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Abstract 

The current paradigm of toxicity testing is set within a framework of Mode-of-Action 

(MoA)/Adverse Outcome Pathway (AOP) investigations, where novel methodologies alternative to 

animal testing play a crucial role, and allow to consider causal links between molecular initiating 

events (MIEs), further key events and an adverse outcome. In silico (computational) models are 

developed to support toxicity assessment within the MoA/AOP framework. This paper focuses on 

the evaluation of potential binding to the Liver X Receptor (LXR), as this has been identified 

among the MIEs leading to liver steatosis within an AOP framework addressing repeated dose and 

target-organ toxicity.  

The objective of this study was the development of a priority setting strategy, by means of in silico 

approaches and chemometric tools, to allow for the screening and ranking of chemicals according to 

their toxicity potential. As a case study, the present paper outlines the methodologies and 

procedures that have been developed in the context of the COSMOS/ety assessment project [4], 

which developed computational methods in view of supporting cosmetics safety assessment, to rank 

chemicals based on their potential binding to LXR. Chemicals are ranked based on molecular and 

QSAR modelling outcomes. The contribution in this paper is threefold: the QSAR model for LXR 

dataset, an application of molecular modeling approaches, which have been developed and 

optimized for drug discovery, in the context of toxicology, and finally ranking chemicals based on 

diverse modelling outcomes. The novelty in this paper consists of the employment of linear (logistic 
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regression) and non-linear (Random Forest) models in the context of ranking chemicals. The results 

show that these methods can be successfully applied for prioritization of compounds of major 

concern for potential liver toxicity, and that they perform better than the  ranking methods reported 

in the literature to date (such as total ordering or data fusion).  
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1. Introduction 

Toxicity testing and safety assessment strategies in the 21st century moved towards a novel 

paradigm in toxicology: no longer based on a complex array of in vivo studies evaluating apical 

adverse outcomes, it is focused on the development of Mode-of-Action (MoA)/Adverse Outcome 

Pathway (AOP) investigation, which provides information on the causal links between a molecular 

initiating event (MIE), intermediate key events (KEs) and an adverse outcome (AO) of regulatory 

concern. In parallel, recent scientific advances in biology and biotechnology (e.g., omics 

technologies, bioinformatics and computational toxicology) set the basis for a new toxicity-testing 

system, based on the use of new approach methodologies (NAM), such as High-throughput 

screening (HTS) () assays, toxicokinetic and toxicodinamic (TK-TD) studies, (Q)SAR and read-

across [1]. 

In the MoA/AOP framework addressing repeated dose and target-organ toxicity, liver steatosis has 

been recognized as one of the first manifestations of liver toxicity. Liver steatosis is characterized 

by excessive accumulation of triglycerides in lipid droplets in the hepatocytes and results from the 

disturbance in the homeostasis of hepatic lipids. The development of steatosis can be attributed to 

many different causes. Among others, the interaction of exogenous chemicals with nuclear 

receptors (NRs) involved in the homeostasis of fatty acids metabolism is one of the molecular 

initiating events of increasing concern [2]. A variety of nuclear receptors could play a role in liver 
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steatosis, including LXR (liver X receptor), PXR (Pregnane X Receptor), AhR (Aryl hydrocarbon 

receptor), ER (estrogen receptor) and PPARα and PPARγ (peroxisome proliferator-activated 

receptor isoforms α and γ respectively). The role of their activation in the MoA/AOP leading to 

liver steatosis has been described in detail elsewhere [2, 3]. 

Within the COSMOS project [4], one of seven projects forming the SEURAT-1 European research 

initiative [5] with emphasis on cosmetics safety assessment, which ran from January 2011 to 

December 2015, alternative in silico models have been developed to support toxicity prediction in 

the MoA/AOP framework. More specifically, different in silico methodologies, including (Q)SAR 

and molecular modelling, have been employed for the evaluation of potential binding to NRs 

involved in the development of liver steatosis. One of the objectives of the COSMOS project was 

the integration of different developed models, based on multiple approaches, to define a priority 

setting procedure for the screening and ranking of chemicals according to their toxicity potential. 

Screening chemicals sharing a common molecular initiating event could also support read-across 

and grouping strategies.  

The present paper outlines the methodologies and procedures that have been developed in the 

context of the COSMOS project to rank chemicals based on their potential binding to Liver X 

Receptor (LXR). In more detail, different methodologies, including ranking methods, consensus 

modeling and data fusion techniques, have been employed and compared to combine in silico 

responses generated by different models predicting LXR binding potential.    

Firstly, different molecular modelling (MM) approaches, which are usually applied in drug 

discovery, were explored and combined in order to characterize the ligand binding domain of the 

receptor and to define the essential features leading to LXR binding: ensemble docking, e-

Pharmacophore and Fingerprint-based similarity. These selected models were applied to our LXR 

dataset and their outcomes were collected for further ranking procedures. Secondly, a new QSAR 

model for LXR binding prediction was developed. This Partial Least Square – Discriminant 
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Analysis classification model was developed and validated using a commercial software based on 

different combinations of MOSES [6] molecular descriptors. Finally, we employed a screening 

workflow for liver steatosis alerts to predict potential binders to nuclear receptors. The outcomes 

from all these procedures were used to rank chemicals on their LXR binding potential. 

 In this paper we consider two different ranking scenarios. In the first use case we rank chemicals 

based on their outputs from molecular modelling approaches (docking, e-pharmacophore and two 

similarity measure) that are continuous values representing the power of the binding affinity. In the 

second use case we rank chemicals based on outputs obtained from three in silico methods 

including: ensemble docking, QSAR model and liver steatosis alerts which are categorical values. 

We compare three ranking methods: ordering, consensus modelling and data fusion.  As ordering 

and data fusion are known methods for screening chemicals, combinatorial modelling was used for 

the first time in the context of ranking.  The novelty here is the use of statistical and machine 

learning models to rank chemicals based on their predicted outcomes by other modelling methods.  

