
Citation:
Gorbenko, A and Romanovsky, A and Tarasyuk, O and Biloborodov, O (2019) From Analysing
Operating System Vulnerabilities to Designing Multiversion Intrusion-Tolerant Architectures. IEEE
Transactions on Reliability. ISSN 0018-9529 DOI: https://doi.org/10.1109/tr.2019.2897248

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/5690/

Document Version:
Article (Accepted Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/5690/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

IEEE TRANSACTIONS ON RELIABILITY

1

Abstract— This paper analyses security problems of modern

computer systems caused by vulnerabilities in their operating

systems. Our scrutiny of widely used enterprise operating systems

focuses on their vulnerabilities by examining the statistical data

available on how vulnerabilities in these systems are disclosed and

eliminated, and by assessing their criticality. This is done by using

statistics from both the National Vulnerabilities database (NVD)

and the Common Vulnerabilities and Exposures system (CVE).

The specific technical areas the paper covers are the quantitative

assessment of forever-day vulnerabilities, estimation of days-of-

risk, the analysis of the vulnerabilities severity and their

distributions by attack vector and impact on security properties.

In addition, the study aims to explore those vulnerabilities that

have been found across a diverse range of operating systems. This

leads us to analysing how different intrusion-tolerance

architectures deploying the operating system diversity impact

availability, integrity and confidentiality.

Index Terms—security, vulnerability, operating systems,

vulnerability databases, days-of-risk, forever-day vulnerabilities,

vulnerability statistics, diversity, intrusion tolerance

I. INTRODUCTION

T is of vital significance for system users and developers

alike that information and communication systems are

secure. There have been a numbers of occasions recently, such

as those involving Hollywood Presbyterian Medical Center [1],

San Francisco Municipal Transportation Agency [2] or British

NHS [3], which have illustrated how exposed modern society

is to attacks. The costs of such global cyberattacks as Petya or

WannaCry could amount to millions of dollars, harm to our

health and survival and damage to critical infrastructures [4]. It

is because our communication equipment, computer systems

and other smart devices suffer from software vulnerabilities that

cyberattacks, malware intrusions and virus infections have been

successful.

In general terms, a vulnerability is understood as a weakness

that makes it possible for an intruder to damage the information

assurance in a system. It has been defined as a software fault

Manuscript received January 31, 2018; revised MM DD, 2018 and MM DD,

2018; accepted MM DD, 2018. Associate Editor: F. Sname. (Corresponding
author: Anatoliy Gorbenko). This work was supported in by the EPSRC/UK

STRATA platform grant. Anatoliy Gorbenko and Olga Tarasyuk are partially

supported by the TEMPUS ALIOT grant.
A. Gorbenko is with Leeds Beckett University, Leeds, UK

(e-mail: A.Gorbenko@leedsbeckett.ac.uk).

that a hacker can employ to access to a network or system

(MITRE Corporation, [5]). There are various ways in which

vulnerability can be exploited. Attackers can get commands

executed in the normal way, or overcome restrictions in order

to gain forbidden access to data, or trigger denial of service and

system service termination. The primary source of software

vulnerabilities is weaknesses and faults in software design and

implementation. Of the 372 updates issued by Microsoft in

2017 for their operating systems, 228 were security updates for

eradicating software vulnerabilities [6]. Of these, 137 were

classified as critical.

Both operating systems (OSes) and application software can

contain vulnerabilities, yet it is without doubt security flaws in

OSes that are most critical since if they are exploited by

attackers, all services and processes executed by the OS can be

compromised and illicit access gained to any data that is stored

on the exposed machine. Moreover, the threats they pose to

system dependability and security are distinct from failures,

faults and errors that have been the traditional focus of the

dependability community’s efforts.

For instance, in the beginning of May 2017 a global cyber

attack using ransomware called Wanna Decryptor (also known

as WanaCrypt0r 2.0, WannaCry or WCry) infected more than

300000 computers in 150 countries, hitting international shipper

FedEx, large telecommunications companies in Spain, Portugal

and Argentina, German railway operator Deutsche Bahn, etc. In

Britain, the National Health Service (still widely using Windows

XP OS in their IT systems) was the worst hit. Many UK hospitals

and surgeries were forced to turn away patients and cancel

appointments after their IT systems were infected with the

ransomware. The attack was initiated through exploiting SMB

vulnerability MS17-010 in Microsoft Windows family of

operating system.

This paper builds on a number of studies which examine a

range of OS security and vulnerability issues [7, 8, 9, 10]. Our

investigation of some novel aspects of security could yield

insights that would be significant for not only system

administrators, security engineers and OS vendors but also

A. Romanovsky is with Newcastle University, Newcastle-upon-Tyne, UK

(e-mail: Alexander.Romanovsky@ncl.ac.uk).
O. Tarasyuk is with the National Aerospace University, Kharkiv, Ukraine

(e-mail: O.Tarasyuk@csn.khai.edu).

O. Biloborodov is with the Plarium Ukraine LLC, Kharkiv, Ukraine
(e-mail: alexander.bright@hotmail.com)

From Analysing Operating System

Vulnerabilities to Designing Multiversion

Intrusion-Tolerance Architectures

Anatoliy Gorbenko, Alexander Romanovsky, Olga Tarasyuk, Oleksandr Biloborodov

I

mailto:O.Tarasyuk@csn.khai.edu
mailto:alexander.bright@hotmail.com

IEEE TRANSACTIONS ON RELIABILITY

2

ordinary users. It focuses on:

1) comparing, by using quantitative analysis and statistics,

the vulnerabilities in a number of OSes that have been identified

and resolved;

2) assessing the most significant vulnerability metrics

including days-of-risk [11], numbers of forever-day [12]

vulnerabilities and their severity for each operating system.

This paper expends our early work in [13] in a number of

ways. First of all, we investigate addition important aspects, such

as vulnerability distributions by attack vectors and their impact

on different security properties (availability, confidentiality and

integrity); a correlation between vulnerability severity and

vendor’s rapidity to fix them; analysing which types of

vulnerabilities are the most numerous and severe. In addition, we

use the reported statistics to examine intrusion-tolerance

architectures aimed at improving system security using diversity

of operating system and study how diversity can impact surface

of attacks targeting different security attributes via common

vulnerabilities. Lastly, we update our early study by adding

2017’s vulnerability statistics.

There have been many works, e.g. [14, 15, 16], studying

software diversity as a means for tolerating software faults since

the 70s when the concept of N-version programming [17] and

Recovery Blocks [18] were introduced. Software diversity has

been successfully applied in various application domains,

including railway, aerospace and nuclear power station control

to improve system reliability.

One of the most challenging parts of the work on applying

diversity in practice is the justification of the effectiveness of

proposed solutions due to the lack of empirical data. The use of

software diversity for security and intrusion-tolerance was

proposed in earlier studies reported in [19, 20, 21, 22], which

clearly showed the needs for demonstrating the applicability of

the proposed architectural solutions and for evaluating their

advantages to drive their design.

Our paper continues a series of works quantitatively studying

common vulnerabilities of intrusion-tolerance systems

employing OS diversity, e.g. [23, 24]. In spite of some

similarities between our work and these studies, there are

substantial differences. Firstly, Garcia et al. do not consider

vulnerability statistics in dynamics taking into account a lag

between the times when a vulnerability is disclosed and when OS

vendor issue a patch to fix it. Secondly, in our work we analyse

additional vulnerability metrics related to different OSes:

average days-of-risk, average number of forever-day

vulnerabilities, their types and severity. In addition, we examine

how OS diversity and common vulnerabilities influence the

attack surface and impact various security attributes of the

specific intrusion-tolerance architecture. The reported statistics

will help system administrators and users to make a justified

decision when facing a challenge of choosing the most secure and

the least vulnerable operating system and their combinations.

The rest of the paper is organized as follows. In the next

section we briefly describe vulnerability databases and studied

OSes, discuss the most important vulnerability measures (days-

of-risk, forever-day vulnerabilities and their CVSS severity),

present vulnerabilities discovery and patching statistics, and

outline the most severe types of vulnerabilities as well as the

vulnerabilities, discovered in more than one OS. Section III

examines diverse intrusion-tolerance architectures and

discusses how diversity of OSes affects various security

properties: availability, integrity and confidentiality.

The final part, Section IV, sums up several practical

conclusions to be drawn from our study.

II. BACKGROUND AND RESEARCH METHODOLOGY

The main focus of our paper is to consider dynamical aspects

of vulnerability life cycle. In particular, we study how often new

vulnerabilities are discovered, how quick vendors issue patches,

fixing vulnerabilities, and how many of yet unfixed

vulnerabilities exist in a particular operating system at once.

With this purpose, our research methodology relies on:

 --collecting vulnerability statistics from different datasets

and merging them in a single SQL-like database;

 --considering the vulnerability life cycle and disclosure

policies which are used by different vulnerability datasets;

 --using the Common Platform Enumerations (CPE,

https://cpe.mitre.org/dictionary/) corresponding to the studied

OSes to filter vulnerability statistics from the database.

A. Vulnerability Databases and Datasets

There are a wide range of actors that are investing plenty of

effort into discovery and elimination of vulnerabilities,

including software vendors, international governmental and

non-governmental organizations, businesses and individuals.

Many of them make their vulnerability datasets publicly

available. Among the most reputable of these are:

 --CVE, the Common Vulnerabilities and Exposures

system, is a list of established vulnerabilities maintained by

MITRE Inc. (cve.mitre.org). Each vulnerability is assigned a

unique identifier, CVE-ID, that other vulnerability databases

use to synchronize their data with CVE and thus make data

exchange between security databases and products possible.

Over 18,000 of these identifiers were assigned by MITRE in

2017 alone. The vulnerability description provided in CVE is,

however, rather basic and does not include such significant

details as a comprehensive list of vulnerable products,

vulnerability type and severity.

 -- NVD, the National Vulnerability Database maintained

by the U.S. National Institute of Standards and Technology

(web.nvd.nist.gov), builds on and is synchronized with CVE.

Unlike CVE, it categorises vulnerabilities by type and severity,

provides a specific list of vulnerable software products and

additional meta-data following the Common Platform

Enumeration Dictionary (CPE), the Common Weakness

Enumeration Specification (CWE) and the Common

Vulnerability Scoring System (CVSS).

 --VNDB, the Vulnerability Notes Database maintained by

CERT (www.kb.cert.org/vuls/).

 --VulnDB, a vulnerability database offered as a

commercial product by the Risk Based Security company

(www.riskbasedsecurity.com/vulndb/), can track weaknesses in

third-party libraries.

