2nd iCoachKids International Conference
Leeds 5th & 6th Sept 2018
Developing Effective Environments for Children in Sport

BRIDGING THE GENDER PARTICIPATION GAP
Jason Tee and Stacey Emmonds
Leeds Beckett University

@JasonCTee @S_Emmonds

Supported by
Co-funded by the Erasmus+ Programme of the European Union
What is the “Gender participation gap”?

Who plays sport
Percentage of men and women taking part at least once a week

Difference = 1.55 million participants

Source: Active People Survey 10 (Sport England, October 2015–September 2016)
Positives

• England’s women’s rugby and cricket teams recently awarded first professional contracts
• FA Women’s Super League players earn £20,000 a year
• 83% of sports now award equal prize money for men and women
Challenges

- Only 1 woman in the top 100 highest paid athletes in the world
- Fifa World cup winners prize money

£437,000,000

£15,000,000
Challenges

Media Coverage

• Women’s Sport makes up 7% of all sports media coverage in the UK
• Just over 10% of televised sports coverage is dedicated to women’s sport
• 2% of national newspaper sports coverage is dedicated to women’s sport
• 5% of radio sports coverage is dedicated to women’s sport
• 4% of online sports coverage is dedicated to women’s sport

Women in Sport’s 2014 report Women’s Sport: Say Yes to Success
Challenges

Coaches

• 30% of the UK coaching work force is female
• 17% of newly qualified coaches are women

Sports Coach UK. (2011) Sports Coaching in the UK III,
How does the problem arise?
Drop off in participation in teenage years

By age 14, girls drop out of sports at twice the rate of boys.

This suggests that we aren’t satisfying the needs of female sports participants

How do we get our coaching “on target”?
Who are we?

Jason Tee

Stacey Emmonds
Who are you?

Who do you coach?

Females

Males
Who are you?

Who do you coach?

Adults

Children/Adolescents
Who are you?

Who do you coach?

Competitive

Participation
Who are you?

Who do you coach?

Team Sport Individual
Introduce yourselves
Should we treat males and females differently?

Girls

AHH! HELP! IT'S A SPIDER!

DON'T WORRY, BABY GIRL. DADDY WILL RESCUE YOU.

Boys

AHH! HELP! IT'S A SPIDER!

BE A MAN, SON. HERE, TAKE THIS FLY SWATTER.
Would your coaching behaviours be the same in these two contexts?
What about these two?
What about these two?
What’s wrong with this picture?
“Positive coaching is defined by being responsive to the needs of the participant”
Workshop goals

What this session is
• Being reflective and responsive to who you are coaching
• Understanding the needs of women and girls in sport

What this session isn’t
• Problematizing female athletes
• Standardizing male sports experiences
Task 1 – 10 minutes

In small groups, discuss your experiences of coaching women and girls in sport

• What do you do, and how do you act/behave?

• How do you tailor your activities to the needs of these participants?

• Do you have any specific strategies?
Understanding who we are coaching

DISCLAIMER

We are about to generalize!
Please keep in mind that everyone you coach is an individual and may not be exactly like the participants we describe here. We provide some important considerations regarding women and girls in sport, but this never negates the need to get to know and understand the individuals you are working with!
Maturation differences...

- Smaller heart and lung size
- Lower blood volume and haemoglobin concentration.
- Hormonal differences: estrogen vs. testosterone
- Females have higher percentage body fat due to the increased release of estrogen (may not be advantageous for sport)
- Increased release of estrogen is associated with widening of the hips and the onset of the menstrual cycle

= IMPACT ON PHYSICAL PERFORMANCE
ACL Injury Risk

Increased risk of ACL rupture in youth females...

- Greater reliance on knee extensors relative to hip extensors which places greater loads on the knee joint and ACL (Quatman et al. 2006).

- Evident even in pre-pubertal girls but magnified in post-pubertal females (Myer et al., 2013)

- Male athletes demonstrate a neuromuscular spurt as evidenced by increased vertical jump height and increased ability to attenuate landing force. The absence of similar adaptations in female athletes may be related to the increased risk of anterior cruciate ligament injury. (Quatman et al. 2006).

