Cognitive mechanisms in visual associative learning & retrieval: Insights from synaesthesia and old age

Gaby Pfeifer
Synaesthesia

- **Stable perceptual phenomenon** in about 5% of the population (*Simner et al., 2006*)

- **Enriched sensory experiences** in response to certain stimuli
 - Most common is grapheme - colour synaesthesia

- **Neural basis of Synaesthesia**
 Structural brain differences (*Rouw et al. 2011, Review*)
 - increased GM - volume
 - greater WM - connectivity
Synaesthesia and Memory

• Memory advantage for verbal stimuli (e.g. Yaro & Ward, 2007; Radvansky et al., 2011)

• Memory advantage for visual stimuli is less consistent:
 • Enhanced associative memory found for stimuli containing colour (Pritchard et al., 2013; Rothen & Meier, 2010).
 • When colours were replaced by achromatic shapes, the memory advantage disappeared (Gross et al., 2011).

 • **But**: Synaesthetes do have greater visual memory for single abstract shapes (Rothen & Meier, 2010; Gross et al., 2011)
The present study

Question: Do perceptual advantages (as found in synaesthesia) contribute to a general associative memory advantage?

- Synaesthetes’ memory advantage for *achromatic abstract stimuli* might be too subtle to be detected against young controls.

- **Differences might emerge in comparison to a third group of older adults**
 - reduced GM-volume (*Oh et al., in press*)
 - increased WM-injury (*Lockhart et al., 2012*)
 - visuo-perceptual decline (*Fjell & Walhovd, 2004*)
 - reduced activation in memory-related brain areas (*Gutchess et al., 2005*)

- All have been related to a visual associative memory deficit.
Participants

- 14 young adults with grapheme-colour synaesthesia, 19 – 31 years of age (M=22.50)

- 14 young adults, 19 – 29 years of age (M=22.64)

- 14 older adults, 62 – 83 years of age (M=68.79)
Methods

- **Tasks:** 1) self-paced learning paradigm with performance criterion 2) associative retrieval, immediate & delayed

- **Stimuli:** 8 pairs of achromatic fractals

similar pairs, low memory load

1a	1b
2a | 2b
3a | 3b

dissimilar pairs, high memory load

7a	7b
8a | 8b
9a | 9b
10a | 10b
11a | 11b
Hypotheses

• **Similar pair-associates** should benefit *all* participant groups during learning & retrieval.

• **Dissimilar pair-associates** should bring out enhanced memory performance in synaesthetes, provided that their *enhanced perceptual mechanisms* contribute to better memory. This effect might only be seen in comparison to older adults.
Pair-associative learning

- Two alternative forced choice
- **criterion**: 7 out of 8 Hits in two successive Runs
Results

Number of Runs

Groups

Error Bars: +/- 1 SE
Similar & Dissimilar pairs

Similar Pairs

- **Hit Rate (%)**
- **Error Bars: +/- 1 SE**

Dissimilar Pairs

- **Hit Rate (%)**
- **Error Bars: +/- 1 SE**

No sign. difference
- Syns - Young, $p = .815$
- Young - Older, $p = .231$
- Syns - Older, $p = .071$

\Rightarrow **Sign. effect, $F[2,39] = 14.42, p < .001$**
- Syns - Young, $p = .762$
- Young > Older, $p < .001$
- Syns > Older, $p < .001$
Interim Summary I

- Pair-associative learning paradigm

- There was an effect of age in learning the dissimilar pair-associates.

- However, the synaesthetes’ enhanced perceptual mechanisms did not facilitate associative learning over and above the effects of age.
Pair-associative retrieval

- Immediate and delayed retrieval, with completion of visuo-perceptual tasks in between
- Tested on 2 Runs
Signal detection analyses

- **d’-prime estimates**
- Represent sensitivity in discriminating between signal trials and noise trials
- $d' = z$ (proportion Hits) – z (proportion False Alarms)
- Higher d'-prime scores = greater sensitivity
d’-prime, Similar pairs

→ No effect of time
\[F[1,39] = .269, \ p = .607 \]
d’-prime, Dissimilar pairs

Sign. effect of time
\[F[1,39] = 4.09, p = .050 \]
Interim Summary II

- **Pair-associative retrieval task**

 - Significantly higher d’-prime scores were *only* found between synaesthetes and older adults
 - similar pair condition at delayed retrieval
 - dissimilar pair condition at both retrieval stages

 - This suggests that the synaesthetes’ enhanced perceptual mechanisms lead to enhanced sensitivity in discriminating between matching and non-matching pair-associates, resulting in a higher effective memory score.
Conclusions

1. Associative memory advantages are obtained even from achromatic, non-synaesthesia-inducing stimuli.

 ➔ But the advantages are subtle and can only be detected in comparison to older adults.

2. Enhanced perceptual mechanisms (as found in synaesthesia) feed into an associative memory advantage.
Acknowledgements

Dr Natasha Sigala Prof. Jamie Ward Dr Nicolas Rothen
References

