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Abstract— This paper analyses security problems of modern 

computer systems caused by vulnerabilities in their operating 

systems. Our scrutiny of widely used enterprise operating systems 

focuses on their vulnerabilities by examining the statistical data 

available on how vulnerabilities in these systems are disclosed and 

eliminated, and by assessing their criticality. This is done by using 

statistics from both the National Vulnerabilities database (NVD) 

and the Common Vulnerabilities and Exposures system (CVE). 

The specific technical areas the paper covers are the quantitative 

assessment of forever-day vulnerabilities, estimation of days-of-

risk, the analysis of the vulnerabilities severity and their 

distributions by attack vector and impact on security properties. 

In addition, the study aims to explore those vulnerabilities that 

have been found across a diverse range of operating systems. This 

leads us to analysing how different intrusion-tolerance 

architectures deploying the operating system diversity impact 

availability, integrity and confidentiality. 

 
Index Terms—security, vulnerability, operating systems, 

vulnerability databases, days-of-risk, forever-day vulnerabilities, 

vulnerability statistics, diversity, intrusion tolerance 

I. INTRODUCTION 

T is of vital significance for system users and developers 

alike that information and communication systems are 

secure. There have been a numbers of occasions recently, such 

as those involving Hollywood Presbyterian Medical Center [1], 

San Francisco Municipal Transportation Agency [2] or British 

NHS [3], which have illustrated how exposed modern society 

is to attacks. The costs of such global cyberattacks as Petya or 

WannaCry could amount to millions of dollars, harm to our 

health and survival and damage to critical infrastructures [4]. It 

is because our communication equipment, computer systems 

and other smart devices suffer from software vulnerabilities that 

cyberattacks, malware intrusions and virus infections have been 

successful. 

In general terms, a vulnerability is understood as a weakness 

that makes it possible for an intruder to damage the information 

assurance in a system. It has been defined as a software fault 
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that a hacker can employ to access to a network or system 

(MITRE Corporation, [5]). There are various ways in which 

vulnerability can be exploited. Attackers can get commands 

executed in the normal way, or overcome restrictions in order 

to gain forbidden access to data, or trigger denial of service and 

system service termination. The primary source of software 

vulnerabilities is weaknesses and faults in software design and 

implementation. Of the 372 updates issued by Microsoft in 

2017 for their operating systems, 228 were security updates for 

eradicating software vulnerabilities [6]. Of these, 137 were 

classified as critical. 

Both operating systems (OSes) and application software can 

contain vulnerabilities, yet it is without doubt security flaws in 

OSes that are most critical since if they are exploited by 

attackers, all services and processes executed by the OS can be 

compromised and illicit access gained to any data that is stored 

on the exposed machine. Moreover, the threats they pose to 

system dependability and security are distinct from failures, 

faults and errors that have been the traditional focus of the 

dependability community’s efforts. 

For instance, in the beginning of May 2017 a global cyber 

attack using ransomware called Wanna Decryptor (also known 

as WanaCrypt0r 2.0, WannaCry or WCry) infected more than 

300000 computers in 150 countries, hitting international shipper 

FedEx, large telecommunications companies in Spain, Portugal 

and Argentina, German railway operator Deutsche Bahn, etc. In 

Britain, the National Health Service (still widely using Windows 

XP OS in their IT systems) was the worst hit. Many UK hospitals 

and surgeries were forced to turn away patients and cancel 

appointments after their IT systems were infected with the 

ransomware. The attack was initiated through exploiting SMB 

vulnerability MS17-010 in Microsoft Windows family of 

operating system.  

This paper builds on a number of studies which examine a 

range of OS security and vulnerability issues [7, 8, 9, 10]. Our 

investigation of some novel aspects of security could yield 

insights that would be significant for not only system 

administrators, security engineers and OS vendors but also 
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ordinary users. It focuses on: 

1) comparing, by using quantitative analysis and statistics, 

the vulnerabilities in a number of OSes that have been identified 

and resolved; 

2) assessing the most significant vulnerability metrics 

including days-of-risk [11], numbers of forever-day [12] 

vulnerabilities and their severity for each operating system. 

This paper expends our early work in [13] in a number of 

ways. First of all, we investigate addition important aspects, such 

as vulnerability distributions by attack vectors and their impact 

on different security properties (availability, confidentiality and 

integrity); a correlation between vulnerability severity and 

vendor’s rapidity to fix them; analysing which types of 

vulnerabilities are the most numerous and severe. In addition, we 

use the reported statistics to examine intrusion-tolerance 

architectures aimed at improving system security using diversity 

of operating system and study how diversity can impact surface 

of attacks targeting different security attributes via common 

vulnerabilities. Lastly, we update our early study by adding 

2017’s vulnerability statistics. 

There have been many works, e.g. [14, 15, 16], studying 

software diversity as a means for tolerating software faults since 

the 70s when the concept of N-version programming [17] and 

Recovery Blocks [18] were introduced. Software diversity has 

been successfully applied in various application domains, 

including railway, aerospace and nuclear power station control 

to improve system reliability.  

One of the most challenging parts of the work on applying 

diversity in practice is the justification of the effectiveness of 

proposed solutions due to the lack of empirical data. The use of 

software diversity for security and intrusion-tolerance was 

proposed in earlier studies reported in [19, 20, 21, 22], which 

clearly showed the needs for demonstrating the applicability of 

the proposed architectural solutions and for evaluating their 

advantages to drive their design.  

Our paper continues a series of works quantitatively studying 

common vulnerabilities of intrusion-tolerance systems 

employing OS diversity, e.g. [23, 24]. In spite of some 

similarities between our work and these studies, there are 

substantial differences. Firstly, Garcia et al. do not consider 

vulnerability statistics in dynamics taking into account a lag 

between the times when a vulnerability is disclosed and when OS 

vendor issue a patch to fix it. Secondly, in our work we analyse 

additional vulnerability metrics related to different OSes: 

average days-of-risk, average number of forever-day 

vulnerabilities, their types and severity. In addition, we examine 

how OS diversity and common vulnerabilities influence the 

attack surface and impact various security attributes of the 

specific intrusion-tolerance architecture. The reported statistics 

will help system administrators and users to make a justified 

decision when facing a challenge of choosing the most secure and 

the least vulnerable operating system and their combinations. 

The rest of the paper is organized as follows. In the next 

section we briefly describe vulnerability databases and studied 

OSes, discuss the most important vulnerability measures (days-

of-risk, forever-day vulnerabilities and their CVSS severity), 

present vulnerabilities discovery and patching statistics, and 

outline the most severe types of vulnerabilities as well as the 

vulnerabilities, discovered in more than one OS. Section III 

examines diverse intrusion-tolerance architectures and 

discusses how diversity of OSes affects various security 

properties: availability, integrity and confidentiality.  

The final part, Section IV, sums up several practical 

conclusions to be drawn from our study. 

II. BACKGROUND AND RESEARCH METHODOLOGY 

The main focus of our paper is to consider dynamical aspects 

of vulnerability life cycle. In particular, we study how often new 

vulnerabilities are discovered, how quick vendors issue patches, 

fixing vulnerabilities, and how many of yet unfixed 

vulnerabilities exist in a particular operating system at once. 

With this purpose, our research methodology relies on: 

 --collecting vulnerability statistics from different datasets 

and merging them in a single SQL-like database; 

 --considering the vulnerability life cycle and disclosure 

policies which are used by different vulnerability datasets; 

 --using the Common Platform Enumerations (CPE, 

https://cpe.mitre.org/dictionary/) corresponding to the studied 

OSes to filter vulnerability statistics from the database. 