Two models logistic regression and random forest were proposed and compared to rank chemicals 

for potential toxicity. Both models return the probability of binding to the LXR receptor and 

chemicals are ranked based on these probabilities.  

To evaluate and compare ranking methods the AUC and Enchrichment Factor (EF) measures are 

used. The comparison of ranking performance by EF using in the top 1 – 20% range measures the 

number of correctly identifying positives.  This is driven by the use of molecular modelling which 

are optimized to identify the most active compounds. The results show that consensus methods can 

be successfully applied for prioritization of compounds of major concern for liver toxicity and they 

perform better than other ranking methods (such as total ordering or data fusion) reported in the 

literature. 
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Additionally, a workflow for ranking was implemented in the KNIME Analytic Platform [7], and 

shared publicly through the COSMOS KNIME Webportal [8], to increase model transparency and 

applicability. 

This paper is organized as follows: Section 2 presents the dataset and all modeling methods we used 

in our study to rank binders to LXR. These involve description of the dataset, modeling approaches 

and validation metrics. Section 3 outlines the results from the comparison of the ranking methods. 

We consider two use cases for ranking methods combining different models based on their 

predictive outcome type.  Section 4 concludes our study and points to some further work.  

2. Materials and Methods 

This section describes the dataset used in our study and all methodologies employed to estimate 

binding potential and ranking chemicals.  

2.1. The Dataset 

LXR agonists are widely studied as potential therapy agents for a variety of diseases, such as 

atherosclerosis, diabetes and pulmonary inflammation. Experimental data on IC50 LXRβ binding 

affinity were collected from the literature (the dataset, including references, is reported in Appendix 

A), leading to the creation of a dataset of 356 compounds, mainly drugs or drug candidates, which 

consisted of groups of congeneric series sharing a common scaffold. Examples of structures and 

scaffolds included in the dataset are provided in Figure 1. 

The collected “LXR binders” cover a wide range of binding affinity, with IC50 values spanning 

from 1 nM to greater than 10000 nM. Based on the analysis of the distribution of binding affinity 

data and in line with the classification criteria applied by Zhao and co-workers in [9], arbitrary IC50 

thresholds for LXR binding potential were defined, and LXR binders were assigned to four classes: 

"low active" (IC50 >1000 nM), "moderate active " (100<IC50≤1000 nM), "active" (20<IC50≤100 

nM), and "very active" (IC50≤20 nM).  There were 136 chemicals in the very active class, 83 
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chemicals in “active” class, 80 in the moderate class and 57 in the low active class. Figure 2 

presents the distribution of LXR binding affinity data. No particular trend or specific features were 

observed among the congeneric series and activity classification. 

 

Figure 1 Examples of structures and scaffolds included in the LXR binders dataset (Full references 
reported in Appendix A). Compounds in the blue box (i.e., TO901317 and GW-3965) are synthetic 
LXR agonists commonly used as reference chemicals and positive controls in the biological assays. 

 

Figure 2. Distribution of chemicals within each class. 

Very 
Active 
38%
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23%
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Active
23%
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The dataset of LXR binders was enriched with decoy molecules, i.e. molecules that are presumed to 

be inactive against a target (they will not likely bind to the target). Decoys are commonly used to 

validate the performance of molecular modelling studies, for example molecular docking, which 

was used in this study. One-thousand decoy molecules were selected from Schrödinger 1K Drug-

Like Ligand Decoys Set [10]. This collection of decoys was created by selecting 1000 ligands from 

a one million compound library that were chosen to exhibit "drug-like" properties [10, 11]. Within 

this case study, the resulting dataset of 1000 decoys and 356 binders (1356 molecules in total) was 

used for the following purposes: 

i) to assess the ability (evaluated in terms of EF – Enrichment Factor) of the developed in 

silico models (i.e., molecular modelling approaches, QSAR models and structural alerts)  to 

identify LXR binders. 

ii) to assess the performance of the different ranking approaches (i.e., total order ranking 

methods, consensus models and data fusion). 

The full dataset is provided as Supplementary Research Data. 

2.2. In silico modelling approaches for LXR binding 

2.2.1. Molecular modelling studies for LXR binding 

Molecular modelling studies were performed to analyse and predict the LXR binding potential. 

Available 3D crystal structures of LXRβ complexed with structurally distinct ligands were collected 

from the PDB database [11, 12] and analysed in order to characterize the ligand binding domain 

(LBD) of the receptors. Different molecular modelling (MM) approaches were explored and 

combined in order to characterize the ligand binding domain of the receptor and to define the 

essential features leading to LXR binding: 

a) Ensemble docking 
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Protein–ligand docking is a powerful tool to study and provide a proper understanding of protein–

ligand interactions. Docking is typically used in different stages of drug design, to facilitate for 

example the design of potentially active leads. Molecular docking, in practice, has two essential 

requirements: molecular structures of ligands of interest and the X-ray structure of the protein target 

under consideration. To account for protein structural variations we used an algorithm referred to as 

ensemble docking. The algorithm can simultaneously dock a ligand into an ensemble of protein 

structures and automatically select a ligand-protein pair that returned the best score. The PDB code 

of LXR proteins used in the ensemble docking are: 1P8D, 1PQ6, 1PQ9, 3L0E, 4DK7. Default 

settings for flexible docking procedure with the Glide Standard Precision [10,13-14] protocol were 

selected. 

b) e-Pharmacophore 

This is a hybrid method combining ligand- and structure-based methodologies with the aim of 

locating key pharmacophoric features from a docked ligand [15, 16]. The best docking pose of the 

T0901317 obtained with Glide Extra Precision (XP)  [17] protocol was chosen as reference ligand. 