 --SecurityTracker, a vulnerability dataset available to buy

https://cpe.mitre.org/dictionary/
file:///D:/Tolik/Web-Diversity/!ISSRE'2017/www.kb.cert.org/vuls/
http://www.riskbasedsecurity.com/vulndb/)

IEEE TRANSACTIONS ON RELIABILITY

3

at securitytracker.com.

Another common way to inform customers about

vulnerabilities in software products is vendors publishing

security bulletins (e.g. https://technet.microsoft.com/en-

us/security/bulletins.aspx). However, the previously widely used

OSVDB (Open Source Vulnerability Database) and FVDB

(Frei’s Vulnerability Database) are not accessible any more.

NVD and CVE, the most comprehensive and reliable

databases, make vulnerability data available by providing a

simple search interface on their websites or daily updated XML

data feeds. It would be difficult, however, to directly use their

datasets for complex analytics since SQL queries are not

supported.

B. Vulnerability Life Cycle and CVE/NVD Disclosure Policies

There have been several studies focusing on the software

vulnerability life cycle [25, 26, 11]. In one study [27] its most

important milestones were defined in order to put forward its

formal model. The common consensus among security analysts

and researchers single out 5 major events which make up a

typical vulnerability life cycle: (i) a vulnerability is created; (ii)

it is discovered; (iii) it is disclosed; (iv) a patch is created; (v)

the patch is installed.

The risks of system exposure for time intervals between these

events tend to differ. Thus, there is a time of a higher security

risk from the moment of vulnerability discovery or disclosure

till the moment when a patch is installed to resolve it, referred

to as days-of-risk [11]. The terms black, grey and white risk are

used to refer to varying levels of exposure risk and of public

awareness of the dangers involved (see Fig. 1). This paper deals

with grey (post-disclosure) risk associated with the interval

between the vulnerability being disclosed and the patch to fix it

being provided.

The paper takes the date when a vulnerability is assigned a

CVE-ID in CVE as vulnerability disclosure time. This is

because CVE-IDs are unique identifiers, whereas most other

security bulletins and vulnerability databases are seen as

secondary since their records are synchronized with them.

While it is sometimes possible to derive the time when a

patch is produced from vendors’ security bulletins, more

commonly it is necessary to search vendors’ web sites manually

in order to extract the relevant information, since typically there

are no reporting mechanisms or xml-based data feeds that

would allow automatic search and processing.

It has been reported [28] that, for about 75% of vulnerability

descriptions, the median time from the moment when they

appear in vendor security bulletins till the time when NVD

makes them available is seven days. This suggests that NIST

allows time for a patch to be produced to fix the vulnerability

before publishing the detailed information in NVD,

implementing what has been called a responsible disclosure

model [29]. In addition, the median announcement gap varies

depending on the vendor: it is 2 days for Microsoft, 5 days for

Oracle and Apple, 10 days for Linus and 12 days for Novell.

Black risk Gray risk White risk

Vulnerability
discovery

Vulnerability
disclosure

Patch
availability

Patch
installation

time

Days-of-Risk

Window of zero-day
vulnerabilities attack

Window of forever-day
vulnerabilities attackVulnerability

creation

Fig. 1. Vulnerability lifecycle.

C. Operating Systems Under Study

This study examines the vulnerabilities of six widely used

enterprise operating systems (see Table I). Our reasons for

choosing these particular OSes and their versions included their

popularity, the fact that they include both proprietary and open-

source types, belong to different families (Windows,

Unix/Linux, MacOS), and are sold by different vendors for a

range of application domains. This prompted us to consider a

series of studies (e.g. [30, 31, 32]) focusing on the OS market

share of web servers, where Linux-based OSes predominate,

and of on-premises server, where various versions of Microsoft

Windows are most common.

Our aim was to examine vulnerability data over a significant

period in order to identify major trends. We also wanted to

ensure that our conclusions are based on comprehensive

datasets (in NVD and CVE, there is not enough information on

the most recent OS versions for statistical analysis). For these

reasons, the choice of OS versions was made (see Table I) so as

to focus our scrutiny on the six years between the late 2011 and

the late 2017, analysing a total of over 2,500 vulnerabilities.

Even though the OS versions selected have already been

replaced by more recent ones, our research demonstrates that

new vulnerabilities are still being discovered in the older OS

versions. Furthermore, most of these new vulnerabilities can

also be found in the latest versions of OSes.

To precisely identify vulnerabilities discovered in a particular

operating system we use the Common Platform Enumeration

Dictionary (CPE) [33]. The CPE dictionary, maintained by

NIST and used by NVD, offers is a structured hierarchical

naming scheme and a generic syntax for identifying computer

systems, software, and packages. Each vulnerability record

stored in NVD has a list of CPE references which allows exact

identification of all vulnerable products.

Each CPE reference uses the following general syntax:

cpe:/type-of-product {o – operating system | a – application

software | h – hardware/firmware}:manufacturer:product-name

:release:version:subversion(s):platform{x64|x86}.

TABLE I.
OPERATING SYSTEMS UNDER INVESTIGATION

Operating system
Release

date

Linux kernel

version

No of CPE

references

Ubuntu Server 12.04 26.04.2012 3.2.x 82
Red Hat Enterprise Linux 6 10.11.2010 2.6.32.x 87

Novell Linux SUSE

 Enterprise Server 11 SP2

27.02.2012 3.0.13 58

Microsoft Windows Server

 2012 R2

18.10.2012 - 12

Apple MacOS Server 10.8 25.06.2012 - 7
Oracle/Sun Solaris 11 09.11.2011 - 9

https://technet.microsoft.com/en-us/security/bulletins.aspx)
https://technet.microsoft.com/en-us/security/bulletins.aspx)

IEEE TRANSACTIONS ON RELIABILITY

4

In practice, several CPE references can match the same

product (e.g. some of CPEs can refer to the whole family of OSes

while others can identify the certain OS, version or release). For

example, the list of CPE references corresponding to Microsoft

Windows Server 2012 R2 consists of 12 entries including:

 --cpe:/o:microsoft:windows:::~~~~x64~

 --cpe:/o:microsoft:windows:::~~~~x86~

 --cpe:/o:microsoft:all_windows:abstract_cpe

 --cpe:/o:microsoft:all_windows

 --cpe:/o:microsoft:windows_server_2012:r2::~~~x64~~

 --cpe:/o:microsoft:windows_server_2012:-, etc.

Lists of CPEs for Ubuntu, Red Hat and Novell OSes should

also be supplemented with CPE entries corresponding to Linux

kernels used by each of these OSes. Being a part of an operating

system a Linux kernel, nevertheless, is considered by NVD as

a separate software product having own vulnerabilities. For

example, the list of CPEs assigned to Linux kernel 3.2.x used

by Ubuntu Server 12.04 includes:

 --cpe:/o:linux:linux_kernel

 --cpe:/o:linux:linux_kernel:-

 --cpe:/o:linux:linux_kernel:3.2

 --cpe:/o:linux:linux_kernel:3.2::~~~~x86~

 --cpe:/o:linux:linux_kernel:3.2:rc2

 --cpe:/o:linux:linux_kernel:3.2.1

 --cpe:/o:linux:linux_kernel:3.2.1::~~~~x86~, etc.

In our study, the number of vulnerabilities in Linux kernels

represents on average 40% of the total number of vulnerabilities

disclosed during 2012-2017 in Ubuntu, Red Hat and Novell.

D. Research methodology

Our research methodology is presented in Fig. 2. It consists of

seven steps including:

Step 1: first, we designed and created a MySQL database to

aggregate information from the CVE and NVD databases.

Step 2: we developed a software tool which merges together

XML data files provided by CVE and NVD, and inserted the joint

data set into the MySQL database. The tool consistently updates

our MySQL vulnerability database by:

 --downloading XML data feeds from CVE and inserting

all new vulnerabilities into the MySQL database, using CVE-

ID as a primary key and the CVE date as a vulnerability

disclosure time (Step 2.1);

 --downloading XML data feed from NVD and, if

necessary, update vulnerability records existed in the MySQL

database by CVE-ID (Step 2.2). In particular, if NVD reports a

new vulnerability we set the NVD date as the time when a

vulnerability is fixed by a vendor and add CVSS, CWE and

CPE information from NVD in addition to that previously

imported from CVE.

Thus, our MySQL database stores both dates associated with

the same vulnerability: (i) when a vulnerability is first announced

by CVE and (ii) when its description appears in NVD. This

allows us to estimate the period of grey risk. We did not exclude

NVD announcement gaps, discussed at the end of Section II.B,

during which vulnerability descriptions propagate from vendor’s

1 https://drive.google.com/open?id=1rToATBng3D4vGL7P7bnoxSywsKe0rDdW

security bulletins to the NVD database. This can result in a

slightly pessimistic estimate, which, nevertheless, seems to be

more secure than their underestimate. Because CVE and NVD

are updated daily, the tool performs steps 2.1 and 2.2 every day.

By now, our MySQL database includes more than 100000

vulnerability records.

Step 3: at this step we selected six popular server operating

systems which vulnerabilities we wanted to examine.

Step 4: we used the CPE Dictionary to create 6 lists of CPE

references corresponding to each operating system. Table I

reports how many of CPE entries have been associated with

each operating system (the lists themselves can be downloaded

from GoogleDrive1).

Step 5: the CPE lists created at the previous step were used

to query the MySQL database and select a subset of

vulnerabilities belonging to certain OSes.

Step 6: at this stage we run a series of sub-requests to collect

various vulnerability statistics reported in Section III.

Step 7: at the final step we studied common OSes

vulnerabilities (by analysing overlaps of the lists of CPE entries

assigned to each vulnerability) and investigated how diversity of

OSes affects system availability, integrity and consistency.

2.1. Create records by CVE-ID
(date, description, references)

2.2. Update records by CVE ID
(date, CPE, CVSS, CWE, etc.)

2. Merge
XML data

feeds

1. Create MySQL

database

4. Create CPE lists

CPE
5. Query database

6. Get vulnerability statistics

3. Select OSes

7. Analyse common
vulnerabilities and
OS diversity

XML

SQL

Fig. 2. Research methodology.

The accuracy of the results reported in our work fully depends

on the accuracy of the data, reported by CVE and NVD. As we

mentioned earlier, CVE and NVD are highly reputable

vulnerability databases, widely used by many researchers and

security analysts, that also provide data feeds for the third-party

security tools (e.g. vulnerability scanners). Moreover, we

assume that MITRE Inc. and NIST, operating CVE and NVD,

spend comparatively equal efforts on examining vulnerability

of different software products and provide trusted information

that can be used as an indicator of software security/quality.