A. Vulnerability Databases and Datasets 

There are a wide range of actors that are investing plenty of 

effort into discovery and elimination of vulnerabilities, 

including software vendors, international governmental and 

non-governmental organizations, businesses and individuals. 

Many of them make their vulnerability datasets publicly 

available. Among the most reputable of these are: 

 --CVE, the Common Vulnerabilities and Exposures 

system, is a list of established vulnerabilities maintained by 

MITRE Inc. (cve.mitre.org). Each vulnerability is assigned a 

unique identifier, CVE-ID, that other vulnerability databases 

use to synchronize their data with CVE and thus make data 

exchange between security databases and products possible. 

Over 18,000 of these identifiers were assigned by MITRE in 

2017 alone. The vulnerability description provided in CVE is, 

however, rather basic and does not include such significant 

details as a comprehensive list of vulnerable products, 

vulnerability type and severity.  

 -- NVD, the National Vulnerability Database maintained 

by the U.S. National Institute of Standards and Technology 

(web.nvd.nist.gov), builds on and is synchronized with CVE. 

Unlike CVE, it categorises vulnerabilities by type and severity, 

provides a specific list of vulnerable software products and 

additional meta-data following the Common Platform 

Enumeration Dictionary (CPE), the Common Weakness 

Enumeration Specification (CWE) and the Common 

Vulnerability Scoring System (CVSS). 

 --VNDB, the Vulnerability Notes Database maintained by 

CERT (www.kb.cert.org/vuls/). 

 --VulnDB, a vulnerability database offered as a 

commercial product by the Risk Based Security company 

(www.riskbasedsecurity.com/vulndb/), can track weaknesses in 

third-party libraries. 

 --SecurityTracker, a vulnerability dataset available to buy 

https://cpe.mitre.org/dictionary/
file:///D:/Tolik/Web-Diversity/!ISSRE'2017/www.kb.cert.org/vuls/
http://www.riskbasedsecurity.com/vulndb/)
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at securitytracker.com. 

Another common way to inform customers about 

vulnerabilities in software products is vendors publishing 

security bulletins (e.g. https://technet.microsoft.com/en-

us/security/bulletins.aspx). However, the previously widely used 

OSVDB (Open Source Vulnerability Database) and FVDB 

(Frei’s Vulnerability Database) are not accessible any more. 

NVD and CVE, the most comprehensive and reliable 

databases, make vulnerability data available by providing a 

simple search interface on their websites or daily updated XML 

data feeds. It would be difficult, however, to directly use their 

datasets for complex analytics since SQL queries are not 

supported. 

B. Vulnerability Life Cycle and CVE/NVD Disclosure Policies 

There have been several studies focusing on the software 

vulnerability life cycle [25, 26, 11]. In one study [27] its most 

important milestones were defined in order to put forward its 

formal model. The common consensus among security analysts 

and researchers single out 5 major events which make up a 

typical vulnerability life cycle: (i) a vulnerability is created; (ii) 

it is discovered; (iii) it is disclosed; (iv) a patch is created; (v) 

the patch is installed.  

The risks of system exposure for time intervals between these 

events tend to differ. Thus, there is a time of a higher security 

risk from the moment of vulnerability discovery or disclosure 

till the moment when a patch is installed to resolve it, referred 

to as days-of-risk [11]. The terms black, grey and white risk are 

used to refer to varying levels of exposure risk and of public 

awareness of the dangers involved (see Fig. 1). This paper deals 

with grey (post-disclosure) risk associated with the interval 

between the vulnerability being disclosed and the patch to fix it 

being provided.  

The paper takes the date when a vulnerability is assigned a 

CVE-ID in CVE as vulnerability disclosure time. This is 

because CVE-IDs are unique identifiers, whereas most other 

security bulletins and vulnerability databases are seen as 

secondary since their records are synchronized with them.  

While it is sometimes possible to derive the time when a 

patch is produced from vendors’ security bulletins, more 

commonly it is necessary to search vendors’ web sites manually 

in order to extract the relevant information, since typically there 

are no reporting mechanisms or xml-based data feeds that 

would allow automatic search and processing. 

It has been reported [28] that, for about 75% of vulnerability 

descriptions, the median time from the moment when they 

appear in vendor security bulletins till the time when NVD 

makes them available is seven days. This suggests that NIST 

allows time for a patch to be produced to fix the vulnerability 

before publishing the detailed information in NVD, 

implementing what has been called a responsible disclosure 

model [29]. In addition, the median announcement gap varies 

depending on the vendor: it is 2 days for Microsoft, 5 days for 

Oracle and Apple, 10 days for Linus and 12 days for Novell. 

 

Black risk Gray risk White risk

Vulnerability 
discovery

Vulnerability 
disclosure

Patch 
availability

Patch 
installation

time

Days-of-Risk

Window of zero-day 
vulnerabilities attack

Window of forever-day 
vulnerabilities attackVulnerability 

creation  

Fig. 1. Vulnerability lifecycle. 

C. Operating Systems Under Study 

This study examines the vulnerabilities of six widely used 

enterprise operating systems (see Table I). Our reasons for 

choosing these particular OSes and their versions included their 

popularity, the fact that they include both proprietary and open-

source types, belong to different families (Windows, 

Unix/Linux, MacOS), and are sold by different vendors for a 

range of application domains. This prompted us to consider a 

series of studies (e.g. [30, 31, 32]) focusing on the OS market 

share of web servers, where Linux-based OSes predominate, 

and of on-premises server, where various versions of Microsoft 

Windows are most common. 

Our aim was to examine vulnerability data over a significant 

period in order to identify major trends. We also wanted to 

ensure that our conclusions are based on comprehensive 

datasets (in NVD and CVE, there is not enough information on 

the most recent OS versions for statistical analysis). For these 

reasons, the choice of OS versions was made (see Table I) so as 

to focus our scrutiny on the six years between the late 2011 and 

the late 2017, analysing a total of over 2,500 vulnerabilities. 

Even though the OS versions selected have already been 

replaced by more recent ones, our research demonstrates that 

new vulnerabilities are still being discovered in the older OS 

versions. Furthermore, most of these new vulnerabilities can 

also be found in the latest versions of OSes. 

To precisely identify vulnerabilities discovered in a particular 

operating system we use the Common Platform Enumeration 

Dictionary (CPE) [33]. The CPE dictionary, maintained by 

NIST and used by NVD, offers is a structured hierarchical 

naming scheme and a generic syntax for identifying computer 

systems, software, and packages. Each vulnerability record 

stored in NVD has a list of CPE references which allows exact 

identification of all vulnerable products.  

Each CPE reference uses the following general syntax: 

cpe:/type-of-product {o – operating system | a – application 

software | h – hardware/firmware}:manufacturer:product-name 

:release:version:subversion(s):platform{x64|x86}.  

TABLE I.   
OPERATING SYSTEMS UNDER INVESTIGATION 

Operating system 
Release  

date 

Linux kernel 

version 

No of CPE 

references 

Ubuntu Server 12.04 26.04.2012 3.2.x 82 
Red Hat Enterprise Linux 6 10.11.2010 2.6.32.x 87 

Novell Linux SUSE  

  Enterprise Server 11 SP2 

27.02.2012 3.0.13 58 

Microsoft Windows Server  

  2012 R2 

18.10.2012 - 12 

Apple MacOS Server 10.8 25.06.2012 - 7 
Oracle/Sun Solaris 11 09.11.2011 - 9 

https://technet.microsoft.com/en-us/security/bulletins.aspx)
https://technet.microsoft.com/en-us/security/bulletins.aspx)
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In practice, several CPE references can match the same 

product (e.g. some of CPEs can refer to the whole family of OSes 

while others can identify the certain OS, version or release). For 

example, the list of CPE references corresponding to Microsoft 

Windows Server 2012 R2 consists of 12 entries including:  

 --cpe:/o:microsoft:windows:::~~~~x64~ 

 --cpe:/o:microsoft:windows:::~~~~x86~ 

 --cpe:/o:microsoft:all_windows:abstract_cpe 

 --cpe:/o:microsoft:all_windows 

 --cpe:/o:microsoft:windows_server_2012:r2::~~~x64~~ 

 --cpe:/o:microsoft:windows_server_2012:-, etc. 