The e-Pharmacophore script, a module of Phase software [18-19], was used on the XP docking 

results of reference compound (see Figure 1) for the pharmacophore generation. Default settings 

and the standard set of six pharmacophore features were used: hydrogen bond acceptor, hydrogen 

bond donor, hydrophobic region, positive ionisable and negative ionisable region, aromatic ring. 

The resulting e-pharmacophore, composed of five sites: three hydrophobic regions and two 

aromatic rings, was used as query for virtual screening of the LXR binders dataset. Screened 

molecules should match at least three sites. Dataset hits were ranked based on the default Fitness 

Score [19]. Fitness score is a linear combination of three terms: the alignment score (RMS deviation 

between the site point positions in the matching conformation and the site point positions in the 

pharmacophore with a penalty for a partial matching), the vector score (average cosine between 

vector features in the matching conformation and the vector features in the reference conformation) 
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and the volume score (ratio of the common volume occupied by the matching conformer and the 

reference conformer, to the total volume, the volume occupied by both).  

c) Fingerprints-based similarity 

Fingerprints (FPs) are high dimensional vectors of bits that encode the presence or absence of a set 

of chemical features in a molecule. FP values depend on the atom typing scheme used, which can 

range from the graph representation (atoms and bonds are equivalent) to E-state atom types (each 

atom is influenced by its neighbouring atoms). FP variation is influenced also by the method used to 

map the graphical substructures (i.e., linear paths, circular growth of the molecular fragments, atom-

pairs, triplets). Similarity or distance matrices computed from fingerprints can be used to screen 

structures by similarity to one or more reference structures. The results are returned as properties 

that contain the similarity to the reference structure ranging from 0 to 1. In the present work 

Molprint2d fingerprints [20] were used. Similarity was measured by a Tanimoto metric. Two 

different reference molecules were selected as templates and the following names are used: FP30 is 

relative to T0901317 and FP145 is relative to the most active molecule (ID 145 of LXR binders 

dataset). 

2.2.2. QSAR model for LXR binding prediction 

QSAR classification models were developed for the prediction of LXR binding potential. The 

dataset used for model development consisted of 97 chemicals selected from the LXR binders 

dataset (n=356 compounds). The dataset included 50 “very active” LXR binders (IC50<20 nM), 

which were assigned to the ACTIVE class, and 47 “low active” LXR binders (IC50>1000 nM), 

which were assigned to the INACTIVE class. This dataset was obtained after an under-sampling, 

based on structural diversity, of the compounds from the two classes. Such a dataset was 

constructed to be balanced between ACTIVE and INACTIVE records, and to identify the structural 

features (encoded by the modelling molecular descriptors) discriminating the very active from the 
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low active compounds. The under-sampling was performed in KNIME using an RDKit node for 

diversity picking (the picking is done using the MaxMin algorithm), based on 1-2D MOSES 

descriptors, and lead to the selection of 50 ACTIVE compounds out of 136.  

To develop a QSAR model we decided to use Partial Least Square – Discriminant Analysis (PLS-

DA). It is one of the most used classification technique in QSAR [59]. Its main advantage in use of 

this model is the possibility to control overfitting by choosing the right number of latent variables 

and, at the same time, to easily interpret the obtained model in terms of outliers and role played by 

the molecular descriptors in classification.  

PLS-DA) classification models were developed and validated using SIMCA [21] based on 

combinations of different MOSES molecular descriptors (i.e., physico-chemical and 1D-2D-3D 

descriptors). Models were internally validated by means of 7-fold full cross-validation, and 

externally validated by means of an a priori 30% splitting of the dataset into training (78 

compounds) and test set (19 compounds). One PLS-DA classification model was finally selected 

based on classification accuracy (optimizing sensitivity), external predictivity, model 

interpretability and reproducibility (Table 1). The model was based on three latent variables derived 

from seven MOSES 2D descriptors (selected based on the parameter Variable Influence on 

Projection, that maximizes Q2
CV), which encode basic electronic properties, hydrophobicity, 

molecular shape and complexity: HDon_O (Number of oxygen atom-based hydrogen bonding 

donors), Polariz (polarizability), NRotBond (Number of rotatable bonds), NAtoms (Number of 

atoms), NStereo (Number of tetrahedral stereo centers), Complexity (Molecular complexity), Rgyr 

(radius of gyration). The molecular descriptors were centered and scalded by the software SIMCA 

before modelling. 

 Two approaches were used to define the applicability domain of the model: i) Leverage approach, 

ii) Similarity approach (based on Euclidean distances). Applicability domain thresholds (ADT) 

were calculated for each approach: 
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• ADT for Leverage = 0.231  

• ADT for Similarity = 16.55  

Compounds with leverage/similarity values greater than the specified thresholds are considered 

outside the applicability domain of the model and their predictions could be not reliable since model 

extrapolations. 

The PLS-DA was also implemented as KNIME workflow (published on KNIME Webportal [8] and 

in SEURAT-1 Tools & Methods Catalogue [61]) to generate binary predictions for LXR binding 

potential, namely “1= ACTIVE” (i.e., LXR binders) and “0= INACTIVE” (i.e., not or weak LXR 

binder) (see Figure 3).   

 No. Overall  
Accuracy 

Sensitivity Specificity False 
Negatives 

Training set 78 86%a (87%b) 93% a (90% b) 79% a (84% b) 3 a (4 b) 
Test set 19 79%a,b 80% a (70% b) 78% a (89% b) 2 a (3 b) 

Table 1. Summary of the selected PLS-DA classification model for LXR binding. a Statistics of the 
original QSAR model developed with SIMCA; b Statistics of the QSAR model implemented in 
KNIME. 

