Tube placement


ENTERAL TUBE FEEDING - WHAT ARE THE LATEST KEY DOCUMENTS?

Nutrition Guidelines for Cystic Fibrosis in Australia and New Zealand

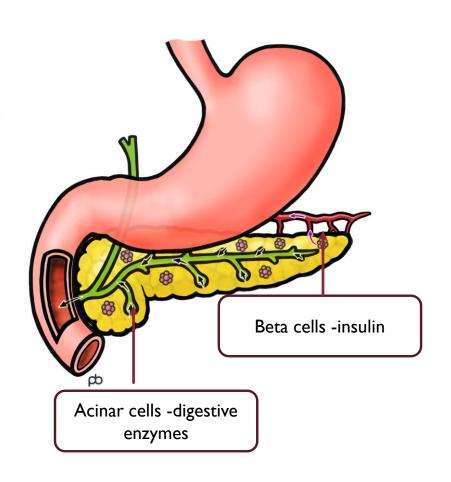
Journal of Pediatric Gastroenterology and Nutrition 35:246-259 © September 2002 Lippincott Williams & Wilkins, Inc., Philadelphia

Consensus Report on Nutrition for Pediatric Patients With Cystic Fibrosis

*Drucy Borowitz, *Robert D. Baker, and †Virginia Stallings

WHAT ELSE TO CONSIDER IN OPTIMISING NUTRITION

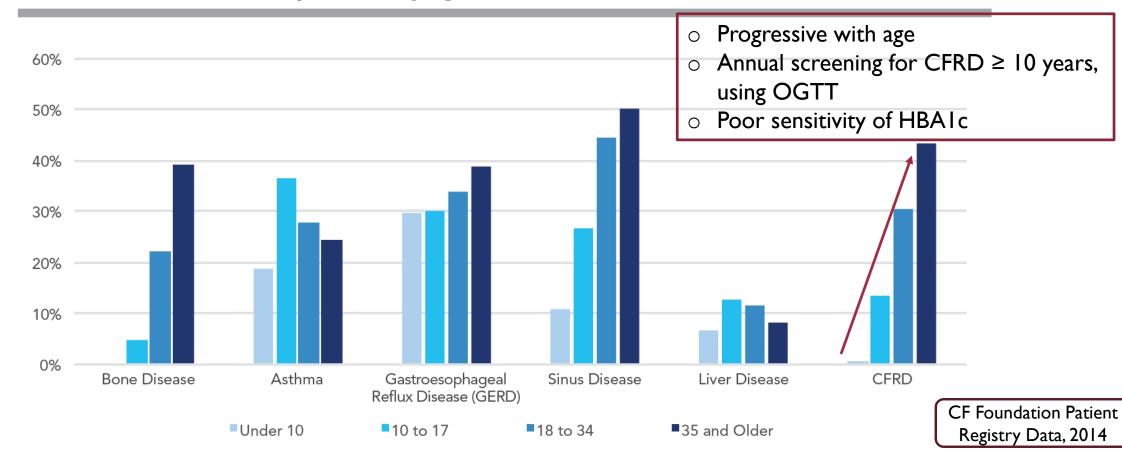
High energy/high protein diet


Oral dietary supplements

Enteral tube feeding

Enzyme therapy

- Vitamin supplementation (A,D,E,K)
- Co-morbidities cystic fibrosis related diabetes, bone disease
- Pregnancy
- Transplantation
- New therapies


CYSTIC FIBROSIS RELATED DIABETES - THE BASIC DEFECT

- Pancreatic ß cell dysfunction, fatty infiltration and fibrosis
- Causes decreased but not absolute insulin deficiency
- Diabetic ketoacidosis is rare
- Develops insidiously
- Patients may be asymptomatic
- Often first presents where insulin resistance is increased
 - Acute pulmonary infection
 - Chronic severe lung disease
 - Glucocorticoid therapy
 - Immunosuppression regimens (post-transplant)