Lists of CPEs for Ubuntu, Red Hat and Novell OSes should 

also be supplemented with CPE entries corresponding to Linux 

kernels used by each of these OSes. Being a part of an operating 

system a Linux kernel, nevertheless, is considered by NVD as 

a separate software product having own vulnerabilities. For 

example, the list of CPEs assigned to Linux kernel 3.2.x used 

by Ubuntu Server 12.04 includes: 

 --cpe:/o:linux:linux_kernel 

 --cpe:/o:linux:linux_kernel:- 

 --cpe:/o:linux:linux_kernel:3.2 

 --cpe:/o:linux:linux_kernel:3.2::~~~~x86~ 

 --cpe:/o:linux:linux_kernel:3.2:rc2 

 --cpe:/o:linux:linux_kernel:3.2.1 

 --cpe:/o:linux:linux_kernel:3.2.1::~~~~x86~, etc. 

In our study, the number of vulnerabilities in Linux kernels 

represents on average 40% of the total number of vulnerabilities 

disclosed during 2012-2017 in Ubuntu, Red Hat and Novell. 

D. Research methodology 

Our research methodology is presented in Fig. 2. It consists of 

seven steps including: 

Step 1: first, we designed and created a MySQL database to 

aggregate information from the CVE and NVD databases.  

Step 2: we developed a software tool which merges together 

XML data files provided by CVE and NVD, and inserted the joint 

data set into the MySQL database. The tool consistently updates 

our MySQL vulnerability database by:  

 --downloading XML data feeds from CVE and inserting 

all new vulnerabilities into the MySQL database, using CVE-

ID as a primary key and the CVE date as a vulnerability 

disclosure time (Step 2.1); 

 --downloading XML data feed from NVD and, if 

necessary, update vulnerability records existed in the MySQL 

database by CVE-ID (Step 2.2). In particular, if NVD reports a 

new vulnerability we set the NVD date as the time when a 

vulnerability is fixed by a vendor and add CVSS, CWE and 

CPE information from NVD in addition to that previously 

imported from CVE.  

Thus, our MySQL database stores both dates associated with 

the same vulnerability: (i) when a vulnerability is first announced 

by CVE and (ii) when its description appears in NVD. This 

allows us to estimate the period of grey risk. We did not exclude 

NVD announcement gaps, discussed at the end of Section II.B, 

during which vulnerability descriptions propagate from vendor’s 

 
1 https://drive.google.com/open?id=1rToATBng3D4vGL7P7bnoxSywsKe0rDdW  

security bulletins to the NVD database. This can result in a 

slightly pessimistic estimate, which, nevertheless, seems to be 

more secure than their underestimate. Because CVE and NVD 

are updated daily, the tool performs steps 2.1 and 2.2 every day. 

By now, our MySQL database includes more than 100000 

vulnerability records. 

Step 3: at this step we selected six popular server operating 

systems which vulnerabilities we wanted to examine. 

Step 4: we used the CPE Dictionary to create 6 lists of CPE 

references corresponding to each operating system. Table I 

reports how many of CPE entries have been associated with 

each operating system (the lists themselves can be downloaded 

from GoogleDrive1). 

Step 5: the CPE lists created at the previous step were used 

to query the MySQL database and select a subset of 

vulnerabilities belonging to certain OSes. 

Step 6: at this stage we run a series of sub-requests to collect 

various vulnerability statistics reported in Section III. 

Step 7: at the final step we studied common OSes 

vulnerabilities (by analysing overlaps of the lists of CPE entries 

assigned to each vulnerability) and investigated how diversity of 

OSes affects system availability, integrity and consistency. 

2.1. Create records by CVE-ID 
(date, description, references)

2.2. Update records by CVE ID
(date, CPE, CVSS, CWE, etc.)

2. Merge 
XML data 

feeds

1. Create MySQL 

database

4. Create CPE lists

CPE
5. Query database

6. Get vulnerability statistics

3. Select OSes

7. Analyse common 
vulnerabilities and 
OS diversity

XML

SQL

 

Fig. 2. Research methodology. 

The accuracy of the results reported in our work fully depends 

on the accuracy of the data, reported by CVE and NVD. As we 

mentioned earlier, CVE and NVD are highly reputable 

vulnerability databases, widely used by many researchers and 

security analysts, that also provide data feeds for the third-party 

security tools (e.g. vulnerability scanners). Moreover, we 

assume that MITRE Inc. and NIST, operating CVE and NVD, 

spend comparatively equal efforts on examining vulnerability 

of different software products and provide trusted information 

that can be used as an indicator of software security/quality. 

III. OSES VULNERABILITY STUDY 

A. Vulnerability Discovery, and Patching Statistics and 

Dynamics 

In this section we summarize the statistics of vulnerabilities 

discovered and fixed in different OSes since the 1st of January 

2012 and until the 31st of December 2017 (see Table II). In the 

table we use the following short names for the operating 

systems under investigation: 

https://drive.google.com/open?id=1rToATBng3D4vGL7P7bnoxSywsKe0rDdW
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 --Ubuntu – Ubuntu Server 12.04. 

 --Red Hat – Red Hat Enterprise Linux 6. 

 --Novell – Novell Linux Enterprise Server 11 SP2. 

 --Windows – Microsoft Windows Server 2012 R2. 

 --MacOS – Apple MacOS Server 10.8. 

 -- Solaris – Oracle Solaris 11. 

Red Hat Enterprise Linux 6 and Oracle Solaris 11 had been 

released before the observed period (see Table II). Other 

operating systems (Ubuntu Server 12.04, Novell Linux 

Enterprise server 11 SP2, Microsoft Windows Server 2012 R2 

and Apple Macintosh Server 10.8) were released in the 

beginning of 2012. It is worth mentioning that on the date of the 

official release some of those operating systems already had 

vulnerabilities that earlier had been discovered in previous OS 

versions. In particular, Ubuntu Server 12.04 inherited 15 of 

such vulnerabilities, Red Hat Enterprise Linux 6 – 46, Novell 

Linux Enterprise server 11 SP2 – 26 and Oracle Solaris 11 – 13 

vulnerabilities. Such vulnerabilities are reported as ‘Inherited’ 

in the Table II. 

During 2012-2017 the largest number of vulnerabilities (1034) 

was disclosed in Ubuntu, the least number (205) – in MacOS. 

The Red Hat and Novell operating systems occupy a middle 

position having 560 and 415 vulnerabilities, respectively. The 

greatest number of vulnerabilities in 2007 (190) were discovered 

in Windows. Cumulative graphs of vulnerabilities disclosed via 

the CVE and NVD databases during 2012-2017 in studied OSes 

are depicted in Fig. 3. One can notice that reporting mechanisms 

are quite different for different OSes. In particular, curves 

depicting the numbers of vulnerabilities discovered in Linux-

based OSes are less discrete having considerably more “small 

steps”. This means that vulnerabilities are reported quite often by 

small portions or even individually. At the same time, 

vulnerabilities in Windows, Solaris and MacOS are usually 

batch-reported only few times a year. 