III. OSES VULNERABILITY STUDY

A. Vulnerability Discovery, and Patching Statistics and

Dynamics

In this section we summarize the statistics of vulnerabilities

discovered and fixed in different OSes since the 1st of January

2012 and until the 31st of December 2017 (see Table II). In the

table we use the following short names for the operating

systems under investigation:

https://drive.google.com/open?id=1rToATBng3D4vGL7P7bnoxSywsKe0rDdW

IEEE TRANSACTIONS ON RELIABILITY

5

 --Ubuntu – Ubuntu Server 12.04.

 --Red Hat – Red Hat Enterprise Linux 6.

 --Novell – Novell Linux Enterprise Server 11 SP2.

 --Windows – Microsoft Windows Server 2012 R2.

 --MacOS – Apple MacOS Server 10.8.

 -- Solaris – Oracle Solaris 11.

Red Hat Enterprise Linux 6 and Oracle Solaris 11 had been

released before the observed period (see Table II). Other

operating systems (Ubuntu Server 12.04, Novell Linux

Enterprise server 11 SP2, Microsoft Windows Server 2012 R2

and Apple Macintosh Server 10.8) were released in the

beginning of 2012. It is worth mentioning that on the date of the

official release some of those operating systems already had

vulnerabilities that earlier had been discovered in previous OS

versions. In particular, Ubuntu Server 12.04 inherited 15 of

such vulnerabilities, Red Hat Enterprise Linux 6 – 46, Novell

Linux Enterprise server 11 SP2 – 26 and Oracle Solaris 11 – 13

vulnerabilities. Such vulnerabilities are reported as ‘Inherited’

in the Table II.

During 2012-2017 the largest number of vulnerabilities (1034)

was disclosed in Ubuntu, the least number (205) – in MacOS.

The Red Hat and Novell operating systems occupy a middle

position having 560 and 415 vulnerabilities, respectively. The

greatest number of vulnerabilities in 2007 (190) were discovered

in Windows. Cumulative graphs of vulnerabilities disclosed via

the CVE and NVD databases during 2012-2017 in studied OSes

are depicted in Fig. 3. One can notice that reporting mechanisms

are quite different for different OSes. In particular, curves

depicting the numbers of vulnerabilities discovered in Linux-

based OSes are less discrete having considerably more “small

steps”. This means that vulnerabilities are reported quite often by

small portions or even individually. At the same time,

vulnerabilities in Windows, Solaris and MacOS are usually

batch-reported only few times a year.

TABLE II.
VULNERABILITY DISCLOSURE STATISTICS

Y
ea

r

Vulnerabilities

U
b

u
n

tu

W
in

d
o

w
s

R
ed

 H
at

N
o

v
el

l

M
ac

O
S

S
o

la
ri

s

Inherited 15 0 46 26 0 13

2
0
1
2
 Disclosed 64 10 31 32 2 47

Fixed 32 5 40 36 2 47

Avg.Sev. 5.21 8.31 5.07 5.13 3.20 4.37

2
0
1
3
 Disclosed 196 59 71 124 60 31

Fixed 202 51 86 127 59 32

Avg.Sev. 5.04 7.12 5.09 4.94 4.92 4.72

2
0
1
4
 Disclosed 188 64 72 129 40 37

Fixed 197 38 58 107 40 35

Avg.Sev. 5.55 6.71 6.79 5.83 7.13 5.08

2
0
1
5
 Disclosed 251 178 162 52 14 74

Fixed 223 156 146 80 15 71

Avg.Sev. 6.06 6.66 5.75 6.67 6.53 5.12

2
0
1
6
 Disclosed 214 204 125 23 48 4

Fixed 238 156 16 34 48 17
Avg.Sev. 5.50 5.93 6.87 7.17 6.78 6.60

2
0
1
7
 Disclosed 106 190 53 29 41 5

Fixed 79 234 59 25 24 9
Avg.Sev. 6.25 4.50 6.05 6.19 4.04 5.18

T
o

ta
l Disclosed 1034 705 560 415 205 211

Fixed 971 640 405 409 188 211

Avg.Sev. 5.60 6.54 5.94 5.99 5.43 5.18

B. Days-of-Grey-Risk Statistics

The number of disclosed vulnerabilities is often used as the

major indicator of software insecurity. However, taking into

account how fast software vendors react on vulnerabilities

discovered in their products is equally important. To compare

efforts that different vendors make to solve security issues and

to deliver security updates fixing vulnerabilities we use the

Days-of-Risk measure.

Days-of-risk [11] defines a period of time after a

vulnerability is discovered/disclosed and until it is eliminated

from a system after patch installation. It is also known as

‘window of-vulnerability’ or ‘days-of-recess’. In this study we

do not take into account possible delays between the times

when a vendor issues the patch and until a user or a system

administrator actually installs it.

Besides, in many cases it is impossible to identify when

exactly a vulnerability was discovered. In the paper we

investigate, so called, gray risk or post-disclosure risk which

defines the interval between vulnerability disclosure time and

the date when the patch fixing vulnerability becomes available

[13, 11]. In accordance with our research methodology,

discussed in Section II.D we estimate days-of-gray-risk

(DoGR) for a particular vulnerability as the period of time

between a vulnerability is initially reported in CVE and its

description appears in NVD.

Table III shows how the average days-of-risk have been

changing during 2012-2017 for different operating systems. It also

includes data reported by other researchers in [7, 10, 9, 34] for

earlier versions of the studied OSes. For instance, according to [10]

in 1999 Microsoft spent an average 16 days from vulnerability

disclosure to issuing a patch. Red Hat spent only 11 days to fix

vulnerabilities while Sun proved itself to be very slow solving

security problems in 90 days on average.

In 2006, as reported in [7, 34], the days-of-gray-risk

parameter for Microsoft Windows series of operating systems

(Windows 2000 Professional and Server, Windows XP,

Windows Server 2003) was estimated at 29 in average. At the

same time, it took Red Hat 107 days to deliver security updates

for its Enterprise Linux 2.1, 3.0 and 4.0 while Sun spent 168

days to do the same for any Solaris version patched in 2006. In

addition, it was estimated that Apple Mac OS X and Novell

SUSE Linux Enterprise Server and Desktop (versions 8–10)

had 46 and 74 days-of-gray-risk respectively.

TABLE III.
AVERAGE DAYS-OF-GRAY-RISK STATISTICS

Year Ubuntu Windows Red Hat Novell MacOS Solaris

1999* - 16 11 - - 90

2005** - 24 90 68 55 159

2006** - 29 107 74 46 168
2012 144 132 243 109 94 89

2013 109 131 119 99 113 81

2014 62 100 108 68 107 69
2015 79 126 101 133 83 58

2016 105 183 130 144 138 210

2017 34 89 80 36 225 49

*taken from [10]; **taken from [7], [9] and [34].

IEEE TRANSACTIONS ON RELIABILITY

6

Fig. 3. Cumulative number of disclosed vulnerabilities.

Fig. 4. Forever-day vulnerabilities.

Fig. 5. Average severity of forever-day vulnerabilities.

0

100

200

300

400

500

600

700

800

900

01.01.2012 01.01.2013 01.01.2014 01.01.2015 01.01.2016 01.01.2017

Date

RedHat Novell

Ubuntu Solaris

Windows MacOS

Ubuntu

Novell

Windows

RedHat

Solaris

MacOS

31.12.2017

0

20

40

60

80

100

120

140

01.01.2012 01.01.2013 01.01.2014 01.01.2015 01.01.2016 01.01.2017Date

RedHat Novel

Ubuntu Solaris

Windows MacOS

Ubuntu

Novell

Windows

RedHat

Solaris MacOS

31.12.2017

2

3

4

5

6

7

8

9

10

01.01.2012 01.01.2013 01.01.2014 01.01.2015 01.01.2016 01.01.2017Date

RedHat Novel Ubuntu

Solaris Windows MacOS

31.12.2017

Ubuntu

Novell

Windows

RedHat

Solaris

MacOS

IEEE TRANSACTIONS ON RELIABILITY

7

Table III shows that since 2012 (excepting 2017) there has been

a general tendency towards shortening the period of grey risk.

However, during the last two years, the average days-of-grey-risk

for different operating systems varies significantly between 34 and

225 days. Unfortunately, it still means that after a vulnerability

public disclosure users of affected operating system remain

vulnerable and unprotected against potential hacker attacks during

months, and the OS vendors are aware of this.

Our work clearly shows that the conclusion by Jeff Jones

expressed in a series of his earlier blog posts [7, 11, 35] that

Windows is the platform exposing users to risks for the shortest

period of time as compared to other OSes is no longer correct.

At the same time, we can see that since Oracle took

ownership of Solaris OS in 2009 the Solaris OS has

demonstrated the steady reduction of days-of-gray-risks. This

let us to conclude that Oracle has been reacting on new

vulnerabilities much faster than Sun did.

C. Forever-Day Vulnerability Statistics

The authors of [12] coin a new term ‘forever-day

vulnerability’ defining a publicly disclosed vulnerability that

has not been patched yet and can be hacked any time during

system operation. It is in contrast to ‘zero-day vulnerabilities’

[27] which are publically undisclosed vulnerabilities that some

hackers have already discovered and can exploit.

Using both, the date of vulnerability disclosure and the date

when the OS vendor issues a patch to fix it we can plot graphs

of forever-day vulnerabilities showing how many of known

(already disclosed publicly) but yet unfixed vulnerabilities

existed every day during 2012-2017 in a particular operating

system (see Fig. 4). Any operating system running with forever-

day vulnerabilities is always vulnerable unless the software

vendor issues a patch and a system administrator installs it.

Usually, software vulnerabilities are disclosed much faster

than vendors manage to fix them. This is why a particular

operating system can contain up to several dozens of forever-day

vulnerabilities at a time. Any of these vulnerabilities could be

potentially exploited by hackers to attack the system. Fig. 4

shows that some operating systems have only few days (if any)

of vulnerability free operation per year.

For instance (see Table IV), during 2012–2017 OS Ubuntu,

Windows, Red Hat and Novell did not have known vulnerability

free days at all. MacOS had only 111 of such days. It is our hope

that OS users and administrators understood and accepted the

potential risk of running these systems. In addition, Table IV

presents a detailed statistics of forever-day vulnerabilities for

each operating system during 2012-2017. On average, Ubuntu

OS had 48 of such vulnerabilities every day. OS Windows and

Red Hat had 40 forever-day vulnerabilities on average (twice as

many as Novell). MacOS and Solaris had the least average

number of forever-day vulnerabilities (13 and 8 respectively).