AT WHAT STAGE DOES IT BEGIN TO OCCUR

Prevalence of Common Complications by Age in 2014

CYSTIC FIBROSIS RELATED DIABETES CHANGING FOCUS

Study	Cohort (n)	Findings for CFRD
Finkelstein et al, 1988	448	Increased mortality Worse nutritional status and lung function
Koch et al, 2001	7756	Worse nutritional status and lung function (greatest discrepancies at puberty)
Sims et al, 2005	2640	Worse pulmonary disease in females
Marshall et al, 2005	8247	Worse nutritional status, increased pulmonary exacerbations, increased liver disease
Adler et al, 2008	8029	Greater risk of CFRD in females Worse pulmonary function and liver function. CFTR class effect
Moran et al, 2009	872	Worse lung function (males) but Gender gap in mortality is narrowing No nutritional differences Pulmonary and nutritional differences do not differ by fasting glucose status

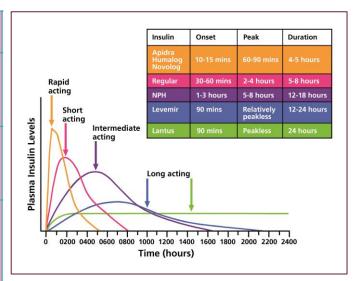
CRUCIAL CHANGES TO CARE

 Annual screening using the oral glucose tolerance test Early instigation of insulin therapy

Oral Glucose Tolerance Test

The pathologist will give you: 75 ml glucose drink

Then ask you to:
Wait 2 hours



Take blood and test glucose levels

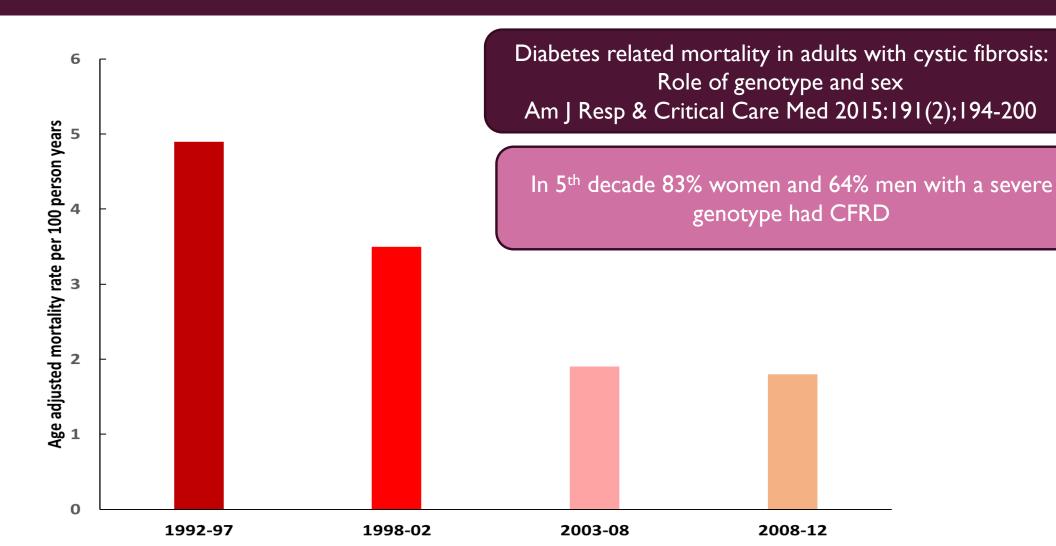
NUTRITIONAL GAINS ASSOCIATED WITH INSULIN TREATMENT

	3 months	6 months	I year	2 year
Moran et al, (2009)			2% [↑] BMI	↑
White et al (2009)			3.3% [↑] BMI	5.9 % [↑] BMI
Nousia Avanitarkis et al, (2001)		I6.6% [↑] BMI		
Rafii et al, (2005)	2.4% [↑] BMI	6.9% [↑] BMI		

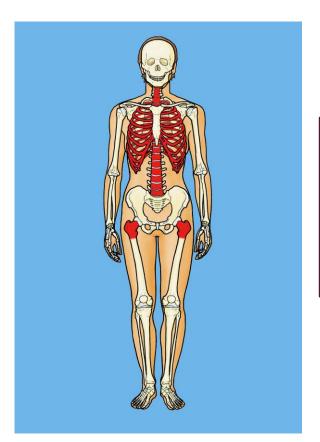
DIETARY RECOMMENDATIONS ... CHANGE?