TABLE II.   
VULNERABILITY DISCLOSURE STATISTICS 

Y
ea

r 

Vulnerabilities 

U
b

u
n

tu
 

W
in

d
o

w
s 

R
ed

 H
at

 

N
o

v
el

l 

M
ac

O
S

 

S
o

la
ri

s 

Inherited 15 0 46 26 0 13 

2
0
1
2
 Disclosed 64 10 31 32 2 47 

Fixed 32 5 40 36 2 47 

Avg.Sev. 5.21 8.31 5.07 5.13 3.20 4.37 

2
0
1
3
 Disclosed 196 59 71 124 60 31 

Fixed 202 51 86 127 59 32 

Avg.Sev. 5.04 7.12 5.09 4.94 4.92 4.72 

2
0
1
4
 Disclosed 188 64 72 129 40 37 

Fixed 197 38 58 107 40 35 

Avg.Sev. 5.55 6.71 6.79 5.83 7.13 5.08 

2
0
1
5
 Disclosed 251 178 162 52 14 74 

Fixed 223 156 146 80 15 71 

Avg.Sev. 6.06 6.66 5.75 6.67 6.53 5.12 

2
0
1
6
 Disclosed 214 204 125 23 48 4 

Fixed 238 156 16 34 48 17 
Avg.Sev. 5.50 5.93 6.87 7.17 6.78 6.60 

2
0
1
7
 Disclosed 106 190 53 29 41 5 

Fixed 79 234 59 25 24 9 
Avg.Sev. 6.25 4.50 6.05 6.19 4.04 5.18 

T
o

ta
l Disclosed 1034 705 560 415 205 211 

Fixed 971 640 405 409 188 211 

Avg.Sev. 5.60 6.54 5.94 5.99 5.43 5.18 

 

B. Days-of-Grey-Risk Statistics 

The number of disclosed vulnerabilities is often used as the 

major indicator of software insecurity. However, taking into 

account how fast software vendors react on vulnerabilities 

discovered in their products is equally important. To compare 

efforts that different vendors make to solve security issues and 

to deliver security updates fixing vulnerabilities we use the 

Days-of-Risk measure. 

Days-of-risk [11] defines a period of time after a 

vulnerability is discovered/disclosed and until it is eliminated 

from a system after patch installation. It is also known as 

‘window of-vulnerability’ or ‘days-of-recess’. In this study we 

do not take into account possible delays between the times 

when a vendor issues the patch and until a user or a system 

administrator actually installs it.  

Besides, in many cases it is impossible to identify when 

exactly a vulnerability was discovered. In the paper we 

investigate, so called, gray risk or post-disclosure risk which 

defines the interval between vulnerability disclosure time and 

the date when the patch fixing vulnerability becomes available 

[13, 11]. In accordance with our research methodology, 

discussed in Section II.D we estimate days-of-gray-risk 

(DoGR) for a particular vulnerability as the period of time 

between a vulnerability is initially reported in CVE and its 

description appears in NVD.  

Table III shows how the average days-of-risk have been 

changing during 2012-2017 for different operating systems. It also 

includes data reported by other researchers in [7, 10, 9, 34] for 

earlier versions of the studied OSes. For instance, according to [10] 

in 1999 Microsoft spent an average 16 days from vulnerability 

disclosure to issuing a patch. Red Hat spent only 11 days to fix 

vulnerabilities while Sun proved itself to be very slow solving 

security problems in 90 days on average. 

In 2006, as reported in [7, 34], the days-of-gray-risk 

parameter for Microsoft Windows series of operating systems 

(Windows 2000 Professional and Server, Windows XP, 

Windows Server 2003) was estimated at 29 in average. At the 

same time, it took Red Hat 107 days to deliver security updates 

for its Enterprise Linux 2.1, 3.0 and 4.0 while Sun spent 168 

days to do the same for any Solaris version patched in 2006. In 

addition, it was estimated that Apple Mac OS X and Novell 

SUSE Linux Enterprise Server and Desktop (versions 8–10) 

had 46 and 74 days-of-gray-risk respectively. 

TABLE III.   
AVERAGE DAYS-OF-GRAY-RISK STATISTICS 

Year Ubuntu Windows Red Hat Novell MacOS Solaris 

1999* - 16 11 - - 90 

2005** - 24 90 68 55 159 

2006** - 29 107 74 46 168 
2012 144 132 243 109 94 89 

2013 109 131 119 99 113 81 

2014 62 100 108 68 107 69 
2015 79 126 101 133 83 58 

2016 105 183 130 144 138 210 

2017 34 89 80 36 225 49 

*taken from [10]; **taken from [7], [9] and [34]. 
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Fig. 3. Cumulative number of disclosed vulnerabilities. 

 
Fig. 4. Forever-day vulnerabilities. 

 

Fig. 5. Average severity of forever-day vulnerabilities. 
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Table III shows that since 2012 (excepting 2017) there has been 

a general tendency towards shortening the period of grey risk. 

However, during the last two years, the average days-of-grey-risk 

for different operating systems varies significantly between 34 and 

225 days. Unfortunately, it still means that after a vulnerability 

public disclosure users of affected operating system remain 

vulnerable and unprotected against potential hacker attacks during 

months, and the OS vendors are aware of this. 

Our work clearly shows that the conclusion by Jeff Jones 

expressed in a series of his earlier blog posts [7, 11, 35] that 

Windows is the platform exposing users to risks for the shortest 

period of time as compared to other OSes is no longer correct. 

At the same time, we can see that since Oracle took 

ownership of Solaris OS in 2009 the Solaris OS has 

demonstrated the steady reduction of days-of-gray-risks. This 

let us to conclude that Oracle has been reacting on new 

vulnerabilities much faster than Sun did.  

C. Forever-Day Vulnerability Statistics 

The authors of [12] coin a new term ‘forever-day 

vulnerability’ defining a publicly disclosed vulnerability that 

has not been patched yet and can be hacked any time during 

system operation. It is in contrast to ‘zero-day vulnerabilities’ 

[27] which are publically undisclosed vulnerabilities that some 

hackers have already discovered and can exploit. 

Using both, the date of vulnerability disclosure and the date 

when the OS vendor issues a patch to fix it we can plot graphs 

of forever-day vulnerabilities showing how many of known 

(already disclosed publicly) but yet unfixed vulnerabilities 

existed every day during 2012-2017 in a particular operating 

system (see Fig. 4). Any operating system running with forever-

day vulnerabilities is always vulnerable unless the software 

vendor issues a patch and a system administrator installs it. 

Usually, software vulnerabilities are disclosed much faster 

than vendors manage to fix them. This is why a particular 

operating system can contain up to several dozens of forever-day 

vulnerabilities at a time. Any of these vulnerabilities could be 

potentially exploited by hackers to attack the system. Fig. 4 

shows that some operating systems have only few days (if any) 

of vulnerability free operation per year. 

For instance (see Table IV), during 2012–2017 OS Ubuntu, 

Windows, Red Hat and Novell did not have known vulnerability 

free days at all. MacOS had only 111 of such days. It is our hope 

that OS users and administrators understood and accepted the 

potential risk of running these systems. In addition, Table IV 

presents a detailed statistics of forever-day vulnerabilities for 

each operating system during 2012-2017. On average, Ubuntu 

OS had 48 of such vulnerabilities every day. OS Windows and 

Red Hat had 40 forever-day vulnerabilities on average (twice as 

many as Novell). MacOS and Solaris had the least average 

number of forever-day vulnerabilities (13 and 8 respectively). 

D. Vulnerability Severity and CVSS-based Statistics 

Quantitative evaluation of computer systems vulnerability is 

a question of great debates with many approaches proposed  

[36, 37, 38, 39]. It is clear that the more vulnerabilities exist in 

a system, the more that system is prone to hacker attacks. 