D. Vulnerability Severity and CVSS-based Statistics

Quantitative evaluation of computer systems vulnerability is

a question of great debates with many approaches proposed

[36, 37, 38, 39]. It is clear that the more vulnerabilities exist in

a system, the more that system is prone to hacker attacks.

TABLE IV.
FOREVER DAY VULNERABILITIES STATISTICS

2
0
1
7
 Min 3 2 17 3 2 0

Max 54 144 33 12 43 9

Average 17 68 27 6 23 3
Vuln. free days 0 0 0 0 0 146

T
o

ta
l

Min 3 0 13 3 0 0

Max 137 171 126 61 50 33

Average 48 40 40 21 13 8
Vuln. free days 0 0 0 0 111 388

However, one should also account how quick a vendor fixes

vulnerabilities, how critical vulnerabilities are, how they impact

on security properties, etc.

Vulnerability severity is an important characteristic

quantifying the impact of vulnerability on system security. NVD

has adopted the Common Vulnerability Scoring System (CVSS)

to assign severity scores to software vulnerabilities [40]. CVSS

is composed of three metric groups: Base, Temporal and

Environmental, each consisting of a set of metrics. The CVSS

Base score represents the intrinsic and fundamental

characteristics of a vulnerability independently of exploits

and/or payloads. It is calculated using a group of qualitative

metrics taking into account:

 --attack vector (local, adjacent network, network);

 --access complexity (high, medium or low);

 --need for authentication (required or not; multiple or single);

 --vulnerability impact on confidentiality, integrity and

availability (none, partial or complete); some of vulnerabilities

impact only one security attribute while others can lead to

breaches in two or all three of them.

Temporal and Environmental scores are optional. They

represent the characteristics of a vulnerability that can change

over time (e.g. once the exploit code becomes available) and

among user environments (e.g. whether a vulnerable system is

exposed publically in the Internet or not).

In this section we consider only CVSS base scores provided

by the NVD vulnerability database that are constant over time

and user environments. Note that the CVSS vulnerability

severity ranges from 0 to 10, with 10 being the most severe.

Y
ea

r Forever day

vulnerabilities

U
b

u
n

tu

W
in

d
o

w
s

R
ed

 H
at

N
o

v
el

l

M
ac

O
S

S
o

la
ri

s

2
0
1
2
 Min 15 2 22 10 0 6

Max 52 7 53 30 2 33

Average 24 4 36 20 1 14
Vuln. free days 0 0 0 0 102 0

2
0
1
3
 Min 33 1 18 15 0 4

Max 102 32 61 59 41 17

Average 66 18 37 32 17 10
Vuln. free days 0 0 0 0 9 0

2
0
1
4
 Min 13 2 13 12 1 1

Max 62 41 47 44 26 22
Average 39 16 25 23 13 8

Vuln. free days 0 0 0 0 0 0

2
0
1
5
 Min 35 9 32 14 2 2

Max 96 98 76 61 16 23
Average 59 51 49 27 6 12

Vuln. free days 0 0 0 0 0 0

2
0
1
6
 Min 51 30 27 7 2 0

Max 137 171 126 32 50 17

Average 85 83 62 18 20 1

Vuln. free days 0 0 0 0 0 242

IEEE TRANSACTIONS ON RELIABILITY

8

Fig. 6. Vulnerabilities distribution by CVSS severity scores.

The average CVSS vulnerability severity scores (Avg.Sev.)

for different OSes are presented in Table II.

We could see, for example, that vulnerabilities in Oracle

Solaris are the least critical with average severity equal to 5.18.

The most severe vulnerabilities have been discovered in

Microsoft Windows (the average severity is 6.54) and Novell

(the average severity is 5.99).

Fig. 6 shows the percentage of vulnerabilities with different

severity levels. Almost a quarter of vulnerabilities discovered

in Microsoft Windows, MacOS and Red Hat are critical (e.g.

their CVSS severity scores are in the range [8.0..10.0]). The

lowest percentage of critical vulnerabilities (less than 12%) was

observed in Solaris.

It is worth mentioning that system vulnerability is a

dynamically changing characteristic. It changes every time

when a new vulnerability is discovered in a system or when a

patch fixing one of the previously discovered vulnerability is

issued by a vendor and applied by a system administrator.

Thus, system vulnerability at a particular moment of time can

be estimated as a product of the current number of forever-day-

vulnerabilities (see Fig. 4) and their average severity

(see Fig. 5).

As shown in Fig. 5 the severity of vulnerabilities disclosed in

the Microsoft OS, having the highest value on average,

nevertheless, tends to gradually decrease in time. In contrast,

the severity of vulnerabilities in Linux- and Unix-based systems

is gradually increasing. It is also worth noting that that there is

no a strong correlation between the numbers of forever-day

vulnerabilities observed in particular OS and their average

severity.

Table V demonstrates vulnerabilities distribution among

different CVSS criteria: attack vector, need for authentication

and impact on security properties.

TABLE V.
CVSS-BASED VULNERABILITY STATISTICS

1 0 2 0 4 2

156

18 36
47

26
85

8

3 12
10

16

12

73

33 108 40

36

173

52
27

130 142

64

28821 13

20

27

15

52212 58
108

67

25

180
27 6

79
29

23

111140
38

39 15

0
32

15 12 43 39
2 39

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Severity

level

10

9

8

7

6

5

4

3

2

1

Y
ea

r

CVSS
criteria Vulnerabilities

U
b

u
n

tu

W
in

d
o

w
s

R
ed

 H
at

N
o

v
el

l

M
ac

O
S

S
o

la
ri

s

In
h
er

it
ed

Attack
vector

Local 6 0 28 19 0 6

Adj. network 2 0 4 1 0 0
Network 7 0 14 6 0 7

Auth.
Required 1 0 1 1 0 2

None 14 0 45 25 0 11

Impact
Confidentiality 7 0 15 12 0 7

Integrity 7 0 12 7 0 3
Availability 12 0 39 20 0 9

2
0
1
2

Attack
vector

Local 25 1 14 24 1 26

Adj. network 4 0 1 4 0 12

Network 35 9 16 4 1 9

Auth.
Required 9 0 3 4 0 7

None 55 10 28 28 2 40

Impact
Confidentiality 35 9 12 20 2 16

Integrity 25 9 17 13 0 18

Availability 45 8 24 25 0 39

2
0
1
3

Attack
vector

Local 109 31 34 88 27 21

Adj. network 11 1 3 11 1 0

Network 76 27 34 25 32 10

Auth.
Required 24 2 7 12 3 5

None 172 57 64 112 57 26

Impact
Confidentiality 120 47 48 72 39 7

Integrity 97 40 42 45 34 11
Availability 140 51 49 90 31 27

2
0
1
4

Attack
vector

Local 81 26 14 72 13 22

Adj. network 4 4 1 3 0 1

Network 103 34 57 54 27 14

Auth.
Required 11 3 1 15 0 3

None 177 61 71 114 40 34

Impact
Confidentiality 101 52 54 70 40 20

Integrity 79 44 50 54 35 14
Availability 144 44 60 106 34 30

2
0
1
5

Attack
vector

Local 32 105 14 12 9 31

Adj. network 0 1 1 1 0 0

Network 219 72 147 39 5 43

Auth.
Required 41 4 48 4 0 5

None 210 174 114 48 14 69

Impact
Confidentiality 147 158 95 37 12 31

Integrity 154 140 90 38 14 34

Availability 203 136 134 40 12 63

2
0
1
6

Attack
vector

Local 65 85 9 12 9 3

Adj. network 0 16 1 0 0 0

Network 149 103 115 11 39 1

Auth.
Required 7 27 2 0 0 0

None 207 177 123 23 48 4

Impact
Confidentiality 114 173 98 20 42 4

Integrity 103 123 94 19 26 4

Availability 178 134 99 22 35 4

2
0
1
7

Attack
vector

Local 21 132 27 19 3 3

Adj. network 2 0 2 2 1 0

Network 6 58 24 4 37 2

Auth.
Required 0 8 1 1 0

None 29 182 52 25 40 5

Impact
Confidentiality 20 181 37 17 38 1

Integrity 21 81 37 18 27 3

Availability 27 87 46 23 29 3

T
o

ta
l

Attack
vector

Local 339 380 140 246 62 112

Adj. network 23 22 13 22 2 13

Network 595 303 407 143 141 86

Auth.
Required 93 44 63 36 4 22

None 864 661 497 375 201 189

Impact
Confidentiality 544 620 359 248 173 86

Integrity 486 437 342 194 136 87

Availability 749 460 451 326 141 175

IEEE TRANSACTIONS ON RELIABILITY

9

It shows, for instant, that 75% of vulnerabilities in Red Hat

OS are network-exploitable; for Ubuntu, MacOS and Solaris a

percentage of network vulnerabilities is over 50%; the fewest

percentages of network exploitable vulnerabilities have been

detected in Windows (46%) and Novell (40%). Ubuntu and Red

Hat have the highest number of network-exploitable

vulnerabilities (618 and 420 vulnerabilities correspondingly).

Practically it means, that it is undesirable to expose Ubuntu

and Red Hat as web- or e-mail servers publicly available in the

Internet because of a high chance to be hacked.

Another information of concern is a significant number of

vulnerabilities (from 88% to 98% for different OSes) that do

not require user authentication to be exploited. It means that

most of hacker attacks would simply bypass built-in OS access

control mechanisms making them useless.

Note here that the sum of vulnerabilities within the CVSS

‘impact’ metric group is higher than the total number of

disclosed vulnerabilities presented in Table V. This is explained

by the fact that most of vulnerabilities once exploited would

allow an attacker to compromise at once all system security

properties: confidentiality, integrity and availability.

E. Interdependency Between Vulnerability Severity and

Days-of-Grey Risk

Any software users would expect that vendors always try to

fix the most severe vulnerabilities firstly. On the other hand, a

rational vendor would take a risk-based view to decide which

vulnerability to give high priority by taking into account the

likelihood of exploit.

A vulnerability may be difficult to exploit (e.g. requires a

very high competence or simply security controls commonly

used make an exploit very difficult). Ignoring the likelihood of

exploits from the vendor’s point of view may be a recipe for

wasting resources.

The CVSS base score can be considered as a good risk-based

indicator as it integrates both vulnerability impact metrics

(impact on integrity, confidentiality and availability)

determining vulnerability severity and exploitability metrics

(attack vector, access complexity and needs for authentication)

which define the likelihood of exploits

(https://nvd.nist.gov/vuln-metrics/cvss/v2-calculator).

A set of box-and-whisker diagrams on Fig. 7 shows the

numbers of days-of-grey-risk corresponding to vulnerabilities

of different CVSS scores. They allow us to compare how quick

OS vendors fix the least (CVSS severity score is in the range

[1.0..3.0]) and the most (CVSS severity score is in the range

[8.0..10.0]) critical vulnerabilities.