- **Implications for training strategies**

Menstrual Cycle.....

- Phasic changes in reproductive hormonal concentrations during the menstrual cycle may influence performance
- Estrogen affects soft tissue strength, muscle function, and the central nervous system
- Levels of estrogen and progesterone may influence substrate utilisation
- Challenges of determining stage of the menstrual cycle
- The need for further athlete and coach education in this area

Bruinvels G, Burden RJ, McGregor AJ, et al. 2017 Sport, exercise and the menstrual cycle: where is the research?
Talent ID and Development
The Challenge.....

• Limited research in youth female athletes

• In the last 10-years a search of ‘injury’ AND ‘rugby’ AND ‘female’ retrieved 196 articles vs. 558 articles in males.

• ‘soccer match demands’: 13 and 107 articles retrieved for females and males

• Lack of research in elite youth female sporting environments

• Lack of longitudinal data
• Application of findings in male athletes to females is problematic

• Challenges of leading an evidenced based approach
Descriptive Research
to Identify and Acknowledge the Context

Intervention can be implemented in policy or practice (high effectiveness)

Evaluation of the (successful) Intervention in Context and can develop Policy and Practice

Intervention enhances performance, health or wellbeing (high efficacy)

What is the Influence on Performance, Health and Wellbeing?

Intervention does not enhance performance, health or wellbeing (low efficacy)

What are the Mechanisms that Relate to Performance, Health and Wellbeing?

Intervention can not be implemented in policy or practice (low effectiveness)

Implement Interventions to Enhance Performance, Health and Wellbeing
"One of the big challenges in the women's game is just developing athleticism," Campbell told BBC Sport.

"It is not technical and tactical - [in those aspects] they are probably as good as anybody in the world.

"But that athleticism that you see in the American players or the Germans is a very different type of athleticism, power and agility. We have got a long way to go.

"We need to build it in much earlier. We can't suddenly do that. We need to be working with players much earlier on."
Physical Characteristics of Youth Female Soccer Players

- 3 Tier 1 Regional Talent Centre’s (RTC’s)

- 157 Players
 - (U16; n =46, U14; n =43, U12; n=28, U10; n=30)

- Standardised testing battery

- Testing completed at 3 time points in the season
Influence of age on the anthropometric and performance characteristics of high-level youth female soccer players

S Emmonds¹, K Till¹, J Redgrave¹, E Murray¹,², L Turner³, C Robinson⁴ and B Jones¹