 

 

Figure 3. KNIME workflow LXR binding prediction (PLS-DA) 
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2.2.3. KNIME workflow for nuclear receptor-mediated liver steatosis alerts 

The KNIME workflow (WF) [25, 26, 61] identifying ligands for the LXR receptor was used to 

generate binary predictions for LXR binding potential, namely “1=ACTIVE” (i.e., presence of an 

alert for LXR binding) and “0=INACTIVE” (i.e., no alerts identified). This workflow was 

developed in the COSMOS project and includes a set of rules or structural features and physico-

chemical ranges to identify potential NR ligands [19, 20].  These rules were built based on nuclear 

receptors ligands and relative binding data extracted from ChEMBL_19 [22] and the Protein Data 

Base [11]. The ChEMBL data includes Ki (inhibition constant), Kd (dissociation constant), AC50 

(50% activity in molar units) and EC50 (50% effect concentration in molar units). These 

compounds, when regarded as active (pChEMBL ≥ 5), were described in terms of physico-chemical 

descriptors by means of CDK within KNIME [7] and similarity towards each other to obtain 

potentially important substructures (IDEA consult [23]). The Protein Data Base was searched for 

crystal structures of relevant protein-ligand interactions using PyMOL [24]. 

2.3. Methods for ranking/screening chemicals 

Ranking methods belong to Multi-criteria Decision Making (MCDM), a discipline dealing with 

decisions that involves the choice of a best alternative from several potential candidates in a 

decision, subject to several criteria or attributes [27]. Mathematics applied to decision making 

provides methods to quantify or prioritize different judgements that are typically subjective. 

Ordering (or ranking) is one of the possible ways to analyse data and to get an overview over the 

elements of a system, where the elements are commonly described by several variables. The general 

workflow for ranking is summarized in the scheme illustrated in Figure 4. Initial data are 

transformed to the same domain often [0,1], then ranking methods are applied. There are numbers 

of ranking algorithms that order elements within the dataset. For example, utility and desirability 

are measures from the total ordering. Pareto order is another type of order that introduces a relation 
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of incomparability between elements. In this paper, we consider three different ranking methods: i) 

Total Order Ranking, ii) Consensus modelling, iii) Data fusion.  Below we provide a detailed 

description for these approaches and we will test them to rank chemicals based on potential LXR 

binding. Our input data consist of a combination of predicted values measuring the LXR binding 

possibility. 

 

 

Figure 4. Scheme describing a standard ranking procedure. 

2.3.1. Data normalization 

Data transformation is required prior applying ranking methods. All input variable (criteria) should 

be unified to the same domain. In the case of LXR potential binders, the criteria can be scaled using 

a linear transformation. As the output class is known we can transform data to have an increasing 

order where min corresponds to inactive class and max to active class. We used these two 

normalization methods: 
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• Min-Max normalization [0,1] is a process of taking data and transforming it to a value 

between 0.0 and 1.0. The lowest (min) value is set to 0.0 and the highest (max) value is set 

to 1.0 

Normalized(xi) = xi−min
max−min

, 

where min and max are calculated for a given variable/criteria. 

• Z-score scaling (N[0,1] distribution) is a process of converting data into a number of 

standard deviations that the test score being converted is above or below the mean: 

z =
x − mean

st. dev
 

All ranking methods have been applied to both normalizations. Min-max and z-score are affine 

transformations so they do not change results for consensus models and total order methods, the 

only difference can be noticed for data fusion approaches 

2.3.2 Ranking methods 

2.3.2.1 Total Order Ranking 

Total order ranking (TOR) methods are scalar techniques that can be used to rank objects on the 

basis of more than one criterion. The different criteria values are combined into a global ranking 

index, and objects are ordered sequentially according to the numerical value of the ranking index. 

Since criteria are not always in agreement (i.e., criteria can be conflicting), there is a need to find an 

overall optimum that can deviate from the optima of one or more of the single criteria [28]. In this 

paper, the two methods known as utility and desirability (see below) are used for ranking. These 

methods were successfully implemented in the Decision Analysis by Ranking Techniques (DART) 

software [29] that can be used for ranking chemicals according to their environmental and 

toxicological concern. 
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Utility is defined as an arithmetic mean of a number of criteria (c) taken into account during the 

ranking/screening process:  𝑈𝑈𝑖𝑖 =
∑ 𝑐𝑐𝑖𝑖𝑖𝑖
𝑝𝑝
𝑗𝑗=1

𝑝𝑝
 

W_Utility is defined as a weighted mean of a number of criteria (c) taken into account during the 

ranking/screening process:  𝑈𝑈𝑖𝑖 = ∑ 𝑤𝑤𝑗𝑗𝑐𝑐𝑖𝑖𝑖𝑖
𝑝𝑝
𝑗𝑗=1  

Desirability is a geometric mean of a number of criteria (c) taken into account during the 

ranking/screening process:  𝐷𝐷𝑖𝑖 = �∏ 𝑐𝑐𝑖𝑖𝑖𝑖 ,𝑝𝑝
𝑗𝑗=1

𝑝𝑝  

W_Desirability is a weighted geometric mean of a number of criteria (c) taken into account during 

the ranking/screening process:  𝐷𝐷𝑖𝑖 = 𝑐𝑐𝑖𝑖1
𝑤𝑤1𝑐𝑐𝑖𝑖2

𝑤𝑤2 … 𝑐𝑐𝑖𝑖𝑖𝑖
𝑤𝑤𝑝𝑝 ,  

where ∑ 𝑤𝑤𝑖𝑖 = 1𝑝𝑝
𝑖𝑖=1  and all criteria (c) must be in the same domain. 

The weights can be calculated if the output class is known as follows: 

𝑤𝑤𝑖𝑖 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖

∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖
𝑝𝑝
𝑖𝑖=1

 

for i=1,...,p and where cori is a Pearson correlation coefficient between each criteria and the output 

class. Otherwise a user decides what is the importance of each criterion for a given ranking problem 

and assigns weights manually. 

The total order methods can be applied in a general case for the single endpoint or combination of 

various endpoints to define level of a toxicity concern. In this case each criterion should be 

transformed to the range [0,1] with the same meaning for each variable/criteria. 