Unfortunately, it is shown that the days-of-risk metric does

not actually depend on the CVSS vulnerability severity rating.

The presented results disprove a widespread hypothesis that

software vendors put more efforts into fixing the most critical

vulnerabilities. To some extent it seems to be true for the Red

Hat operating system. Windows spends approximately the same

time to fix the most and the least severe vulnerabilities (127 vs

128 days on average). However, the developers of other OSes

spend considerably more time on fixing critical vulnerabilities

as compared to the least severe ones.

(a) Ubuntu (b) Novell (c) Red Hat

(d) Windows (e) MacOS (f) Solaris

Fig. 7. Box-and-whisker diagrams showing a days-of-gray-risk statistics (Y-axes) for vulnerabilities of different CVSS severity scores (X-axes)

https://nvd.nist.gov/vuln-metrics/cvss/v2-calculator

IEEE TRANSACTIONS ON RELIABILITY

10

F. The Most Critical Types of OS Vulnerabilities

NVD classifies all vulnerabilities using the Common

Weakness Enumeration (CWE) scheme. CWE is a formal list

of software weakness types proposed by MITRE Corporation

(https://cwe.mitre.org/).

Our analysis demonstrates that the most numerous types of

vulnerabilities for operating systems in general are:

CWE-119 (24%) – Improper restriction of operations within

the bounds of a memory buffer caused by weaknesses of certain

programming languages (often C and C++) that do not control

bounds for the memory buffer that is being addressed.

Vulnerabilities of the CWE-119 type usually cause arbitrary

code execution, altering the intended control flow leading to

accesses to protected information or system crash;

CWE-264 (23%) – Weaknesses and implementation

mistakes in permissions, privileges, and access control;

CWE-200 (15%) – Information intentional or unintentional

exposure to an actor that is not explicitly authorized to have

access to that information;

CWE-20 (13%) – Improper input validation which may

result in altered control flow, arbitrary code execution or illegal

access to and control of resources;

CWE-399 (6%) – Improper management of system

resources, e.g. memory allocation or reallocation;

CWE-189 (5%) – Numeric errors related to improper

calculation or conversion of numbers;

CWE-362 (2%) – Concurrent code execution using shared

resource with improper synchronization also knows as Race

Condition;

CWE-310 (2%) – Cryptographic issues including missing

encryption of sensitive data or key management errors;

CWE-94 (1%) – Improper control of code generation also

known as Code Injection which often happens when software

allows a user's input to contain code syntax.

CWE-416 (1%) – the use after free vulnerabilities, which

result in referencing memory after it has been freed and can

cause a program to crash, use unexpected values, or execute

code.

Analysing both the quantity and CVSS severity scores of

vulnerabilities of different type (see Fig. 8) we can conclude

that the most critical ones are: CWE-119, CWE-264 and CWE-

20. CWE-94, despite its small number, has the maximum

severity on average (8.9).

Our analysis shows that CWE-119 vulnerabilities, also

widely known as buffer overflow, still remain the most

dominating and severe security flaws for all OSes. On the one

hand, this can be explained by the fact that most of operating

systems, written in C/C++, are prone to this type of weaknesses.

On the other hand, it points to the fact that programmers neither

really pay enough attention to such widely known problem that

has been around for years nor follow best software development

practices or make use numerous techniques proposed to cope

with the buffer overflow issue.

As a result, vulnerabilities of the CWE-119 type (e.g. CVE-

2016-7277, CVE-2016-4658 or CVE-2016-4598) often allow

remote attackers to execute arbitrary code, read protected data

or cause a denial of service.

Fig. 8. The most numerous vulnerability types and their severity.

Distribution of different types of vulnerabilities for particular

operating systems can be found in [13].

G. Common OS Vulnerabilities

This section examines the vulnerabilities discovered in more

than one operating systems by analysing CPE entries assigned

to them. They are usually called common or shared [23, 24].

Common vulnerabilities and provide opportunity for

compromising many or all of OSes at the same time and, being

exploited, can cause a global epidemic of cyberattacks. They

exist due to inheriting considerable parts of the OS code from

its predecessor or reusing common components (system

libraries, third party software components, OS kernels, etc.).

The common vulnerabilities are most often discovered in

different releases of the same OS or in a family of related

operating systems, e.g. BSD Unix (OpenBSD, FreeBSD,

NetBSD) or Linux (Red Hat, CentOS, Novell, Ubuntu), etc.

For example, our analysis shows that 62 out of 63 (98%!)

vulnerabilities reported by the NVD database in the most recent

Apple MacOS 10.13 were also found in MacOS 10.8. The

percentages of vulnerabilities shared between Microsoft

Windows Server 2012 and its 2016th version is equal to 76%

(123 vulnerabilities out of 165 ones found in Windows Server

2016 by the end of December 2017). It is remarkable that this

number also includes 114 vulnerabilities (69%) that Windows

Server 2016 shares with Windows Server 2008 and 23

vulnerabilities (14%) shared with Windows Vista. Moreover, at

least six vulnerabilities in the SMB protocol, causing this year

a massive WannaCry cyber attack, are traced to Windows

Server 2003 and even to Windows XP.

The 6.x and 7.x (last updated on 01.08.2017) versions of the

Red Hat Enterprise Linux, and 12.4 and 16.4 (released on

21.04.2016) versions of Ubuntu Server share up to 75% and

70% of common vulnerabilities correspondingly.

It is also worth noting that Oracle Solaris 11.3 in 2016 shared

29% of vulnerabilities with Oracle Solaris 10.0 and 24% with

Oracle Linux 7 but none with the 11.0 version, analysed in the

paper.

CWE-119

CWE-264

CWE-200

CWE-20CWE-399

CWE-189

CWE-362

CWE-310

CWE-94

CWE-416

0

1

2

3

4

5

6

7

8

9

10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

A
ve

r
a
g

e

s
e
ve

r
it

y

Percentage, %

https://cwe.mitre.org/

IEEE TRANSACTIONS ON RELIABILITY

11

These results confirm that the developers of operating

systems reuse significant pieces of code from the previous

releases without really analysing their vulnerability or

improving their security.

Sometimes hackers and security analysts discover

vulnerabilities that are common for even different OS families.

One of such vulnerabilities is CVE-2008-4609 found in

October, 2008. It caused the denial-of-service attack for a

variety of OSes and their versions, including Linux, BSD Unix,

Microsoft Windows, Cisco IOS and possibly many others [41,

42]. The vulnerability manipulated the state of Transmission

Control Protocol (TCP) connections exploiting an algorithmic

error in protocol implementation in various operating systems.

A remote attacker was able to cause connection queue

exhaustion by flags manipulation in the TCP header of crafted

network packets sent to a victim-computer.

Fig. 9 shows common vulnerabilities correlated between

Linux and Unix operating systems during 2012–2017

(Windows did not share any vulnerabilities with the rest of

studied OSes). Eighty-five of them were disclosed in all three

Linux operating systems (Ubuntu, Novell and Red Hat) and ten

were shared between Red Hat, Ubuntu and Solaris. Besides,

there were six groups of vulnerabilities shared between

different OS pairs: Ubuntu and Novell – 245, Red Hat and

Ubuntu – 60, Novell and Red Hat – 36; Red Hat and MacOS –

245; Red Hat and Solaris – 4; Ubuntu and Solaris – 5.

These data emphasize the importance on analysing the

vulnerabilities of diverse OSes.

The numbers in brackets correspond to those vulnerabilities

observed in Linux kernels (the NVD database distinguishes

between vulnerabilities observed in Linux-based operating

systems and Linux-kernels). Thus, Fig. 9 clearly demonstrates

that the largest number of common and group vulnerabilities

shared between the Ubuntu, Novell and Red Hat OSes are those

discovered in the Linux kernels (versions 3.2.x, 3.0.x and

2.6.32) used by them. In total, the percentage of common

vulnerabilities shared between the three Linux OSes varies

from 8% (for the 3-version system) to almost 45%

(for the 2-version systems combining Ubuntu and Novell)!

It is also noteworthy that the two Unix-like operating

systems, Solaris and MacOS, do not have common

vulnerabilities at all while they share certain numbers of

vulnerabilities with different Linux OSes.

245

(242)

36
(14)

85

(59)

Red Hat
378 (31)

Novell
50 (7)

Ubuntu
569 (8)

60
(37)

10

4 Solaris
196

5

MacOS
184

4

Fig. 9. Number of individual and common vulnerabilities shared by Linux

(Ubuntu, Novell and Red Hat) and Unix (MacOS and Solaris) families of OSes.

The number of vulnerabilities shared by two or more OSes

can be used as a measure of diversity between them [23].

Software diversity [18, 14, 21] has been used as a major fault

and intrusion-tolerance mechanism to design safety-critical

computer systems. Thus, choosing the most diverse OSes

would allow to create the most secure and reliable multi-version

system. Our empirical study demonstrates that vulnerability

databases (the NVD database in particular) can help in

determining the most diverse software products. Our analysis

also shows that the results reported in [23] should be further

verified as the authors may not have considered common and

group vulnerabilities observed in Linux kernels.

IV. USING OS DIVERSITY TO IMPROVE SYSTEM SECURITY

AND INTRUSION TOLERANCE

A. OS Diversity and Intrusion Tolerance Architecture

Software vulnerabilities represent threats to dependability

and, in particular, to security, that are additional to faults, errors

and failures, traditionally dealt with by the dependability

community [43, 44]. Design diversity is one of the most

efficient methods for providing software fault-tolerance

[14, 15] and improving dependability.

Often, researchers consider vulnerabilities as a special case

of software faults activated by an attacker [44]. As a result,

many studies focus on applying diversity to boost the intrusion

tolerance of a system in the same way as software design

diversity is used to ensure fault-tolerance.

In general, the diverse computer system consists of two or

more replicas that run diverse software. The main assumption

behind software diversity is that designs and implementations,

developed independently (programmed by different teams,

using diverse languages and development methodologies) will

exhibit failure and vulnerability diversity.

Diversity, being a part of the intrusion tolerance mechanism,

can improve system security, especially availability [23, 24, 45,

46]. However, the impact of software diversity on system

confidentiality and integrity taking into account common

vulnerabilities and the dynamic process of vulnerability

discovery and patching is less understood.

There has been an increasing number of approaches and

architectures proposed to build intrusion-tolerance systems.

They employ different techniques to tolerate intrusions:

adaptive redundancy and diversification principles [47, 48],

asynchronous Byzantine agreement protocols [49, 50], replica

“cleansing” [51], etc.