<table>
<thead>
<tr>
<th>Standardised Differences (d)</th>
<th>U10 (n=30)</th>
<th>U12 (n=38)</th>
<th>U14 (n=43)</th>
<th>U16 (n=46)</th>
<th>U10-U12</th>
<th>U12-U14</th>
<th>U14-U16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>9.25 ± 0.58</td>
<td>11.41 ± 0.98</td>
<td>13.22 ± 0.65</td>
<td>15.05 ± 0.64</td>
<td>Most Likely ↑</td>
<td>Most Likely ↑</td>
<td>Very Likely ↑</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>134.7 ± 8.1</td>
<td>147.2 ± 8.5</td>
<td>159.2 ± 7.4</td>
<td>163.9 ± 6.2</td>
<td>Most Likely ↑</td>
<td>Most Likely ↑</td>
<td>Very Likely ↑</td>
</tr>
<tr>
<td>Body Mass (kg)</td>
<td>29.7 ± 5.1</td>
<td>37.6 ± 8.0</td>
<td>50.1 ± 7.6</td>
<td>56.8 ± 7.2</td>
<td>Most Likely ↑</td>
<td>Most Likely ↑</td>
<td>Very Likely ↑</td>
</tr>
<tr>
<td>Peak Force (N)</td>
<td>819 ± 135</td>
<td>1019 ± 193</td>
<td>1337 ± 234</td>
<td>1511 ± 196</td>
<td>Most Likely ↑</td>
<td>Most Likely ↑</td>
<td>Most Likely ↑</td>
</tr>
<tr>
<td>Relative Peak Force (N·s⁻¹·kg⁻¹)</td>
<td>26.9 ± 4.2</td>
<td>26.1 ± 2.5</td>
<td>26.5 ± 4.2</td>
<td>26.7 ± 2.5</td>
<td>Possibly Trivial</td>
<td>Possibly Trivial</td>
<td>Most Likely Trivial</td>
</tr>
<tr>
<td>CMJ (cm)</td>
<td>23.5 ± 2.5</td>
<td>27.3 ± 4.3</td>
<td>29.1 ± 4.4</td>
<td>31.4 ± 6.4</td>
<td>Very Likely ↑</td>
<td>Likely ↑</td>
<td>Very Likely ↑</td>
</tr>
<tr>
<td>YYIRL1 (m)</td>
<td>635 ± 241</td>
<td>886 ± 334</td>
<td>959 ± 399</td>
<td></td>
<td>Most Likely ↑</td>
<td>Possibly ↑</td>
<td></td>
</tr>
<tr>
<td>505 CoD Dominant (s)</td>
<td>2.78 ± 0.15</td>
<td>2.71 ± 0.16</td>
<td>2.60 ± 0.10</td>
<td>2.54 ± 0.12</td>
<td>Very Likely ↓</td>
<td>Likely ↓</td>
<td>Most Likely ↓</td>
</tr>
<tr>
<td>505 CoD Non-Dominant (s)</td>
<td>2.82 ± 0.11</td>
<td>2.73 ± 0.15</td>
<td>2.66 ± 0.13</td>
<td>2.53 ± 0.09</td>
<td>Very Likely ↓</td>
<td>Likely ↓</td>
<td>Very Likely ↓</td>
</tr>
<tr>
<td>10m Speed (s)</td>
<td>2.24 ± 0.13</td>
<td>2.10 ± 0.16</td>
<td>2.06 ± 0.13</td>
<td>1.96 ± 0.14</td>
<td>Most Likely ↓</td>
<td>Possibly ↓</td>
<td>Very Likely ↓</td>
</tr>
<tr>
<td>30m Speed (s)</td>
<td>5.75 ± 0.31</td>
<td>5.19 ± 0.33</td>
<td>5.01 ± 0.28</td>
<td>4.81 ± 0.24</td>
<td>Most Likely ↓</td>
<td>Possibly ↓</td>
<td>Very Likely ↓</td>
</tr>
</tbody>
</table>
Maturation and physical performance

<table>
<thead>
<tr>
<th></th>
<th>Maturity Offset Groups (YPHV) comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2.5 vs. -1.5</td>
</tr>
<tr>
<td>Age (y)</td>
<td>Most Likely</td>
</tr>
<tr>
<td>(2.50 ± 0.62)</td>
<td>(-2.39 ± 0.65)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>Most Likely</td>
</tr>
<tr>
<td>(-1.92 ± 0.56)</td>
<td>(-1.96 ± 0.60)</td>
</tr>
<tr>
<td>Sitting Height (cm)</td>
<td>Most Likely</td>
</tr>
<tr>
<td>(-1.17 ± 0.50)</td>
<td>(-1.35 ± 0.55)</td>
</tr>
<tr>
<td>Leg Length (cm)</td>
<td>Most Likely</td>
</tr>
<tr>
<td>(-1.71 ± 0.54)</td>
<td>(-1.37 ± 0.55)</td>
</tr>
<tr>
<td>Body Mass (kg)</td>
<td>Most Likely</td>
</tr>
<tr>
<td>(-1.23 ± 0.50)</td>
<td>(-1.61 ± 0.57)</td>
</tr>
<tr>
<td>Peak Force (N)</td>
<td>Most Likely</td>
</tr>
<tr>
<td>(-1.39 ± 0.51)</td>
<td>(-1.47 ± 0.56)</td>
</tr>
<tr>
<td>Relative Peak Force (N·Kg⁻¹)</td>
<td>Unclear</td>
</tr>
<tr>
<td>(-0.08 ± 0.46)</td>
<td>(-0.19 ± 0.50)</td>
</tr>
<tr>
<td>CMJ (cm)</td>
<td>Likely</td>
</tr>
<tr>
<td>(-0.54 ± 0.47)</td>
<td>(-0.65 ± 0.51)</td>
</tr>
<tr>
<td>10 m Sprint (s)</td>
<td>Unclear</td>
</tr>
<tr>
<td>(0.07 ± 0.46)</td>
<td>(1.43 ± 0.56)</td>
</tr>
<tr>
<td>30 m Sprint (s)</td>
<td>Very Likely</td>
</tr>
<tr>
<td>(0.68 ± 0.47)</td>
<td>(0.65 ± 0.51)</td>
</tr>
<tr>
<td>505 CoD Dominant (s)</td>
<td>Likely</td>
</tr>
<tr>
<td>(0.85 ± 0.48)</td>
<td>(0.23 ± 0.50)</td>
</tr>
<tr>
<td>505 CoD N-Dominant (s)</td>
<td>Very Likely</td>
</tr>
<tr>
<td>(0.84 ± 0.48)</td>
<td>(0.31 ± 0.50)</td>
</tr>
<tr>
<td>YYIRI (m)</td>
<td>Unclear</td>
</tr>
<tr>
<td>(-0.18 ± 0.50)</td>
<td>(-0.55 ± 0.54)</td>
</tr>
</tbody>
</table>
Predictors of speed, change of direction ability and lower body power in youth female soccer players: Allometric scaling