We applied the four ranking approaches, namely Utility, Weighted Utility, Desirability and 

Weighted Desirability, to rank compounds according to their LXR binding potential, and results are 

discussed in the next section. 
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2.3.2.2. Consensus modelling 

In order to classify a chemical compound to be a potential LXR binder (active/inactive), binary 

classification models aggregating the results from different modelling approaches were developed. 

This is a novel approach in the context of ranking, most of classifiers used in the literature are used 

for predicting a given outcome and their results are averaged to build a consensus model [30]. In 

this paper we develop yet another classifier that takes the output of other modelling methods as an 

input variable.  Two models are proposed based on the different methodologies reviewed: logistic 

regression and random forest. The logistic regression is a parametric model: a linear model is fitted 

to estimate a quantity which, after transformation by logistic function equals the probability that an 

observation will belong to a particular class. The random forest is an efficient non-linear tool: a 

combination of tree predictors such that each tree is built independently from the others. Notably, 

random forest copes well with variables with non-linear scale.  The ranking score was then defined 

by a value that represents the possibility that a given chemical compound is in the “active” class.  

More detailed description of chosen models is provided below. 

1) Logistic regression is a probabilistic statistical classification model [31] that can be used to 

predict a binary response. The probabilities describing the possible outcomes of a single trial are 

modelled as a linear function of the explanatory (predictor) variables using a logistic function. 

While linear regression uses ordinary least squares to find a best fitting line, and comes up with 

coefficients that predict the change in the dependent variable for one unit change in the independent 

variable, logistic regression estimates the probability of an event occurring. The regression 

coefficients are estimated using maximum likelihood estimation and they represent the change in 

the logit for each unit change in the predictor. The probability of the event occurring (i.e., 

probability for a compound to be in the active class) was taken as a ranking score.  

2) Random Forest (RF) model introduced by Breiman [32] is a collection of tree predictors. Each 

tree is grown according to the following procedure [33]: 
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• the bootstrap phase selects randomly a subset of the training dataset – a local training set for 

growing the tree; the remaining samples in the training dataset form a so-called out-of-bag 

(OOB) set and are used to estimate the RF’s goodness-of-fit.  

•  the growing phase grows the tree by splitting the local training set at each node according to 

the value of one variable from a randomly selected subset of variables (called the best split 

method) using the classification and regression tree (CART) method [34].  

• each tree is grown to the largest extent possible; there is no pruning. 

The bootstrap and growing phases require an input of random quantities. It is assumed that these 

quantities are independent between trees and identically distributed. Consequently, each tree can be 

viewed as sampled independently from the ensemble of all tree predictors for a given training 

dataset. For prediction, an instance is run through each tree in a forest down to a terminal node 

which assigns it a class. Predictions supplied by the trees undergo a voting process: the forest 

returns a class with the maximum number of votes. Draws are resolved through a random selection. 

The percentage of trees voting towards the active class was taken as a ranking score. 

The consensus modelling approaches that are proposed here can be applied in a general case to 

aggregate various models for a single endpoint when the binary output class is given. In this paper, 

we applied these consensus models for ranking chemicals based on their LXR binding potential. 

2.3.2.3. Data fusion 

Data fusion methods [35] were employed as an additional approach for ranking chemicals. The 

scores obtained from the three independent MM methods (docking, e-pharmacophore and 

fingerprint-based similarity as described in section 2.2.1) cannot be directly added or averaged to 

obtain a single score. In fact, the docking score is provided in units of kilocalories per mole (with 

more negative values representing higher LXR binding affinity), the fingerprint scores lie on the 

range [0, 1] and e-pharmacophore fitness is always > 0 with the greatest values  representing higher 
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LXR binding affinity. Furthermore, simply scaling the scores from the methods does not properly 

account for the variability and dynamic range of the different methods. Here we converted the 

scores for each ligand to a standard score (i.e., Z-score) as defined in Eq 1. Z-scores are particularly 

useful because they indicate by how many standard deviations a value is above or below the mean 

of a distribution. The Z-score is a dimensionless quantity derived by subtracting the population 

mean from an individual raw score and then dividing the difference by the population standard 

deviation. 

Zmi = Smi−μm
σm

                                                                                       (1) 

In Eq 1, Zmi is the Z-score obtained for ligand i from method m. Smi is the score of the ith ligand in 

the database for method m, μm is the mean score of all the compounds (actives plus decoys) in the 

database, and σ is the standard deviation of the distribution of the scores obtained from the method 

m. The sign on the docking scores was inverted to maintain consistency with fingerprints and 

fitness, where a more positive score is better.  

Importantly, the input data should be normalized before the data fusion methods could be applied. 

The normalized variables represent the ranking scores rsi that can be further combined to give a 

final score. In chemistry data fusion is often used to combine various database searches according to 

chemical compound similarities. In this paper we consider the following methods: 

• Z2: average Z-scores for two (best) methods 

• Z3: average Z-scores for three (best) methods 

• SUM RANK = ∑ rsi
p
i=1   where p is a number of criteria. 

• MAX RANK max �rs1,rs2,…,rsp� where p is a number of criteria. 

The scores obtained from different data fusion methods were sorted to rank the compounds and to 

calculate the enrichment factors (EF). 
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2.3.Validation methods 

To validate and compare different in silico modelling approaches (i.e., molecular modelling 

approaches, QSAR model and alerts), the enrichment factor (EF) was used as reference parameter. 

The enrichment factor is a key parameter used in molecular modelling studies to evaluate the 

quality of the docking and scoring compared to a random selection [35]. The enrichment factor (EF) 

is defined as: 

𝐸𝐸𝐸𝐸 = 𝐴𝐴𝑠𝑠|𝑇𝑇|
|𝑆𝑆|𝐴𝐴𝑇𝑇

 ,                                                                      (2) 

where As is the number of active compounds in a sampled set, T is the total number of all 

chemicals, S is the number of chemicals in sampled set and AT is the total number of active 

compounds. 