TABLE IV.   
FOREVER DAY VULNERABILITIES STATISTICS 
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However, one should also account how quick a vendor fixes 

vulnerabilities, how critical vulnerabilities are, how they impact 

on security properties, etc.  

Vulnerability severity is an important characteristic 

quantifying the impact of vulnerability on system security. NVD 

has adopted the Common Vulnerability Scoring System (CVSS) 

to assign severity scores to software vulnerabilities [40]. CVSS 

is composed of three metric groups: Base, Temporal and 

Environmental, each consisting of a set of metrics. The CVSS 

Base score represents the intrinsic and fundamental 

characteristics of a vulnerability independently of exploits 

and/or payloads. It is calculated using a group of qualitative 

metrics taking into account: 

 --attack vector (local, adjacent network, network); 

 --access complexity (high, medium or low); 

 --need for authentication (required or not; multiple or single); 

 --vulnerability impact on confidentiality, integrity and 

availability (none, partial or complete); some of vulnerabilities 

impact only one security attribute while others can lead to 

breaches in two or all three of them.  

Temporal and Environmental scores are optional. They 

represent the characteristics of a vulnerability that can change 

over time (e.g. once the exploit code becomes available) and 

among user environments (e.g. whether a vulnerable system is 

exposed publically in the Internet or not).  

In this section we consider only CVSS base scores provided 

by the NVD vulnerability database that are constant over time 

and user environments. Note that the CVSS vulnerability 

severity ranges from 0 to 10, with 10 being the most severe. 
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Fig. 6.  Vulnerabilities distribution by CVSS severity scores. 

The average CVSS vulnerability severity scores (Avg.Sev.) 

for different OSes are presented in Table II.  

We could see, for example, that vulnerabilities in Oracle 

Solaris are the least critical with average severity equal to 5.18. 

The most severe vulnerabilities have been discovered in 

Microsoft Windows (the average severity is 6.54) and Novell 

(the average severity is 5.99). 

Fig. 6 shows the percentage of vulnerabilities with different 

severity levels. Almost a quarter of vulnerabilities discovered 

in Microsoft Windows, MacOS and Red Hat are critical (e.g. 

their CVSS severity scores are in the range [8.0..10.0]). The 

lowest percentage of critical vulnerabilities (less than 12%) was 

observed in Solaris. 

It is worth mentioning that system vulnerability is a 

dynamically changing characteristic. It changes every time 

when a new vulnerability is discovered in a system or when a 

patch fixing one of the previously discovered vulnerability is 

issued by a vendor and applied by a system administrator. 

Thus, system vulnerability at a particular moment of time can 

be estimated as a product of the current number of forever-day-

vulnerabilities (see Fig. 4) and their average severity  

(see Fig. 5).  

As shown in Fig. 5 the severity of vulnerabilities disclosed in 

the Microsoft OS, having the highest value on average, 

nevertheless, tends to gradually decrease in time. In contrast, 

the severity of vulnerabilities in Linux- and Unix-based systems 

is gradually increasing. It is also worth noting that that there is 

no a strong correlation between the numbers of forever-day 

vulnerabilities observed in particular OS and their average 

severity. 

Table V demonstrates vulnerabilities distribution among 

different CVSS criteria: attack vector, need for authentication 

and impact on security properties. 
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It shows, for instant, that 75% of vulnerabilities in Red Hat 

OS are network-exploitable; for Ubuntu, MacOS and Solaris a 

percentage of network vulnerabilities is over 50%; the fewest 

percentages of network exploitable vulnerabilities have been 

detected in Windows (46%) and Novell (40%). Ubuntu and Red 

Hat have the highest number of network-exploitable 

vulnerabilities (618 and 420 vulnerabilities correspondingly).  

Practically it means, that it is undesirable to expose Ubuntu 

and Red Hat as web- or e-mail servers publicly available in the 

Internet because of a high chance to be hacked. 

Another information of concern is a significant number of 

vulnerabilities (from 88% to 98% for different OSes) that do 

not require user authentication to be exploited. It means that 

most of hacker attacks would simply bypass built-in OS access 

control mechanisms making them useless. 

Note here that the sum of vulnerabilities within the CVSS 

‘impact’ metric group is higher than the total number of 

disclosed vulnerabilities presented in Table V. This is explained 

by the fact that most of vulnerabilities once exploited would 

allow an attacker to compromise at once all system security 

properties: confidentiality, integrity and availability. 

E. Interdependency Between Vulnerability Severity and 

Days-of-Grey Risk  

Any software users would expect that vendors always try to 

fix the most severe vulnerabilities firstly. On the other hand, a 

rational vendor would take a risk-based view to decide which 

vulnerability to give high priority by taking into account the 

likelihood of exploit.  

A vulnerability may be difficult to exploit (e.g. requires a 

very high competence or simply security controls commonly 

used make an exploit very difficult). Ignoring the likelihood of 

exploits from the vendor’s point of view may be a recipe for 

wasting resources. 

The CVSS base score can be considered as a good risk-based 

indicator as it integrates both vulnerability impact metrics 

(impact on integrity, confidentiality and availability) 

determining vulnerability severity and exploitability metrics 

(attack vector, access complexity and needs for authentication) 

which define the likelihood of exploits 

(https://nvd.nist.gov/vuln-metrics/cvss/v2-calculator). 

A set of box-and-whisker diagrams on Fig. 7 shows the 

numbers of days-of-grey-risk corresponding to vulnerabilities 

of different CVSS scores. They allow us to compare how quick 

OS vendors fix the least (CVSS severity score is in the range 

[1.0..3.0]) and the most (CVSS severity score is in the range 

[8.0..10.0]) critical vulnerabilities.  

Unfortunately, it is shown that the days-of-risk metric does 

not actually depend on the CVSS vulnerability severity rating. 

The presented results disprove a widespread hypothesis that 

software vendors put more efforts into fixing the most critical 

vulnerabilities. To some extent it seems to be true for the Red 

Hat operating system. Windows spends approximately the same 

time to fix the most and the least severe vulnerabilities (127 vs 

128 days on average). However, the developers of other OSes 

spend considerably more time on fixing critical vulnerabilities 

as compared to the least severe ones.  

           
(a) Ubuntu                                                                       (b) Novell                                                                     (c) Red Hat 

           
(d) Windows                                                                       (e) MacOS                                                                    (f) Solaris 

Fig. 7.  Box-and-whisker diagrams showing a days-of-gray-risk statistics (Y-axes) for vulnerabilities of different CVSS severity scores (X-axes) 

https://nvd.nist.gov/vuln-metrics/cvss/v2-calculator
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F. The Most Critical Types of OS Vulnerabilities  

NVD classifies all vulnerabilities using the Common 

Weakness Enumeration (CWE) scheme. CWE is a formal list 

of software weakness types proposed by MITRE Corporation 

(https://cwe.mitre.org/). 

Our analysis demonstrates that the most numerous types of 

vulnerabilities for operating systems in general are: 

CWE-119 (24%) – Improper restriction of operations within 

the bounds of a memory buffer caused by weaknesses of certain 

programming languages (often C and C++) that do not control 

bounds for the memory buffer that is being addressed. 

Vulnerabilities of the CWE-119 type usually cause arbitrary 

code execution, altering the intended control flow leading to 

accesses to protected information or system crash; 

CWE-264 (23%) – Weaknesses and implementation 

mistakes in permissions, privileges, and access control; 

CWE-200 (15%) – Information intentional or unintentional 

exposure to an actor that is not explicitly authorized to have 

access to that information; 

CWE-20 (13%) – Improper input validation which may 

result in altered control flow, arbitrary code execution or illegal 

access to and control of resources; 

CWE-399 (6%) – Improper management of system 

resources, e.g. memory allocation or reallocation; 

CWE-189 (5%) – Numeric errors related to improper 

calculation or conversion of numbers; 

CWE-362 (2%) – Concurrent code execution using shared 

resource with improper synchronization also knows as Race 

Condition; 

CWE-310 (2%) – Cryptographic issues including missing 

encryption of sensitive data or key management errors; 

CWE-94 (1%) – Improper control of code generation also 

known as Code Injection which often happens when software 

allows a user's input to contain code syntax. 