<table>
<thead>
<tr>
<th>Variables</th>
<th>Predictors</th>
<th>β</th>
<th>R²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>10m Speed (s)</td>
<td>30m.kg</td>
<td>1.226</td>
<td>0.870</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>505 Dom.kg</td>
<td>-0.210</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMJ.kg</td>
<td>-0.211</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>YPHV</td>
<td>0.139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30m Sprint (s)</td>
<td>10m.kg</td>
<td>0.635</td>
<td>0.996</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>CMJ.kg</td>
<td>-0.234</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>YPHV</td>
<td>0.194</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>505 Dom.kg</td>
<td>-0.129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoD Dominant (s)</td>
<td>YPHV</td>
<td>0.559</td>
<td>0.449</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>PF.kg</td>
<td>-0.424</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoD N-Dominant (s)</td>
<td>YPHV</td>
<td>-0.293</td>
<td>0.216</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>PF.kg</td>
<td>-0.226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMJ (cm)</td>
<td>YPHV</td>
<td>0.582</td>
<td>0.401</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>PF.kg</td>
<td>0.268</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Seasonal Changes in Physical Characteristics of Elite Youth Female Soccer Players

Figure 1: Seasonal changes in physical characteristics of U10 players
* Possibly, **Likely, ***Very Likely, # Possibly Trivial, ## Likely Trivial

Figure 2: Seasonal changes in physical characteristics of U12 players
* Possibly, **Likely, ***Very Likely, # Possibly Trivial, ## Likely Trivial

Figure 3: Seasonal changes in physical characteristics of U14 players
* Possibly, **Likely, ***Very Likely, # Possibly Trivial, ## Likely Trivial

Figure 4: Seasonal changes in physical characteristics of U16 players
* Possibly, **Likely, ***Very Likely, # Possibly Trivial, ## Likely Trivial
Summary

• Growth and maturation influences the physical characteristics of youth female players

• Relative strength does not increase with maturation

• Unclear changes were observed in aerobic capacity after PHV

• Relative strength and lower body power are predictors of speed and change of direction ability

• Current training strategies may not be optimal for the physical development of youth players across a season
Task 2: 10 Minutes
An athlete is going through a period of accelerated physical development. How would you manage this female youth athlete?