In general, the enrichment factor is compared to random screening; the maximum enrichment is 

determined by the total number of active compounds and the total number of molecules in the 

database. In this study, there are 299 “ACTIVE” compounds (including LXR binders classified as 

“moderate active”, “active” and “very active”) among a total of 1356 molecules (including 1000 

decoys, 57 “low active” LXR binders and 299 actives). Thus, the achievable maximum EF is 

1356/299 = 4.5. If only 5% of active compounds were found among the top ranked 2% of the whole 

dataset, then the enrichment factor would be equal to 2.5, which corresponds to a random selection 

at the 2% of the dataset. The enrichment factor is calculated considering the top 20% chemicals. In 

this paper, we reported EF at 1, 2, 5, 10 and 20%. 

To compare different modelling methods, another metric was employed: the area under 

Accumulation Curve (AC) analysis for EF curves [36]. The AC curve represents a function that 

plots the true positive rate as a function of the fraction of the data classified as positive at a given 

threshold of screened compounds. The area under the curve (AUC) represents a quantification of 
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the curve and facilitates an easier comparison of results. The received value is in the range [0.0, 

1.0], where 0.5 indicates a random performance. 

3. Results 

In the present paper, a case-study exemplifying the use of different ranking approaches (i.e. total 

order ranking, consensus modelling and data fusion) that combines results from different sources is 

presented to rank chemicals based on their potential binding to Liver X Receptor (LXR). The 

application of these methodologies took into account the following issues: i) different type of input 

data, which depended on the output of the different in silico models used to predict LXR binding 

(i.e., continuous values from MM approaches, and categorical values from the QSAR classification 

model as well as the KNIME WF for NR-mediated liver steatosis alerts); ii) different normalization 

techniques, namely Min-max and z-score normalization.  

Different in silico modelling approaches developed for LXR binding have been employed, 

compared and integrated to identify the best performing procedure for prioritizing chemicals 

according to their LXR binding potential. Combinations of models for LXR binding were 

considered in two use cases for their integration by ranking approaches. A summary is provided in 

Table 2. 

3.1. Use case 1 - ranking based on Molecular Modelling  methods 

The original LXR binders dataset (n=1356) was cleaned due to the presence of chemicals having 

missing values for some of the employed MM approaches leading to a final dataset of 1104 

chemicals, with 286 labelled “ACTIVES” and 818 “INACTIVES”.  

Use cases In silico models Input data type Ranking methods 
1) Ranking based only 
on MM methods, using 
the enrichment factor 
(EF) as reference 
parameter to assess their 
ability to identify LXR 

- Ensemble Docking (ED) 
- e-Pharmacophore (eP) 
- Fingerprint similarity-30 

(FP-30) 
- Fingerprint similarity-145 

(FP-145) 

Continuous values Consensus modeling 
- RF 
- LogReg 

Total Order Ranking 
- Utility 
- Desirability 
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binders. - W_Utility 
- W_Desirability 

Data fusion 
- Z2 
- Z3 
- MAXRANK 
- SUMRANK 

2) Ranking based on 
different in silico 
approaches, using the 
enrichment factor (EF) 
as reference parameter 
to assess their ability to 
identify LXR binders. 

- Ensemble Docking (ED) 
- PLS-DA model 
- WF for NR-mediated liver 

steatosis alerts 
 

Categorical values Consensus modeling 
- RF 
- LogReg 

Total Order Ranking 
- Utility 
- Desirability 
- W_Utility 
- W_Desirability 

Data fusion 
- Z2 
- Z3 
- MAXRANK 
- SUMRANK 

Table 2 Use cases for applying ranking approaches based on LXR binding potential. 

As a preliminary step, a comparison among the four MM models was performed based on i) the 

enrichment factor (Figure 5) and ii) the correlation (by means of Pearson correlation coefficient) 

between the values obtained from different MM approaches and the ACTIVE/INACTIVE class. For 

the calculation of the correlation, the Ensemble Docking scores were multiplied by minus one (-1) 

to have the same increasing order of scores as the other approaches. The following Pearson 

correlation coefficients were obtained: Ensemble Docking (“docking_score”), r = 0.71; e-

Pharmacophore (“Fitness”), r = 0.18; Fingerprint similarity-30 (“FPsimilarity30”), r = 0.27; 

Fingerprint similarity-145 (“FPsimilarity145”), r = 0.55. The Ensemble Docking, followed by 

FPsimilarity145, resulted to be the best performing approach based on both EF and correlation 

analysis.  
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Figure 5. EF curves for different MM models.  

3.1.1.  Development of the Consensus models: LogReg and RF 

As a first step, the two consensus models based on different approaches, i.e., Random Forest (RF) 

and Logistic Regression (LogReg), were developed using as input variables the results generated 

from the four MM models and the dataset of 1104 chemicals to train the two models. The 10-fold 

cross-validation was then used to test the robustness of the consensus models and the obtained 

statistics are reported in Table 4.  

Model TP TN FP FN ACC ERR 

LogReg 249 750 68 37 0.90 0.10 

RF 243 774 44 43 0.92 0.08 

Table 4 Statistics of logistic regression (LogReg) and Random Forest (RF). 

Although the Random Forest shows a higher accuracy than the LogReg model, it is characterized by 

a higher number of false negatives (i.e. active compounds classified as inactive). This is related to 

the fact that the RF model is affected more by the unbalanced dataset used to train the models, 

where the major class is the inactive one. 
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The RF model was developed in R using random forest model from the caret package [60].  To 

build a model we used 10 trees as the input data has the small number of variables. Similarly the 

LogReg model was build using generalized linear model logit from the caret package.  The 

outcomes of these models were used to rank chemicals for the LXR binding potential. 