CWE-416 (1%) – the use after free vulnerabilities, which 

result in referencing memory after it has been freed and can 

cause a program to crash, use unexpected values, or execute 

code. 

Analysing both the quantity and CVSS severity scores of 

vulnerabilities of different type (see Fig. 8) we can conclude 

that the most critical ones are: CWE-119, CWE-264 and CWE-

20. CWE-94, despite its small number, has the maximum 

severity on average (8.9). 

Our analysis shows that CWE-119 vulnerabilities, also 

widely known as buffer overflow, still remain the most 

dominating and severe security flaws for all OSes. On the one 

hand, this can be explained by the fact that most of operating 

systems, written in C/C++, are prone to this type of weaknesses. 

On the other hand, it points to the fact that programmers neither 

really pay enough attention to such widely known problem that 

has been around for years nor follow best software development 

practices or make use numerous techniques proposed to cope 

with the buffer overflow issue.  

As a result, vulnerabilities of the CWE-119 type (e.g. CVE-

2016-7277, CVE-2016-4658 or CVE-2016-4598) often allow 

remote attackers to execute arbitrary code, read protected data 

or cause a denial of service. 

 

Fig. 8. The most numerous vulnerability types and their severity. 

Distribution of different types of vulnerabilities for particular 

operating systems can be found in [13].  

G. Common OS Vulnerabilities 

This section examines the vulnerabilities discovered in more 

than one operating systems by analysing CPE entries assigned 

to them. They are usually called common or shared [23, 24]. 

Common vulnerabilities and provide opportunity for 

compromising many or all of OSes at the same time and, being 

exploited, can cause a global epidemic of cyberattacks. They 

exist due to inheriting considerable parts of the OS code from 

its predecessor or reusing common components (system 

libraries, third party software components, OS kernels, etc.). 

The common vulnerabilities are most often discovered in 

different releases of the same OS or in a family of related 

operating systems, e.g. BSD Unix (OpenBSD, FreeBSD, 

NetBSD) or Linux (Red Hat, CentOS, Novell, Ubuntu), etc. 

For example, our analysis shows that 62 out of 63 (98%!) 

vulnerabilities reported by the NVD database in the most recent 

Apple MacOS 10.13 were also found in MacOS 10.8. The 

percentages of vulnerabilities shared between Microsoft 

Windows Server 2012 and its 2016th version is equal to 76% 

(123 vulnerabilities out of 165 ones found in Windows Server 

2016 by the end of December 2017). It is remarkable that this 

number also includes 114 vulnerabilities (69%) that Windows 

Server 2016 shares with Windows Server 2008 and 23 

vulnerabilities (14%) shared with Windows Vista. Moreover, at 

least six vulnerabilities in the SMB protocol, causing this year 

a massive WannaCry cyber attack, are traced to Windows 

Server 2003 and even to Windows XP. 

The 6.x and 7.x (last updated on 01.08.2017) versions of the 

Red Hat Enterprise Linux, and 12.4 and 16.4 (released on 

21.04.2016) versions of Ubuntu Server share up to 75% and 

70% of common vulnerabilities correspondingly. 

It is also worth noting that Oracle Solaris 11.3 in 2016 shared 

29% of vulnerabilities with Oracle Solaris 10.0 and 24% with 

Oracle Linux 7 but none with the 11.0 version, analysed in the 

paper. 
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These results confirm that the developers of operating 

systems reuse significant pieces of code from the previous 

releases without really analysing their vulnerability or 

improving their security. 

Sometimes hackers and security analysts discover 

vulnerabilities that are common for even different OS families. 

One of such vulnerabilities is CVE-2008-4609 found in 

October, 2008. It caused the denial-of-service attack for a 

variety of OSes and their versions, including Linux, BSD Unix, 

Microsoft Windows,  Cisco IOS and possibly many others [41, 

42]. The vulnerability manipulated the state of Transmission 

Control Protocol (TCP) connections exploiting an algorithmic 

error in protocol implementation in various operating systems. 

A remote attacker was able to cause connection queue 

exhaustion by flags manipulation in the TCP header of crafted 

network packets sent to a victim-computer. 

Fig. 9 shows common vulnerabilities correlated between 

Linux and Unix operating systems during 2012–2017 

(Windows did not share any vulnerabilities with the rest of 

studied OSes). Eighty-five of them were disclosed in all three 

Linux operating systems (Ubuntu, Novell and Red Hat) and ten 

were shared between Red Hat, Ubuntu and Solaris. Besides, 

there were six groups of vulnerabilities shared between 

different OS pairs: Ubuntu and Novell – 245, Red Hat and 

Ubuntu – 60, Novell and Red Hat – 36; Red Hat and MacOS – 

245; Red Hat and Solaris – 4; Ubuntu and Solaris – 5.  

These data emphasize the importance on analysing the 

vulnerabilities of diverse OSes. 

The numbers in brackets correspond to those vulnerabilities 

observed in Linux kernels (the NVD database distinguishes 

between vulnerabilities observed in Linux-based operating 

systems and Linux-kernels). Thus, Fig. 9 clearly demonstrates 

that the largest number of common and group vulnerabilities 

shared between the Ubuntu, Novell and Red Hat OSes are those 

discovered in the Linux kernels (versions 3.2.x, 3.0.x and 

2.6.32) used by them. In total, the percentage of common 

vulnerabilities shared between the three Linux OSes varies 

from 8% (for the 3-version system) to almost 45%  

(for the 2-version systems combining Ubuntu and Novell)! 

It is also noteworthy that the two Unix-like operating 

systems, Solaris and MacOS, do not have common 

vulnerabilities at all while they share certain numbers of 

vulnerabilities with different Linux OSes. 

245

(242)

36 
(14)

85

(59)

Red Hat
378 (31)

Novell
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Fig. 9.  Number of individual and common vulnerabilities shared by Linux 

(Ubuntu, Novell and Red Hat) and Unix (MacOS and Solaris) families of OSes. 

The number of vulnerabilities shared by two or more OSes 

can be used as a measure of diversity between them [23]. 

Software diversity [18, 14, 21] has been used as a major fault 

and intrusion-tolerance mechanism to design safety-critical 

computer systems. Thus, choosing the most diverse OSes 

would allow to create the most secure and reliable multi-version 

system. Our empirical study demonstrates that vulnerability 

databases (the NVD database in particular) can help in 

determining the most diverse software products. Our analysis 

also shows that the results reported in [23] should be further 

verified as the authors may not have considered common and 

group vulnerabilities observed in Linux kernels. 

IV. USING OS DIVERSITY TO IMPROVE SYSTEM SECURITY 

AND INTRUSION TOLERANCE 

A. OS Diversity and Intrusion Tolerance Architecture 

Software vulnerabilities represent threats to dependability 

and, in particular, to security, that are additional to faults, errors 

and failures, traditionally dealt with by the dependability 

community [43, 44]. Design diversity is one of the most 

efficient methods for providing software fault-tolerance  

[14, 15] and improving dependability. 

Often, researchers consider vulnerabilities as a special case 

of software faults activated by an attacker [44]. As a result, 

many studies focus on applying diversity to boost the intrusion 

tolerance of a system in the same way as software design 

diversity is used to ensure fault-tolerance.  