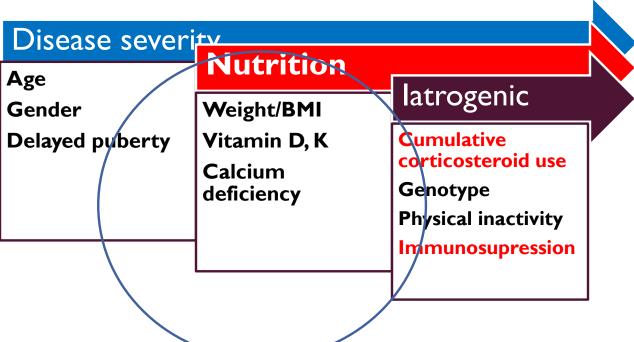
Update on cystic fibrosis related diabetes Kelly A, Moran A [Journal of Cystic fibrosis 2013:12;318-331]

 Consuming simple CHO in combination with complex CHO, protein and fat may limit the glucose excursion


CF Trust Nutritional management of Cystic Fibrosis (2016)

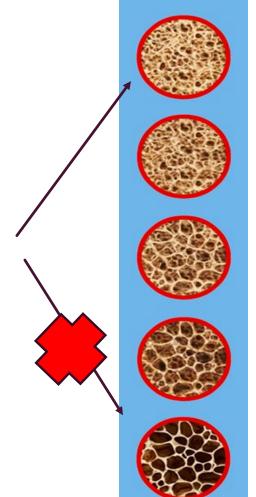
- Type I /II advice inappropriate
- Some people may be taught CHO counting
- If they do not CHO count regular meals should be encouraged containing complex CHO and limiting simple CHO to mealtimes


Insulin initiation and dose adjustments should be done conservatively


to avoid hypoglycemia.

LEWIS ET AL (2015) DIABETES – RELATED MORTALITY IN ADULTS WITH CYSTIC FIBROSIS

TREATMENT CONSIDERATIONS FOR PREVENTING LOW BONE MINERAL DENSITY



Increased prevalence of bone mineral density

A NUTRITIONAL PROBLEM

Requirements for normal bone mineralisation	
Adequate bone mass	(especially during the growth spurt)
Protein	osteoid formation
Vitamin D	Calcium absorption and phosphate utilisation
Calcium, phosphate and Magnesium	Bone calcification and mineralisation
Vitamin K	Carboxylation of osteocalcin

RISK FACTORS FOR VITAMIN D DEFICIENCY IN CF

- Reduced absorption Lark et al, 2001
- Inadequate supplementation
- Non adherence to therapy
- Reduced stores due to depleted fat mass
- Reduced sunlight exposure because of illness and medications
- Low vitamin D binding proteins Speeckaert et al, 2008
- Mg deficiency causes functional vitamin D deficiency (renal 25 OHD to $1,25(OH)_2D$)

VITAMIN D INSUFFICIENCY PERSISTS IN CF

	Paediatric	Insufficiency/deficiency
Canada	Grey et al, 2008	88% insufficient
USA	Green et al 2008	46% insufficient
France	Sermet-Gaudelus et al, 2008	90% insufficient
UK	Conway et al., 2008	78% insufficient 15.0% deficient
Russia	Asherova et al, 2008	41.7% insufficient 16.6% deficient

TRENDS IN BMD STATUS

- Vitamin D intakes had increased by 53%
- Contributing factors
 may include steroid use,
 low BMI, inadequate
 calcium and vitamin D
 intake, and poor
 nutrient absorption, as
 well as effects of gene
 mutation on bone cells

Journal of Cyclic Fibrorie 14 (2015) 526-552

Original Article

Trends in bone mineral density in young adults with cystic fibrosis over a 15 year period \$\frac{\psi}{2}\$

Melissa S. Putman a,b,*, Joshua F. Baker c, Ahmet Uluer d, Karen Herlyn c, Allen Lapey f,
Leonard Sicilian a, Angela Pizzo Tillotson h, Catherine M. Gordon b,i
Peter A. Merkel c, Joel S. Finkelstein a