3.1.2.  Comparing ranking approaches based on MM methods 

As illustrated in Table 2, ten ranking methods based on three different ranking approaches 

(consensus modeling, total ordering and data fusion) were applied. The weight for W_Utility and 

W_Desirability were calculated from the Pearson correlation values reported before for the four 

MM methods and according to the equations reported in Section 2.3.1. The scores for LogReg 

represent the probability of being in the active class; the scores for random forest represent the 

percentage of trees voting towards the active class. 

The enrichment factor (EF) was used as reference parameter to assess the ability of the models to 

identify LXR binders. Ensemble docking, which produced the best score for ranking among all MM 

approaches, was used as reference for the assessment and comparison of different ranking methods. 

Because the normalizations used in our case are affine transformations of the input variables we 

developed separate models for each normalization type using the entire dataset for model generation 

as described below. 

3.1.2.1. Min-max normalization 

All criteria were normalized by min-max, and then the ten ranking methods were applied. The 

corresponding enrichment factors curves are presented in Figure 6a, where docking, random guess 

and the ideal model are also shown. The EF for random guess is equal to 1 so any method that gives 

EF > 1 is considered to be better than random.  Table 5 presents the EFs calculated for a sample of 

max 20% top elements in the ranking. 
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The AUC analysis was used to compare various ranking methods (Table 6). Three approaches are 

characterized by AUC values (based on EF curves) greater than AUC for Docking, i.e. the two 

Consensus models (i.e., Random Forest and Logistic Regression) and the Weighted Utility. Among 

these three methods, in this case the Random Forest resulted as the best performing approach.  

3.1.1.1. Z-score normalization 

Z-score normalization was applied to the ten ranking methods. Due to negative values of z-scores, 

W_Utility and W_Desirability were not calculated. The enrichment factors were calculated for the 

remaining eight methods and respective curves are presented on Figure 6b.  Table 5 presents the 

EFs calculated for a sample of max 20% top elements in the ranking. 

As performed for the min-max normalization, the AUC analysis was used to compare various 

ranking methods (Table 6). In this case, two approaches are characterized by AUC values (based on 

EF curves) greater than the corresponding AUC for Docking, namely Random Forest and Logistic 

Regression; the Random Forest proved to be the best performing ranking approach. 

Ranking Min-Max Z-Score 

 1% 2% 5% 10% 20% 1% 2% 5% 10% 20% 
Docking  3.86  3.86  3.72  3.69  3.34  3.86 3.86 3.72 3.69 3.34 

RF_scores  3.66  3.69  3.65  3.76  3.49  3.25 3.34 3.65 3.72 3.51 

LogReg_scores  3.86  3.86  3.86  3.69  3.44  3.86 3.86 3.86 3.69 3.44 

Utility  3.16  3.15  2.94  2.94  3.13  2.46 2.99 2.6 2.81 3.15 
Desirability  3.16  3.34  2.53  2.74  3.04  3.86 3.86 3.58 3.43 3.23 

W_Utility  3.86  3.86  3.86  3.58  3.30  - - - - - 

W_Desirability  3.86  3.86  3.44  3.51  3.13  - - - - - 

z2  3.86  3.67  3.30  3.06  3.07  2.46 2.99 2.73 2.81 3.2 
z3  3.15  3.16  2.95  2.95  3.16  2.46 3.16 2.66 2.87 3.18 
maxRank  3.86  3.86  3.43  3.36  3.18  3.15 3.16 2.62 2.92 3.18 

sumRank  3.16  3.15  2.94  2.94  3.13  2.46 2.99 2.6 2.81 3.15 

Table 5. EFs calculated for a sample of 1%, 2%, 5%, 10% and 20% top elements in the ranking for 
min-max and z-score normalizations. 
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Normalization Docking 

Consensus 

modeling 
Total Order Ranking Data Fusion 

RF LogReg Utility Des W_Ut W_Des z2 z3 maxRank sumRank 

min-max 0.80 0.87 0.84 0.70 0.62 0.81 0.68 0.63 0.70 0.73 0.70 

z-score 0.80 0.87 0.84 0.69 -- 0.79 -- 0.71 0.71 0.68 0.69 

Table 6. AUC values for Docking and different ranking methods based on min-max and z-score 
normalizations. 

(a) (b) 

Figure 6. EF curves for different ranking methods and Docking (as reference). a) min-max 
normalization; b) z-score normalization 

The results show that consensus models perform better than the other ranking methods, especially 

data fusion. 

3.2. Use case 2 - ranking based on different in silico approaches 

The original LXR binders dataset (n=1356) was cleaned due to the presence of chemicals having 

missing values in the results from the considered in silico approaches, i.e. Ensemble Docking (best 

performing approach among MM methods), the PLS-DA classification QSAR and the NR-mediated 

liver steatosis alerts (only the LXR pathway was considered). Compounds for which the PLS-DA 

classification QSAR gave unreliable prediction were also removed. This was obtained using the 
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applicability domain thresholds as described in  Section 2.2.2.  The final dataset consists of 870 

chemicals, including 286 “ACTIVES” and 584  “INACTIVES”.  

Similarly to the Use case 1,  a comparison among the different in silico approaches for LXR binding 

was performed based on i) the enrichment factor (Figure 7) and ii) the correlation between the 

values obtained from different approaches and the ACTIVE/INACTIVE class. For the calculation 

of the correlation, the Ensemble Docking scores were multiplied by (-1) to have the same increasing 

order of scores as the other approaches. The following Pearson correlation coefficients were 

obtained: Ensemble Docking (“docking_score”), r = 0.73; NR-mediated liver steatosis alerts 

(“NRass_WF_LXR_alerts”), r = 0.40; PLS-DA classification QSAR (“PLS_class”), r = 0.23. 

Both EF and Pearson correlation showed that Ensemble Docking (followed by LXR alerts) is the 

best approach for ranking chemicals based on their potential of being active or inactive for LXR 

binding. Considering the endpoint type, i.e. binding affinity, it was expected that molecular 

modelling could provide better results than the other two modelling approaches, which are based on 

2D information. 