In our work we consider only one of many possible intrusion-

tolerance architectures coping with vulnerabilities of operating

systems. This architecture, shown in Fig. 10, comprises

functionally redundant servers running diverse operating

systems and a proxy/IDS that mediates client requests to all that

servers and also verifies their behavior, as described in [45, 47,

52]. Intrusions are detected through the comparison of the

server outputs before returning the result to the clients. This

architecture suits well for tolerating intrusions in synchronous

replicated server systems, e.g. intrusion-tolerant web servers.

IEEE TRANSACTIONS ON RELIABILITY

12

Proxy-
IDS

Request

compare/
vote

Response

replicate

OS1

OS2

OS3

Fig. 10. Intrusion-tolerance architecture under study.

Operating systems of different families (e.g. Unix, Linux,

Windows, MacOS) are more diverse, by nature, than those,

belonging to the same OS family. However, using them for

building a diverse intrusion-tolerance system usually causes

various compatibility, portability and synchronization issues.

This is why developers of diverse intrusion- and fault-tolerance

systems often opt for using OSes of the same family [53, 54,

55]. In our study we examine a particular example of the diverse

intrusion-tolerance architecture comprised of the three Linux-

based OSes (Ubuntu, Novell and Red Hat), which common

vulnerabilities were studied in Section III.G.

B. The Threat Model and Assumptions

In the proposed intrusion-tolerance architecture (Fig. 10) all

user requests and server responses synchronously pass through

the proxy. The intrusion detection algorithm assumes that all

noncompromised servers give the same answer to the same

request [46, 47].

Thus, an intrusion is detected when the outputs are different

due to an exploited vulnerability in one of diverse OSes.

Majority voting is used then to identify a suspicious replica,

isolate, cleanse/repair and reinsert it without interrupting a

service. The general assumptions, which follow from the

architecture description are:

--the system is synchronous; it does not need asynchronous

Byzantine agreement protocols [50];

--data and states are replicated in all machines that simplifies

system implementation; the system integrity and confidentiality

can be further improved by applying threshold cryptography

technique [56], however, it is out of the scope of this work ;

--an attacker cannot directly interact with a certain replica;

all requests and responses go via the proxy;

--an attacker has only “one shot” at compromising the whole

replicated system; a compromised replica, detected by IDS, is

cleansed before an attacker will get a chance to compromise

other replica(s) [46].

As follows from the above assumptions, if diverse OSes do

not have common vulnerabilities (i.e. they are 100% diverse), a

hacker would not be able to compromise all replicas at the same

time (with the single malicious request). However, as the

diverse replicas can share a certain number of common

vulnerabilities, the least vulnerable diverse configuration is one

with the minimal number of such vulnerabilities.

In the thread model we take into account the fact that a multi-

version architecture can enlarge the attack surface (i.e. the total

number of vulnerabilities that can be exploited) and, hence, can

weaken system confidentiality and, sometimes, integrity [21].

Our threat model considers attack surfaces of a replicated

diverse system for different types of attacks targeting

availability, integrity and confidentiality in the following ways:

 --the 3-replicated system preserves availability if at least

one replica remains available (i.e. 1-out-of-3 replicas returns a

response); thus, to make the system unavailable an attacker

needs to target those vulnerabilities, common for all replicas,

which impact availability (Fig. 11, a); attacking any other

vulnerabilities would not make the entire diverse system

unavailable;

 --the 3-replicated system preserves integrity if 2-out-of-3

(the quorum) replicas return the correct response; thus, to

compromise system integrity an attacker needs to target those

vulnerabilities, common for any two replicas, which impacts

integrity (Fig. 11, b);

 --compromising any of diverse OSes would break the

system confidentiality; thus, an attacker can target any

vulnerability of any replica, which impact confidentiality

(Fig. 11, c).

The attack surface of the 2-replicated diverse system has

some differences depending on the system implementation

(see Fig. 12):

 --if a system is designed/configured to stop its operation

once it detects data discrepancy (i.e. a fail-stop system [57]), an

attack compromising integrity of 1-out-of-2 replica would make

the whole system unavailable;

(a) availability

245

36
85

70

Red Hat
386

Novell
50

Ubuntu
574

(b) integrity (c) confidentiality

245

36 70

Red Hat
386

Novell
50

Ubuntu
574 245

36
85

70

Novell

50
Ubuntu

574

85

Red Hat

386

Fig. 11. Venn diagrams showing atack surface of the 3-version intrusion-

tolerant system.

Novell
86

Ubuntu
644

330Novell
86

Ubuntu
644

Novell
86

Ubuntu
644

330Novell
86

Ubuntu
644

Novell
(master)

86

Ubuntu
(slave)
644

(a) availability (b) integrity (c) confidentiality

F
ai

l-
st

o
p

M
a
st

er
-s

la
v
e

330

330

330

Fig. 12. Venn diagrams showing atack surface of the 2-version intrusion-

tolerant system.

IEEE TRANSACTIONS ON RELIABILITY

13

 --if one of the OS versions is considered

to be more trusted (a master replica), the

system, when it detects inconsistency, will

continue its operation using data provided by

the more trusted master OS; the similar

approach was used in the HACQIT project

[52, 58]; in our study we assume that all 2-

version architectures are configured as

master-slave; OS having less number of

discovered vulnerabilities is considered as a

master replica.

Figs. 11 and 12 quantify attack surfaces of

different security attributes using the static

data (the overall number of individual and

common vulnerabilities discovered in Linux-

based OSes during 2012-2017) reported in

Section III.G. As expected, the 3-version

system architecture has the least number of common

vulnerabilities (85). Among the 2-version systems the least

vulnerable combination is Red Hat and Novell which has 121

of such vulnerabilities.

Ubuntu Server 12.04 and Novell Linux SUSE Enterprise

Server 11 SP2 use similar versions of Linux core

(3.2.x and 3.0.x) which explains their similarity in term of a

number of common vulnerabilities (330).

C. Examining Static and Dynamic Impact of OS Diversity on

Availability, Confidentiality and Integrity of the Intrusion-

tolerance System

In this section we quantitatively examine the vulnerability of

several possible configurations of the intrusion-tolerance

architecture, discussed above. As intrusion-tolerance servers

are usually used to provide critical network services, in this

section we consider only remotely exploitable vulnerabilities.

Locally exploitable vulnerabilities identified based on their

CVSS attack vector (see Section III.D for more details) are

excluded from the study, as compared to Section III.A.

Table VI quantifies the network attack surface for individual

OSes and various configurations of a diverse intrusion tolerant

system taking into account vulnerability impact on different

security properties. It clearly shows that developers of

intrusion-tolerance systems deploying OS diversity have to

trade-off between different security properties.

TABLE VI.
ATTACK SURFACES FOR DIFFERENT SECUROTY PROPERTIES

IN VARIOUS DIVERSE CONFICURATIONS

System

architecture

OS No of vulnerabilities

Ubuntu Novell Red Hat
avail-
ability

integrity
confiden-

tiality

Single-

version

* 496 335 336
 * 145 91 99
 * 354 267 275

Multi-

version

* * 90 91 376

* * 77 267 560
 * * 46 91 329

* * * 24 99 577

Fig. 13 demonstrates the interplay between a number of

vulnerabilities affecting availability and confidentiality

(Fig. 13.a), and availability and integrity (Fig. 13.b) for

individual OSes and diverse configurations.

If one is ready to sacrifice confidentiality in favour of

availability the 3-version architecture is the best choice. It

provides also the best compromise between availability and

integrity.

The pair Novell and Red Hat seems to be the best diverse

configuration for maximising all the properties. It has the least

number of vulnerabilities targeting integrity and confidentiality

and also provides a good compromise with availability.

Among the individual OSes Novell has the least number of

remotely exploitable vulnerabilities impacting availability,

integrity and confidentiality. At the same time, Ubuntu should

not be considered as a good choice in any scenario.

A more optimal decision regarding the best diverse

configuration of the intrusion-tolerant system can be made

dynamically by considering how many common vulnerabilities

existed each day in a particular configuration (see Figs. 14-16).

Table VII summarises the statistics shown in Figs. 14-16 and

provides arguments in favour and against each diverse

configuration.

As we expected, the 3-version system significantly reduces a

surface of network attacks targeting availability down to 1.08

vulnerabilities per day in average. It maintained the least

number of forever-day vulnerabilities during the whole six-year

period, during which 763 were days with no known

vulnerabilities at all.

The combination of Novell and Red Hat is the best diverse

configuration for a system which top priority is availability. On

average, it maintains 2.04 vulnerabilities per day and ensures

the same number of vulnerability-free days as the 3-version

system.

The 3-version system still remains the best configuration for

integrity-critical systems. It maintains 5 vulnerabilities per day

on average. At the same time, the pair Ubuntu and Red Hat

should not be considered as an appropriate option to build a

diverse intrusion-tolerance system.

 (a) (b)

Fig. 13. Trade-offs between vulnerabilities impacting: a) availability and confidentiality,

and b) availability and integrity

Ubuntu-Novell-Red Hat

Ubuntu-Red Hat

Novell-Red Hat

Ubuntu-Novell

Red Hat

Novell

Ubuntu

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450 500

C
o
n

fi
d

e
n

ti
a
li
ty

Availability

Ubuntu-Novell-Red Hat

Ubuntu-Red Hat

Novell-Red Hat

Ubuntu-Novell

Red Hat

Novell

Ubuntu

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350 400 450 500

In
te

g
ri

ty

Availability

IEEE TRANSACTIONS ON RELIABILITY

14

Fig. 14. Forever-day vulnerabilities in different configurations of a diverse intrusion tolerance system affecting availability.

Fig. 15. Forever-day vulnerabilities in different configurations of a diverse intrusion tolerance system affecting integrity.

Fig. 16. Forever-day vulnerabilities in different configurations of a diverse intrusion tolerance system affecting consistency.