* Endocrine Unit, Department of Medicine, Massachasette General Hospital, Boston, Md., United States
 * District of Endocrinology, States Children's Hospital, Senton, Md., United States
 * District of Endocrinology, University of Promphania, Philadelphia, Pd., United States
 * District of Empiratory Diseases, Boston Children's Hospital, Boston, Md., United States
 * Political for Elementologie, University Hospital Schlesnig, Historia, Compan Lawlood, Germany
 * Political for Elementologie, University Hospital Schlesnig, Historia, Roman, Md., United States
 * Politicist, Department of Politicists, Massachasette General Hospital, Boston, Md., United States
 * Pulmonary District, Department of Medicine, Manachasette General Hospital, Boston, Md., United States
 * Mattina R. Proctor Diabetes Center, Many Hospital, Portland Mt., United States
 * District of Adolescent Medicine and Endocrinology, Hauber Children's Hospital, Providence, EL, United States

Received 24 Aute 2014; sovised 11 December 2014; accepted 30 January 2015 Available online 16 February 2015

VITAMIN D SUPPLEMENTATION

■ > 1 years 1,000-5,000 IU Vitamin D₃/day

ECFS, 2011

Aiming for minimum of 50nmol/L

CONTINUED DEBATE

Target serum level >20 or >30ng/ml (50-75nmol/l) – mixed guidance

Timing (Possible improved absorption with food and enzymes)

Vitamin D2 or Vitamin D3? - Vitamin D3 (Cholecalciferol)

Intervals (no evidence for bolus versus daily dosing)

UV lamps (no recommendation)

GREATER CERTAINTY...

Vit D measured by total serum 25(OH) D as it is associated with health outcomes, is the primary circulating form of Vit D and accounts for Vit D from diet & sunlight

Assess during the winter months (winter levels shown to be only 70% of summer values)

Repeat intervals following changes in treatment should be undertaken at 3 months

CALCIUM

- Should be assessed at least annually (ESPEN-ESPGHAN-ECFS Guidelines)
- Daily calcium intakes should be at a minimum to achieve dietary intake recommended by the EFSA

Calcium intake for people with CF: recommendations guided by EFSA

Age	Dietary reference values
0-6 months	200mg
7-11 months	280mg
I-3 years	450mg
4-10 years	800mg
11-17 years	1150mg (1300mg 9-18yrs)
18-25 years	1000mg
>25 years	950mg

VITAMIN K

- Sub clinical as assessed by increased PIVKA II- almost universal in CF Conway et al, 2005; Rashid et al, 1999; Becker et al, 1997; Wilson et al, 1997
- Increased % of undercarboxylated osteocalcin (Glu-Oc) Fewtrell et al, 2008; Grey et al, 2008; Nicolaidou et al, 2006; Conway et al, 2005; Aris et al, 2003
- Associated with increased bone turnover
- Reduced markers of bone mineral accrual

European Guidelines – routine supplementation of all pancreatic insufficient patients

Infants 0.3-1mg/day

Older children and adults 1-10mg/day

UK (CF Trust, 2016)

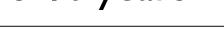
routine supplementation of all pancreatic insufficient patients (phytomenadione)

Babies & infants <2 years 300µg/kg/d

2-7 yrs 5mg/day

> 7 yrs 5-10mg/day

European Cystic Fibrosis Bone Mineralisation Guidelines


'If height is ≥1 SD below age and sex matched healthy controls, BMD Z scores should be adjusted for height or statural age to avoid overestimating deficits in BMD in people with short stature'

Stress the importance of serial height adjusted measurements Sermet-Gaudelus et al, 2011

Initial scan age 8-10 years

Normal LS Z score LS Z score -1 to -2

Rescan every 5yrs

Rescan every 2yrs

LS Z score <-2 "CF related low BMD"

Rescan every yr

SUMMARY

- Greater complexity of nutritional management and emergence of new therapies
 - Diet, oral supplementation, enteral tube feeding
 - Pancreatic enzyme therapy introduction
 - Vitamin Supplementation (Vitamin A,D, E, K)
 - Cystic fibrosis related diabetes, osteoporosis, management of pregnancy, posttransplantation.... and others
 - Improvements in nutritional status over the last 10 years aligned with earlier and more aggressive interventions across all aspects of nutritional management
 -The future for our adult populations?