- Increase in height and body mass
- Increase in fat mass
- Onset of the menstrual cycle
- Decrease in neuromuscular control
- Decrease in relative strength
Strategies to enhance physical performance in youth female athletes

• Awareness of general patterns of growth and maturation in girls allows coaches and practitioners to appropriately design training programmes to the athletes stage of development

• Morphological, hormonal and structural changes that occur during maturation may have implications for performance and injury risk in youth female athletes: implications for training

• With girls increasingly involved in more intense sports training environments, further applied research is needed to enhance our understanding of normal variations in growth and maturations and the ways in which they influence and are impacted youth female athletes physical development and performance
Strategies to enhance physical performance in youth female athletes

• Consider the influence of maturation on physical performance
• Develop fundamental movement skills
• Inclusion of neuromuscular training drills within training sessions
• Monitoring wellness (including the menstrual cycle) and training load
Lower body bilateral

Lower body uni-lateral

Acceleration, deceleration and reacceleration

Upper body pulling

Upper body pushing

Jumping, landing, rebounding mechanics

Anti rotation/core bracing

Core bracing
Integrative Neuromuscular Training (INT): What the evidence says.....

- **1-2 15-20min sessions per week** may be enough to significantly reduce injury risk and **enhance physical performance**

- Inclusion of **dynamic functional activities** may be **more beneficial** than static balance activities

- Higher compliance rates signify a greater reduction in the incidence rates of ACL injury

- **BUT….often compliance rate is low!** *(Less than 50%!!!!!)*

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Description</th>
<th>Reps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Leg Glute Bridge</td>
<td>Lift your hips off the ground until your knees, hips and shoulders form a straight line making sure you do not over-extend, keeping the rib cage down. Keep feet flat on the floor and weight in the mid foot.</td>
<td>10</td>
</tr>
<tr>
<td>Single Leg Glute Bridge</td>
<td>Lift your hip off the ground until your knee, hip and shoulder form a straight line making sure you do not over-extend. Ensure hips stay square, keep foot flat on the floor and weight in the mid foot.</td>
<td>8 EL</td>
</tr>
<tr>
<td>Glute Bridge March</td>
<td>Lift your hip off the ground until your knee, hip and shoulder form a straight line making sure you do not over-extend. Ensure hips stay square. Keep your alternate foot flat on the floor and weight in the mid foot. Alternate, lifting each foot of the ground in a marching sequence, maintaining alignment of your hips.</td>
<td>8 EL</td>
</tr>
<tr>
<td>Bird Dog</td>
<td>Start with your hands under your shoulders and knees under your hips, while keeping your head, neck, and back straight. Slowly extend one arm, while simultaneously extending the opposite leg. Maintain a neutral spine (flat back) throughout and head in a neutral position. Slowly return to the start position and repeat with the opposite arm and leg.</td>
<td>6 EL</td>
</tr>
<tr>
<td>Body Weight Squat</td>
<td>Feet shoulder width apart, knee in line with toe. Retract shoulders back, head in a neutral position. Weight through mid-foot. Keep your ribcage down and pelvis tucked posteriorly to neutral.</td>
<td>10</td>
</tr>
<tr>
<td>Lateral Lunge</td>
<td>Keep hips square, knee in line with toe and weight through the mid foot. Sit hip back.</td>
<td>8 EL</td>
</tr>
<tr>
<td>Split Squat</td>
<td>Take a big step forwards, keeping alignment between hip, knee and ankle. Weight in the midfoot of the front leg. Slowly flex the hip, knee and ankle. Maintain a neutral spine and head in a neutral position throughout. If your heal is coming off the ground, take a bigger step forwards.</td>
<td>8 EL</td>
</tr>
<tr>
<td>Reverse Lunge</td>
<td>Take a big step back with one leg, maintain hip, knee and toe alignment of the front leg. Ensure weight in through the mid foot of the front leg, rub cage is down and spine is neutral. Drive through the mid foot of the front leg to return to the start position.</td>
<td>8 EL</td>
</tr>
</tbody>
</table>
Psychosocial needs of women and girls in sport

The interrelation of individual psychological characteristics with social influences and to the ways in which these may shape or guide behaviours.
Example

Social influence
S (e.g. parents or peers)

+

Psychological characteristics
(e.g. self-discipline)

→

Behaviour
(e.g. drop out or remain committed to sports participation)
The interaction between psychological and social factors is complex

What are the biggest factors affecting adolescent girls participation in sport

Family support
“If you don't have a supportive family, then obviously, it's a lot harder – especially in stuff like getting there and to clubs and stuff.”