0

5

10

15

20

25

01.01.2012 01.01.2013 01.01.2014 01.01.2015 01.01.2016 01.01.2017Date

Ubuntu+Novell

Ubuntu+Red Hat

Novell+Red Hat

Ubuntu+Novell+Red Hat

31.12.2017

Ubuntu +

RedHat

Ubuntu+Novell+RedHa

t

Ubuntu+Novell

Novell+RedHat

0

5

10

15

20

25

30

35

40

45

50

55

60

01.01.2012 01.01.2013 01.01.2014 01.01.2015 01.01.2016 01.01.2017Date

Ubuntu+Novell

Ubuntu+Red Hat

Novell+Red Hat

Ubuntu+Novell+Red Hat

31.12.2017

Ubuntu + RedHat

Ubuntu+Novell+RedHat

Ubuntu+Novell =

= Novell+RedHat

Novell+

RedHat

0

10

20

30

40

50

60

70

80

90

100

110

120

01.01.2012 01.01.2013 01.01.2014 01.01.2015 01.01.2016 01.01.2017Date

Ubuntu+Novell

Ubuntu+Red Hat

Novell+Red Hat

Ubuntu+Novell+Red Hat

31.12.2017

Ubuntu +

RedHat

Ubuntu+

Novell+

RedHat

Ubuntu

+Novell

Novell+RedHat

IEEE TRANSACTIONS ON RELIABILITY

15

TABLE VII.
SUMMARY OF FOREVER-DAY VULNERABILITY STATISTICS

(ATTACK SURFACE) FOR VARIOUS DIVERSE OS CONFIGURATIONS

Operating System Diverse system configurations

Ubuntu * * *
Novell * * *

Red Hat * * *
Availability attack surface

No of vulnerabilities
per day

avg. 5.24 4.26 2.04 1.08

min 0 0 0 0

max 15 24 18 6
No of vulnerability free days 41 83 763 763

No of days with the least number

of forever-day vulnerabilities
521 566 1898 2192

Integrity attack surface

No of vulnerabilities

per day

avg. 5.31 14.82 5.31 5.01

min 0 4 0 0
max 39 83 39 32

No of vulnerability free days 279 0 279 187

No of days with the least number
of forever-day vulnerabilities

1589 34 1589 1555

Confidentiality attack surface

No of vulnerabilities

per day

avg. 30.30 43.26 30.24 45.93

min 9 9 0 9
max 73 141 104 141

No of vulnerability free days 47 0 0 0

No of days with the least number
of forever-day vulnerabilities

1587 0 849 0

Finally, a diverse system, for which the most important

security property is confidentiality, would benefit from using

either the combination of Novell and Red Hat, or Ubuntu and

Novell. The first one had the least average number of forever-

day vulnerabilities per day (30.24) affecting confidentiality,

however the second one ensured 47 vulnerability-free days and

maintained the minimal number of forever-day vulnerabilities

during the longer period (1587 days versus 849 days).

The 3-version configuration is not recommended for use for

the confidentiality-critical systems as it significantly enlarges

an attack surface: up to 46 vulnerabilities per day in average.

V. CONCLUSION AND LESSONS LEARNT

A significant growth of the total number of vulnerabilities

discovered in modern OSes as well as the general tendency

toward increasing their severity demonstrate the serious

security challenges and risks that OS developers and users face.

It is very important to understand that the crucial parameters

affecting system security are not only the total number of

vulnerabilities disclosed in a particular software product and

their severity but also, so called, days-of-risk, which show how

fast software vendors issue patches fixing disclosed

vulnerabilities, and a number of forever-day vulnerabilities

defining the attack surface.

Our analysis shows that the average days-of-risk for the

studied operating systems varies from 89 days for Ubuntu up to

130 days for Red Hat. Besides, it found that 28 forever-day

vulnerabilities on average for the investigated OSes existed

every day during 2012-2017 (a number of such vulnerabilities

varies on average between 8 for Solaris and 48 for Ubuntu).

Thus, our work clearly supports our claim that decreasing

days-of-risk and reducing a number of forever-day

vulnerabilities is one of the main challenges in improving

security of operating systems.

It is worrying that as our study shows, the rate with which

OS developers issue security updates in general does not

depend on vulnerability severity. Average days-of-gray-risk for

the most critical vulnerabilities remains even 24% higher (!)

than the one calculated for vulnerability of the lowest severity.

Another important finding is that developers reuse

significant pieces of code from the previous releases (which is

not surprising itself) without really analysing their vulnerability

and improving their security. Moreover, buffer overflow

vulnerabilities still remain the most dominant and severe

security flaws for all OSes despite many techniques being

proposed to cope with this type of vulnerabilities.

These our findings demonstrate the worrying shortcomings

in the engineering practices and policies for developing security

updates adopted by OS vendors, as well as, in the maintenance

management processes they run.

Another specific aspect that the paper studies is the

vulnerabilities that were discovered in more than one OSes.

Such vulnerabilities, common for different operating systems

and even different OS families, can lead to large-scale hacker

attacks and virus epidemics.

This calls for application of specially-tailored intrusion-

tolerance techniques. One of them is based on adopting

software diversity. In the paper we quantitatively analyse how

operating system diversity impacts attack surface taking into

account individual and common vulnerabilities.

Unlike other studies, we investigate how diversity affects

various security attributes: availability, integrity and

confidentiality using historical statistics from the CVE and

NVD vulnerability databases. We confirm that the more OS

versions we use and the more diverse they are the more the

system becomes tolerant to attacks targeting its availability.

However, the diversity can undermine the integrity and

confidentiality properties by enlarging system attack surface.

In particular, in our work we considered different possible

configurations of 2- and 3-version intrusion-tolerance systems

built by combining Linux-based OSes: Ubuntu, Novell and

Red Hat.

Our practical findings based on real vulnerability statistics

confirm that the 3-version architecture is the best choice to

ensure high system availability and integrity. On average, it

maintains only one forever-day vulnerability targeting system

availability and five ones targeting data integrity.

Correspondingly, it is 3.6 and 1.7 times less than the average

results provided by individual OSes.

However, for the 3-version system the number of forever-day

vulnerabilities targeting data confidentiality is 3.8 times larger.

It is fair to note that even the best 2-version configuration

(Ubuntu+Novell) enlarges the confidentiality attack surface by

2.1 times. These results show that OS diversity in certain

scenarios can improve system intrusion-tolerance. Though, it is

not a panacea for intrusions targeting integrity and, especially,

confidentiality. This calls for developing more effective

security mechanisms in addition to the traditional intrusion-

tolerance solutions.

IEEE TRANSACTIONS ON RELIABILITY

16

VI. REFERENCES

[1] B. Clark, “Hackers take hospital offline, demand $3.6m ransom,”

[Online]. Available: http://thenextweb.com/insider/2016/02/15/
hackers-take-hospital-offline-demand-3-6m-ransom/.

[2] C. Williams, “Passengers ride free on SF Muni subway after ransomware

infects network, demands $73k,” [Online]. Available:
www.theregister.co.uk/2016/11/27/san_francisco_muni_ransomware/.

[3] National Audit Office, “Investigation: WannaCry cyber attack and the

NHS,” National Audit Office, UK, London, 2017.

[4] L. H. Newman, “The biggest cybersecurity disasters of 2017 so far,” 01

July 2017. [Online]. Available: https://www.wired.com/story/2017-

biggest-hacks-so-far/.

[5] MITRE Corporation, “Common Vulnerabilities and Exposures.

Terminology,” [Online]. Available: https://cve.mitre.org/about/

terminology.html.

[6] Microsoft Inc., “Description of Software Update Services and Windows

Server Update Services changes in content for 2016,” 2016. [Online].

Available: https://support.microsoft.com/en-us/help/3215781/
description-of-software-update-services-and-windows-server-update-

services-changes-in-content-for-2016.

[7] J. Jones, “Days-of-risk in 2006: Linux, Mac OS X, Solaris and
Windows,” 2006. [Online]. Available: http://www.csoonline.com/

article/2136935/data-protection/days-of-risk-in-2006---linux--mac-os-

x--solaris-and-windows.html.

[8] P. Edmonds, “When It Comes to Protection from Vulnerabilities,

Process Trumps “Many Eyes”,” 2007. [Online]. Available:

https://technet.microsoft.com/en-us/library/cc512608.aspx.

[9] A. Patrizio, “Report Says Windows Gets The Fastest Repairs,” 2007.

[Online]. Available: http://www.internetnews.com/security/article.php/

3667201.

[10] J. Reavis, “Linux vs. Microsoft: Who Solves Security Problems

Faster?,” 2000. [Online]. Available: http://www.reavis.org/research/

solve.shtml.

[11] J. Jones, “Basic Guide to Days of Risk,” 2007. [Online]. Available:

http://www.csoonline.com/article/2136934/data-protection/basic-

guide-to-days-of-risk.html.

[12] D. Goodin, “Rise of “forever day” bugs in industrial systems threatens

critical infrastructure,” 2012. [Online]. Available:

http://arstechnica.com/business/2012/04/rise-of-ics-forever-day-
vulnerabiliities-threaten-critical-infrastructure/.

[13] A. Gorbenko, A. Romanovsky, O. Tarasyuk and O. Biloborodov,

“Experience Report: Study of Vulnerabilities of Enterprise Operating
Systems,” in 2017 IEEE 28th International Symposium on Software

Reliability Engineering (ISSRE'2017), Toulouse, France, 2017.

[14] A. Avizienis, “The N-Version Approach to Fault-Tolerant Software,”
IEEE Transactions on Software Engineering , vol. 11, no. 12, pp. 1491-

1501, 1985.

[15] A. Avizienis and J.-C. Laprie, “Dependable computing: From concepts to
design diversity,” IEEE Proceedings, vol. 74, no. 5, pp. 629-638, 1986.

[16] B. Littlewood, P. Popov and L. Strigini, “Design diversity: an update
from research on reliability modelling,” in 9th Safety-Critical Systems

Symposium, Bristol, UK, 2001.

[17] A. Avizienis and L. Chen, “On the implementation of N-version
programming for software fault tolerance during execution,” in IEEE

Computer Software and Applications Conference, Kharagpur, 1977.

[18] B. Randell, “System Structure for Software Fault Tolerance,” IEEE
Transactions on Software Engineering, vol. 1, no. 2, pp. 221-232 , 1975.

[19] P. Popov, “Models of reliability of fault-tolerant software under cyber-

attacks,” in IEEE 28th International Symposium on Software Reliability
Engineering (ISSRE), Toulouse, France, 2017.

[20] J. Dobson and B. Randell, “Building reliable secure computing systems

out of unreliable insecure components,” in IEEE Conference on
Security and Privacy, Oakland, USA, 1986.

[21] B. Littlewood and L. Strigini, “Redundancy and diversity in security,”

in 9th European Symposium on Research Computer Security (
ESORICS'2004), LNCS 3193, 2004.

[22] I. Gashi, A. Povyakalo, L. Strigini, M. Matschnig, T. Hinterstoisser and

B. Fischer, “Diversity for Safety and Security in Embedded Systems,”
in IEEE International Conference on Dependable Systems and

Networks (DSN), Atlanta, USA, 2014.

[23] M. Garcia, A. Bessani, I. Gashi, N. Neves and R. Obelheiro, “OS
Diversity for Intrusion Tolerance: Myth or Reality?,” in IEEE/IFIP 41st

Int. Conf. on Dependable Systems & Networks (DSN’2011), 2011.