In general, the diverse computer system consists of two or 

more replicas that run diverse software. The main assumption 

behind software diversity is that designs and implementations, 

developed independently (programmed by different teams, 

using diverse languages and development methodologies) will 

exhibit failure and vulnerability diversity. 

Diversity, being a part of the intrusion tolerance mechanism, 

can improve system security, especially availability [23, 24, 45, 

46]. However, the impact of software diversity on system 

confidentiality and integrity taking into account common 

vulnerabilities and the dynamic process of vulnerability 

discovery and patching is less understood. 

There has been an increasing number of approaches and 

architectures proposed to build intrusion-tolerance systems. 

They employ different techniques to tolerate intrusions: 

adaptive redundancy and diversification principles [47, 48], 

asynchronous Byzantine agreement protocols [49, 50], replica 

“cleansing” [51], etc.  

In our work we consider only one of many possible intrusion-

tolerance architectures coping with vulnerabilities of operating 

systems. This architecture, shown in Fig. 10, comprises 

functionally redundant servers running diverse operating 

systems and a proxy/IDS that mediates client requests to all that 

servers and also verifies their behavior, as described in [45, 47, 

52]. Intrusions are detected through the comparison of the 

server outputs before returning the result to the clients. This 

architecture suits well for tolerating intrusions in synchronous 

replicated server systems, e.g. intrusion-tolerant web servers. 
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Fig. 10.  Intrusion-tolerance architecture under study. 

Operating systems of different families (e.g. Unix, Linux, 

Windows, MacOS) are more diverse, by nature, than those, 

belonging to the same OS family. However, using them for 

building a diverse intrusion-tolerance system usually causes 

various compatibility, portability and synchronization issues. 

This is why developers of diverse intrusion- and fault-tolerance 

systems often opt for using OSes of the same family [53, 54, 

55]. In our study we examine a particular example of the diverse 

intrusion-tolerance architecture comprised of the three Linux-

based OSes (Ubuntu, Novell and Red Hat), which common 

vulnerabilities were studied in Section III.G.  

B. The Threat Model and Assumptions 

In the proposed intrusion-tolerance architecture (Fig. 10) all 

user requests and server responses synchronously pass through 

the proxy. The intrusion detection algorithm assumes that all 

noncompromised servers give the same answer to the same 

request [46, 47].  

Thus, an intrusion is detected when the outputs are different 

due to an exploited vulnerability in one of diverse OSes. 

Majority voting is used then to identify a suspicious replica, 

isolate, cleanse/repair and reinsert it without interrupting a 

service. The general assumptions, which follow from the 

architecture description are: 

--the system is synchronous; it does not need asynchronous 

Byzantine agreement protocols [50]; 

--data and states are replicated in all machines that simplifies 

system implementation; the system integrity and confidentiality 

can be further improved by applying threshold cryptography 

technique [56], however, it is out of the scope of this work ; 

--an attacker cannot directly interact with a certain replica; 

all requests and responses go via the proxy; 

--an attacker has only “one shot” at compromising the whole 

replicated system; a compromised replica, detected by IDS, is 

cleansed before an attacker will get a chance to compromise 

other replica(s) [46]. 

As follows from the above assumptions, if diverse OSes do 

not have common vulnerabilities (i.e. they are 100% diverse), a 

hacker would not be able to compromise all replicas at the same 

time (with the single malicious request). However, as the 

diverse replicas can share a certain number of common 

vulnerabilities, the least vulnerable diverse configuration is one 

with the minimal number of such vulnerabilities.  

In the thread model we take into account the fact that a multi-

version architecture can enlarge the attack surface (i.e. the total 

number of vulnerabilities that can be exploited) and, hence, can 

weaken system confidentiality and, sometimes, integrity [21]. 

Our threat model considers attack surfaces of a replicated 

diverse system for different types of attacks targeting 

availability, integrity and confidentiality in the following ways: 

 --the 3-replicated system preserves availability if at least 

one replica remains available (i.e. 1-out-of-3 replicas returns a 

response); thus, to make the system unavailable an attacker 

needs to target those vulnerabilities, common for all replicas, 

which impact availability (Fig. 11, a); attacking any other 

vulnerabilities would not make the entire diverse system 

unavailable; 

 --the 3-replicated system preserves integrity if 2-out-of-3 

(the quorum) replicas return the correct response; thus, to 

compromise system integrity an attacker needs to target those 

vulnerabilities, common for any two replicas, which impacts 

integrity (Fig. 11, b); 

 --compromising any of diverse OSes would break the 

system confidentiality; thus, an attacker can target any 

vulnerability of any replica, which impact confidentiality  

(Fig. 11, c). 

The attack surface of the 2-replicated diverse system has 

some differences depending on the system implementation  

(see Fig. 12):  

 --if a system is designed/configured to stop its operation 

once it detects data discrepancy (i.e. a fail-stop system [57]), an 

attack compromising integrity of 1-out-of-2 replica would make 

the whole system unavailable; 
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Fig. 11.  Venn diagrams showing atack surface of the 3-version intrusion-
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Fig. 12.  Venn diagrams showing atack surface of the 2-version intrusion-

tolerant system. 



IEEE TRANSACTIONS ON RELIABILITY 

 

13 

 --if one of the OS versions is considered 

to be more trusted (a master replica), the 

system, when it detects inconsistency, will 

continue its operation using data provided by 

the more trusted master OS; the similar 

approach was used in the HACQIT project 

[52, 58]; in our study we assume that all 2-

version architectures are configured as 

master-slave; OS having less number of 

discovered vulnerabilities is considered as a 

master replica. 

Figs. 11 and 12 quantify attack surfaces of 

different security attributes using the static 

data (the overall number of individual and 

common vulnerabilities discovered in Linux-

based OSes during 2012-2017) reported in 

Section III.G. As expected, the 3-version 

system architecture has the least number of common 

vulnerabilities (85). Among the 2-version systems the least 

vulnerable combination is Red Hat and Novell which has 121 

of such vulnerabilities.  

Ubuntu Server 12.04 and Novell Linux SUSE Enterprise 

Server 11 SP2 use similar versions of Linux core  

(3.2.x and 3.0.x) which explains their similarity in term of a 

number of common vulnerabilities (330). 

C. Examining Static and Dynamic Impact of OS Diversity on 

Availability, Confidentiality and Integrity of the Intrusion-

tolerance System 

In this section we quantitatively examine the vulnerability of 

several possible configurations of the intrusion-tolerance 

architecture, discussed above. As intrusion-tolerance servers 

are usually used to provide critical network services, in this 

section we consider only remotely exploitable vulnerabilities. 

Locally exploitable vulnerabilities identified based on their 

CVSS attack vector (see Section III.D for more details) are 

excluded from the study, as compared to Section III.A. 

Table VI quantifies the network attack surface for individual 

OSes and various configurations of a diverse intrusion tolerant 

system taking into account vulnerability impact on different 

security properties. It clearly shows that developers of 

intrusion-tolerance systems deploying OS diversity have to 

trade-off between different security properties.   

TABLE VI.   
ATTACK SURFACES FOR DIFFERENT SECUROTY PROPERTIES 

IN VARIOUS  DIVERSE CONFICURATIONS 

System 

architecture 

OS No of vulnerabilities 

Ubuntu Novell Red Hat 
avail-
ability 

integrity 
confiden-

tiality 

Single-

version 

*   496 335 336 
 *  145 91 99 
  * 354 267 275 

Multi-

version 

* *  90 91 376 

*  * 77 267 560 
 * * 46 91 329 

* * * 24 99 577 

 

 

Fig. 13 demonstrates the interplay between a number of 

vulnerabilities affecting availability and confidentiality  

(Fig. 13.a), and availability and integrity (Fig. 13.b) for 

individual OSes and diverse configurations.  