Social support
“If your friends are, like – go out and do things with you, then you're gonna be more active. And if they do encourage you to do anything, you're gonna be more active.”

Confidence
“I just don't have confidence around boys. 'Cos I just don't feel comfortable at all and 'cos it all depends on popularity and if you're not as good as them, then they take the mick out of you and everything.”

Access
“I think clubs don’t really motivate you any more. I don’t feel there are a lot of clubs any more. I mean, especially for women. It’s all right for lads – they can do football. But there's no - no clubs for women, I don't think.”

Sport England Research January 2006
Family support

“My dad coached weekends when I was growing up and he took me with him ... It was quite nice being coached by my dad as I was growing up. Sometimes you’ll get coaches that don’t really know how to handle you, but because he was my dad as well, he knew how to handle me. He knew what I wanted from soccer; he knew how I learnt things best so all that really helped me learn as a player”

Social support

“My friends realise how important my soccer is to me so ... they’re not always like lets go out Friday, Saturday night or whatever, they’re always like you go training get yourself sorted out and then we’ll arrange a time to go to the cinema or something. They respect that I have to balance my life quite a lot, so they make time for me rather than trying to get me to do the things that I shouldn’t really be doing..”

Social pressures

“Nobody played soccer near me! Everyone thought that girls that played soccer were just lesbians which when I look back now doesn't matter; but at 13, 14, 15 it's hard if all your mates are saying that...and all my mates just wanted to get pissed. I think I had my first drink when I was about 13 because that's what all my mates did. When I got to like 15 or 16, everyone just wanted to get out into town so that we could seem like we were more grown up. By the time I was 18 I was just playing soccer for fun....”

Role Strain

“I was in a disciplinary meeting with my progress tutor part way through my first year in College. He said to me that I was in danger of being kicked out because I was too far behind on my coursework and my grades weren't up to scratch. That for me was like ‘time to make a decision’. He talked me through [asked] why I was missing so many deadlines and it was mainly because [of soccer training and matches]. When I explained this to him, he basically said that if I wanted to make anything of myself then football had to go. I spoke to my parents about it and they agreed that education was my priority so I quit football pretty much altogether.”

Task 3 – 15 minutes

You have been provided with two real-life examples of female athletes who are about to drop out of sport due to social pressures

• Discuss among your groups how you would advise these players?

• What can you do in your own settings to avoid these types of conflict?
Task 4 – 10 minutes

Sports Coach UK provided this table in a resource to support coaches working with female athletes.

- Are these assumptions correct
- If so, how would you adjust your practice in line with these differences?

<table>
<thead>
<tr>
<th>Area of Difference</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intellectual function</td>
<td>Analytical, focused, linear, logical perspective</td>
<td>‘Whole-brained’ perspective</td>
</tr>
<tr>
<td>Base reaction</td>
<td>Action</td>
<td>Feeling</td>
</tr>
<tr>
<td>Stress response</td>
<td>Fight or flight</td>
<td>Tend and befriend</td>
</tr>
<tr>
<td>Innate interest</td>
<td>Things</td>
<td>People</td>
</tr>
<tr>
<td>Survival strategy</td>
<td>Through self-interest, hierarchy, power and competition</td>
<td>Through relationships, empathy and connections</td>
</tr>
<tr>
<td>Mental preferences</td>
<td>Hard-wired to systemise</td>
<td>Hard-wired to empathise</td>
</tr>
</tbody>
</table>
What do female athletes want from their coaches?

- To be supported as a person as well as a performer
- Coaching to be a joint endeavour
- Regular and positive communication

What makes an ideal coach?

Someone who:

• is highly qualified and continually learning
• is organised and in control
• respects and listens to the athlete
• provides regular feedback, both constructive and positive
• supports the individual as an athlete and as a person
• understands what makes their athletes tick and what motivates them
• can adapt the training to an athlete’s needs
• makes training sessions hard, but fun and varied
• is committed to the athlete and the athlete’s goals
• has high expectations of the athlete and challenges them
• can be a role model
• can be a mentor.