[24] M. Garcia, A. Bessani, I. Gashi, N. Neves and R. Obelheiro, “Analysis
of Operating System Diversity for Intrusion Tolerance,” Software -

Practice & Experience, vol. 44, no. 6, pp. 735-770, 2014.

[25] S. Frei, M. May, U. Fiedler and B. Plattner, “Large-scale vulnerability
analysis,” in SIGCOMM Workshop on Large-Scale Attack Defense, 2006.

[26] M. Shahzad, M. Zubair Shafiq and A. Liu, “A large scale exploratory

analysis of software vulnerability life cycles,” in 34th Int. Conf. on
Software Engineering (ICSE '12), 2012.

[27] L. Bilge and T. Dumitras, “Before we knew it: An empirical study of

zero-day attacks in the real world,” in ACM Conference on Computer
and Communications Security, Raleigh, NC, 2012.

[28] B. Ladd, “The Race Between Security Professionals and Adversaries,”

2017. [Online]. Available: https://www.recordedfuture.com/
vulnerability-disclosure-delay/.

[29] A. Hahn and M. Govindarasu, “Cyber vulnerability disclosure policies

for the smart grid,” in IEEE Power and Energy Society General
Meeting, San Diego, USA, 2012.

[30] M. Cheung, “Market Share Analysis: Server Operating Systems,

Worldwide, 2015: Gartner report.,” 2016. [Online]. Available:
https://www.gartner.com/doc/3326217/market-share-analysis-server-

operating.

[31] P. Tsai, “Server Virtualization and OS Trends,” 2016. [Online].
Available: https://community.spiceworks.com/networking/articles/

2462-server-virtualization-and-os-trends.

[32] W3Techs, “Usage of operating systems for websites,” 2017. [Online].
Available: https://w3techs.com/technologies/report/operating_system.

[33] L. A. B. Sanguino and R. Uetz, “Software Vulnerability Analysis Using

CPE and CVE,” Cryptography and Security, vol. abs/1705.05347, 2017.

[34] M. Oiaga, “Recount: Windows Still Safest, Tops Mac OS X, Linux and

Sun Solaris. But are statistics a true measure of security?,” 2007.

[Online]. Available: http://news.softpedia.com/news/Recount-
Windows-Still-Safest-Tops-Mac-OS-X-Linux-and-Sun-Solaris-

57433.shtml.

[35] J. Jones, “2006 Client OS Days of Risk,” 2007. [Online]. Available:
https://blogs.microsoft.com/microsoftsecure/2007/06/18/2006-client-

os-days-of-risk/.

[36] H. Ghani, J. Luna and N. Suri, “Quantitative Assessment of Software
Vulnerabilities Based on Economic-Driven Security Metrics,” in

International Conference on Risks and Security of Internet and Systems

(CRiSIS'2013) , La Rochelle, France, 2013.

[37] A. Sajid, M. Ali Shah, M. Kamran, Q. Javaid and S. Zhang, “An

Analysis on Host Vulnerability Evaluation of Modern Operating

Systems,” International Journal of Advanced Computer Science and
Applications (IJACSA), vol. 7, no. 4, pp. 245-254, 2016.

[38] M. Kimura, “Software vulnerability: Definition, modelling, and
practical evaluation for e-mail transfer software,” International Journal

of Pressure Vessels and Piping, vol. 83, pp. 256-261, 2006.

[39] H. Okamura, M. Tokuzane and T. Dohi, “Security Evaluation for
Software System with Vulnerability Life Cycle and User Profiles

(WDTS-RASD'2012),” in Workshop on Dependable Transportation

Systems/Recent Advances in Software Dependability, Niigata, Japan,
2012.

[40] Forum of Incident Response and Security Teams, “Common

Vulnerability Scoring System, V3 Development Update,” 2015.
[Online]. Available: https://www.first.org/cvss.

[41] National Vulnerability Database, “Vulnerability Summary for CVE-

2008-4609,” 2008. [Online]. Available: https://web.nvd.nist.gov/view/
vuln/detail?vulnId=CVE-2008-4609.

[42] Cisco Systems, “TCP State Manipulation Denial of Service

Vulnerabilities in Multiple Cisco Products,” 2009. [Online]. Available:

IEEE TRANSACTIONS ON RELIABILITY

17

https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/

cisco-sa-20090908-tcp24.

[43] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, “Basic

concepts and taxonomy of dependable and secure computing,” IEEE

Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
11-33, 2004.

[44] P. Verissimo, N. Neves and M. Correia, “The Middleware Architecture

of MAFTIA: A Blueprint,” in IEEE Information Survivability
Workshop (ISW'2000), Boston, USA, 2000.

[45] F. Majorczyk, E. Totel and L. Me, “Experiments on COTS Diversity as

an Intrusion Detection and Tolerance Mechanism,” in Workshop on
Recent Advances on Intrusion-Tolerant Systems (WRAITS'2007),

Lisbon, Portugal, 2007.

[46] A. Valdes, M. Almgren, S. Cheung, D. Y., B. Dutertre, J. Levy, H.
Saıdi, V. Stavridou and T. E. Uribe, “An Architecture for an Adaptive

Intrusion-Tolerant Server,” in Security Protocols, LNCS 2845, Berlin,

Heidelberg, Springer-Verlag, 2002, pp. 158-178.

[47] A. Valdes, M. Almgren, S. Cheung, Y. Deswarte and B. Dutertre, “An

adaptive intrusion-tolerant server architecture,” in 10th International

Workshop on Security Protocols, 2002.

[48] A. Saidane, V. Nicomette and Y. Deswarte, “The design of a generic

intrusion-tolerant architecture for web servers,” IEEE Transactions on

Dependable and Secure Computing, vol. 6, no. 1, pp. 45-58, 2009.

[49] F. Osorio, “Using Byzantine Agreement in the Design Of IPS Systems,”

in IEEE International Performance, Computing, and Communications

Conference, New Orleans, USA, 2007.

[50] M. Correia, N. Neves and P. Verissimo, “BFT-TO: Intrusion Tolerance

with Less Replicas,” The Computer Journal, vol. 56, no. 6, pp. 693-

715, 2013.

[51] Y. Huang, D. Arsenault and A. Sood, “Incorruptible system self-

cleansing for intrusion tolerance,” in IEEE International Performance

Computing and Communications Conference, Phoenix, USA, 2006.

[52] E. Totel, F. Majorczyk and L. Me, “COTS Diversity Based Intrusion

Detection and Application to Web Servers,” in Recent Advances in

Intrusion Detection, LNCS 3858, A. Valdes and D. Zamboni, Eds.,
Berlin, Heidelberg, Springer-Verlag, 2006, pp. 43-62.

[53] T. Distler, R. Kapitza and H. Reiser, “State transfer for hypervisor-

based proactive recovery of heterogeneous replicated,” in ‘Sicherheit,
Schutz und Zuverlässigkeit’ Conference, Berlin, 2010.

[54] M. Castro, R. Rodrigues and B. Liskov, “ BASE: using abstraction to

improve fault tolerance,” ACM Transactions on, vol. 21, no. 3, pp. 236-
269, 2003.

[55] C. Pu, A. Black, C. Cowan and J. Walpole, “A Specialization Toolkit

to Increase the Diversity of Operating Systems,” in ICMAS Workshop
on Immunity-Based Systems,, Nara, Japan, 1996.

[56] A. Bessani, R. Mendes, T. Oliveira, N. Neves, M. Correia, M. Pasin and

P. Verissimo, “SCFS: A Shared Cloud-backed File System,” in
USENIX Annual Technical Conference, Philadelphia, USA, 2014.

[57] R. Schlichting and F. Schneider, “Fail-stop processors: an approach to

designing fault-tolerant computing systems,” ACM Transactions on
Computer Systems (TOCS), vol. 1, no. 3, pp. 222-238, 1983.

[58] J. Just and J. Reynolds, “HACQIT (Hierarchical Adaptive Control for
QoS Intrusion Tolerance),” in 17th Annual Computer Security

Applications Conference, New Orleans, USA, 2001.

Anatoliy Gorbenko, received the

M.Eng. degree in computer engineering

in 2000 and the Ph.D. degree in computer

science in 2005 from National Aerospace

University, Kharkiv, Ukraine. He

completed his D.Sc. habilitation and got

a professorship with the Department of

Computer Systems and Networks at

National Aerospace University in 2012.

 From 2014 to 2016, he was a dean of the Aircraft Radio-

technical Faculty and leaded the Service-Oriented Systems

Dependability research group. In 2017 Prof. Gorbenko joined

the School of Computing, Creative Technologies &

Engineering at Leeds Beckett University, UK. His expertise and

research interests include dependability and performance of

distributed systems, SOA and clouds; SW vulnerability and

intrusion-tolerance.

Alexander Romanovsky received a

M.Sc. degree in Applied Mathematics

from Moscow State University and a PhD

degree in Computer Science from St.

Petersburg State Technical University. He

was with this University from 1984 until

1996, doing research and teaching.

 In 1993-94 he was a post-doctoral

fellow with the Department of Computing Science, University

of Newcastle upon Tyne, UK. Now he is a Professor in School

of Computing, Newcastle University, UK and the Investigator

of the PRiME programme and the STRATA platform

EPSRC/UK grants. Prof. Romanovsky’s main research

interests are system dependability, fault tolerance, software

architectures, exception handling, error recovery, system

verification for safety, system structuring and verification of

fault tolerance. He is a member of the editorial boards of

Computer Journal, IEEE Transactions on Reliability, Journal of

System Architecture and International Journal of Critical

Computer-Based Systems.

Olga Tarasyuk received the B.S. degree in

2000, the M.S. degree in 2001 and the PhD

degree in computing science in 2004 from

National Aerospace University, Kharkiv,

Ukraine.

 Since 2005, she has been an Associate

Professor with the Department of Computer

Systems and Networks at National

Aerospace University. Her main expertise is

software quality and reliability, data analytics, development of

dependable big-data and cloud computing solutions focusing on

trade-offs between consistency, availability, performance and

partition tolerance.

Oleksandr Biloborodov received the B.S.

degree in 2011 and the M.S. degree in

2013 in computing science from National

Aerospace University, Kharkiv, Ukraine.

 Since 2014, he has been a senior

software developer with Plarium LLC,

Kharkiv, Ukraine. He is currently studying

for the Ph.D. degree in computing science

at National Aerospace University,

Kharkiv, Ukraine. His main expertise is in quality of software

and software engineering process, intrusion-tolerance and

vulnerability analysis.