If one is ready to sacrifice confidentiality in favour of 

availability the 3-version architecture is the best choice. It 

provides also the best compromise between availability and 

integrity. 

The pair Novell and Red Hat seems to be the best diverse 

configuration for maximising all the properties. It has the least 

number of vulnerabilities targeting integrity and confidentiality 

and also provides a good compromise with availability. 

Among the individual OSes Novell has the least number of 

remotely exploitable vulnerabilities impacting availability, 

integrity and confidentiality. At the same time, Ubuntu should 

not be considered as a good choice in any scenario. 

A more optimal decision regarding the best diverse 

configuration of the intrusion-tolerant system can be made 

dynamically by considering how many common vulnerabilities 

existed each day in a particular configuration (see Figs. 14-16).  

Table VII summarises the statistics shown in Figs. 14-16 and 

provides arguments in favour and against each diverse 

configuration. 

As we expected, the 3-version system significantly reduces a 

surface of network attacks targeting availability down to 1.08 

vulnerabilities per day in average. It maintained the least 

number of forever-day vulnerabilities during the whole six-year 

period, during which 763 were days with no known 

vulnerabilities at all. 

The combination of Novell and Red Hat is the best diverse 

configuration for a system which top priority is availability. On 

average, it maintains 2.04 vulnerabilities per day and ensures 

the same number of vulnerability-free days as the 3-version 

system. 

The 3-version system still remains the best configuration for 

integrity-critical systems. It maintains 5 vulnerabilities per day 

on average. At the same time, the pair Ubuntu and Red Hat 

should not be considered as an appropriate option to build a 

diverse intrusion-tolerance system. 
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Fig. 13.  Trade-offs between vulnerabilities impacting: a) availability and confidentiality,  

and b) availability and integrity 
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Fig. 14.  Forever-day vulnerabilities in different configurations of a diverse intrusion tolerance system affecting availability. 

 

Fig. 15.  Forever-day vulnerabilities in different configurations of a diverse intrusion tolerance system affecting integrity. 

  

Fig. 16.  Forever-day vulnerabilities in different configurations of a diverse intrusion tolerance system affecting consistency. 
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TABLE VII.   
SUMMARY OF FOREVER-DAY VULNERABILITY STATISTICS  

(ATTACK SURFACE) FOR VARIOUS DIVERSE OS CONFIGURATIONS 

Operating System Diverse system configurations 

Ubuntu * *  * 
Novell *  * * 

Red Hat  * * * 
Availability attack surface 

No of vulnerabilities  
per day 

avg. 5.24 4.26 2.04 1.08 

min 0 0 0 0 

max 15 24 18 6 
No of vulnerability free days 41 83 763 763 

No of days with the least number  

of forever-day vulnerabilities 
521 566 1898 2192 

Integrity attack surface 

No of vulnerabilities  

per day 

avg. 5.31 14.82 5.31 5.01 

min 0 4 0 0 
max 39 83 39 32 

No of vulnerability free days 279 0 279 187 

No of days with the least number  
of forever-day vulnerabilities 

1589 34 1589 1555 

Confidentiality attack surface 

No of vulnerabilities  

per day 

avg. 30.30 43.26 30.24 45.93 

min 9 9 0 9 
max 73 141 104 141 

No of vulnerability free days 47 0 0 0 

No of days with the least number  
of forever-day vulnerabilities 

1587 0 849 0 

Finally, a diverse system, for which the most important 

security property is confidentiality, would benefit from using 

either the combination of Novell and Red Hat, or Ubuntu and 

Novell. The first one had the least average number of forever-

day vulnerabilities per day (30.24) affecting confidentiality, 

however the second one ensured 47 vulnerability-free days and 

maintained the minimal number of forever-day vulnerabilities 

during the longer period (1587 days versus 849 days).  

The 3-version configuration is not recommended for use for 

the confidentiality-critical systems as it significantly enlarges 

an attack surface: up to 46 vulnerabilities per day in average. 

V. CONCLUSION AND LESSONS LEARNT 

A significant growth of the total number of vulnerabilities 

discovered in modern OSes as well as the general tendency 

toward increasing their severity demonstrate the serious 

security challenges and risks that OS developers and users face. 

It is very important to understand that the crucial parameters 

affecting system security are not only the total number of 

vulnerabilities disclosed in a particular software product and 

their severity but also, so called, days-of-risk, which show how 

fast software vendors issue patches fixing disclosed 

vulnerabilities, and a number of forever-day vulnerabilities 

defining the attack surface.  

Our analysis shows that the average days-of-risk for the 

studied operating systems varies from 89 days for Ubuntu up to 

130 days for Red Hat. Besides, it found that 28 forever-day 

vulnerabilities on average for the investigated OSes existed 

every day during 2012-2017 (a number of such vulnerabilities 

varies on average between 8 for Solaris and 48 for Ubuntu). 

Thus, our work clearly supports our claim that decreasing 

days-of-risk and reducing a number of forever-day 

vulnerabilities is one of the main challenges in improving 

security of operating systems. 

It is worrying that as our study shows, the rate with which 

OS developers issue security updates in general does not 

depend on vulnerability severity. Average days-of-gray-risk for 

the most critical vulnerabilities remains even 24% higher (!) 

than the one calculated for vulnerability of the lowest severity.  

Another important finding is that developers reuse 

significant pieces of code from the previous releases (which is 

not surprising itself) without really analysing their vulnerability 

and improving their security. Moreover, buffer overflow 

vulnerabilities still remain the most dominant and severe 

security flaws for all OSes despite many techniques being 

proposed to cope with this type of vulnerabilities. 

These our findings demonstrate the worrying shortcomings 

in the engineering practices and policies for developing security 

updates adopted by OS vendors, as well as, in the maintenance 

management processes they run. 

Another specific aspect that the paper studies is the 

vulnerabilities that were discovered in more than one OSes. 

Such vulnerabilities, common for different operating systems 

and even different OS families, can lead to large-scale hacker 

attacks and virus epidemics. 

This calls for application of specially-tailored intrusion-

tolerance techniques. One of them is based on adopting 

software diversity. In the paper we quantitatively analyse how 

operating system diversity impacts attack surface taking into 

account individual and common vulnerabilities. 

Unlike other studies, we investigate how diversity affects 

various security attributes: availability, integrity and 

confidentiality using historical statistics from the CVE and 

NVD vulnerability databases. We confirm that the more OS 

versions we use and the more diverse they are the more the 

system becomes tolerant to attacks targeting its availability. 

However, the diversity can undermine the integrity and 

confidentiality properties by enlarging system attack surface. 

In particular, in our work we considered different possible 

configurations of 2- and 3-version intrusion-tolerance systems 

built by combining Linux-based OSes: Ubuntu, Novell and  

Red Hat. 

Our practical findings based on real vulnerability statistics 

confirm that the 3-version architecture is the best choice to 

ensure high system availability and integrity. On average, it 

maintains only one forever-day vulnerability targeting system 

availability and five ones targeting data integrity. 

Correspondingly, it is 3.6 and 1.7 times less than the average 

results provided by individual OSes. 

However, for the 3-version system the number of forever-day 

vulnerabilities targeting data confidentiality is 3.8 times larger. 

It is fair to note that even the best 2-version configuration 

(Ubuntu+Novell) enlarges the confidentiality attack surface by 

2.1 times. These results show that OS diversity in certain 

scenarios can improve system intrusion-tolerance. Though, it is 

not a panacea for intrusions targeting integrity and, especially, 

confidentiality. This calls for developing more effective 

security mechanisms in addition to the traditional intrusion-

tolerance solutions. 
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