 

Figure 7.  EF curves for different in silico models: 1) Ensemble Docking (“docking_score”), 2) 
NR-mediated liver steatosis alerts (“NRass_WF_LXR_Alert”), 3) PLS-DA classification QSAR 
(“PLS_class”). 
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3.2.1. Development of the consensus models: LogReg and RF 

Two consensus models based on different approaches, i.e., Random Forest (RF) and Logistic 

Regression (LogReg), were developed using as input variables the results generated from the three 

different in silico models and the dataset of 870 chemicals was used to train the two models. The 

10-fold cross-validation was then used to test the robustness of the consensus models and the 

obtained statistics are reported in Table 7.  In this case the random forest model deals better with 

false negatives than the logistic regression and is characterized by comparable overall accuracy. 

Model TP TN FP FN ACC ERR 

LogReg 229 537 47 57 0.88 0.12 

RF 237 516 68 49 0.87 0.13 

Table 7. Statistics of logistic regression (LogReg) and Random Forest (RF). 

Similarly to the scenario 1, the RF and LogReg models was developed in R using the caret package.  

Ten trees were used for the RF model development. The outcomes of these models were used to 

rank chemicals for the LXR binding potential. 

3.2.2. Comparing ranking approaches based on different in silico methods 

As described above, ten ranking methods, based on three different ranking approaches (consensus, 

total ordering and data fusion), were applied (see Table 2). 

The enrichment factor (EF) was used as reference parameter to assess their ability to identify LXR 

binders and Docking was used as reference for the assessment and comparison of different ranking 

methods. Separate models for each normalization type, namely min-max and z-score normalization, 

were developed using the entire dataset for model generation. Based on min-max and z-score 

normalizations, only Logistic Regression model performed better than docking. Both consensus 
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models perform better than the other ranking approaches (Figure 8 and Table 8). Table 9 presents 

the EFs calculated for a sample of max 20% top elements in the ranking. 

Normalization Docking 

Consensus 

modeling 
Total Order Ranking Data Fusion 

RF LogReg Utility Des W_Ut W_Des z2 z3 maxRank sumRank 

min-max 0.75 0.71 0.77 0.63 0.63 0.63 0.63 0.36 0.63 0.50 0.63 

z-score 0.75 0.71 0.77 0.63 -- 0.73 -- 0.68 0.63 0.63 0.63 

Table 8. AUC values for Docking and different ranking methods based on min-max and z-score 
normalizations. 

 

 

(a) 

 

(b) 

Figure 8. EF curves for different ranking methods and Docking (as reference). a) min-max 
normalization; b) z-score normalization 
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Ranking 
Min-Max 

Z-Score 

 1% 2% 5% 10% 20% 1% 2% 5% 10% 20% 
Docking  3.04 3.04 2.97 2.9 2.76 3.04 3.04 2.97 2.9 2.76 

RF_scores  2.69 2.52 2.55 2.59 2.67 2.69 2.69 2.69 2.62 2.66 

LogReg_scores  3.04 3.04 2.97 2.87 2.78 3.04 3.04 2.97 2.87 2.78 
Utility  3.04 3.04 2.97 2.9 2.71 3.04 3.04 2.97 2.9 2.71 

Desirability  3.04 3.04 2.97 2.9 2.71 3.04 3.04 2.97 2.9 2.8 

W_Utility  3.04 3.04 2.97 2.9 2.71 - - - - - 

W_Desirability  3.04 3.04 2.97 2.9 2.71 - - - - - 
z2  1.59 1.59 1.59 1.59 1.59 3.04 3.04 2.97 2.9 2.8 

z3  3.04 3.04 2.97 2.9 2.71 3.04 3.04 2.97 2.9 2.71 

maxRank  1.18 1.18 1.18 1.18 1.18 3.04 3.04 2.97 2.9 2.66 

sumRank  3.04 3.04 2.97 2.9 2.71 3.04 3.04 2.97 2.9 2.71 

Table 9. EFs calculated for a sample of 1%, 2%, 5%, 10% and 20% top elements in the ranking for 
min-max and z-score normalizations.  

3.3. KNIME Workflow for ranking 

In order to allow for a wider applicability, reproducibility and transparency of the presented ranking 

methodology, a KNIME workflow was developed within the COSMOS project implementing some 

of the methods for ranking chemicals based on multiple in silico predictions of LXR binding 

potency. The following four methods were implemented in the workflow as R snippets: utility and 

desirability, belonging to the Total Order Ranking methods, and sumRank and maxRank, belonging 

to the data fusion methods. Based on the input data type, two workflows were developed: i) one 

workflow to be applied with already normalized input data (numerical values, i.e. predictions, in the 

range <0,1>, representing the probability of chemicals to be potential LXR binders); ii) the second 

workflow including a preliminary normalization process, to be applied with input data/predictions 

converted in the range <min, max>, where “min” corresponds to the lowest LXR binding 

probability and “max” to the highest LXR binding probability; these values are further normalized 

using the min-max normalization method to values in the range <0,1>.  In both workflows, the 

ranks are collected in one table and the Sorter node is used to sort chemicals based on the selected 
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ranking method. Top-ranked chemicals are those of major concern, i.e. higher LXR binding 

potential based on different predictions and estimation methodologies. 

The workflow is freely available through the COSMOS KNIME WebPortal [8] while related 

documentation can be found within the COSMOS Space [37]. 

4. Conclusions 

The present paper illustrates one of the outcomes of the COSMOS project related to the 

development of in silico tools to support long-term and target organ toxicity prediction. The main 

aim was to demonstrate the power of integrated modelling framework for chemical prioritization. 

Specifically, some of the case studies reported in the paper exemplify the use of ranking approaches 

for screening and ranking (i.e., sorting) of chemicals based on their potential to bind to Liver X 

Receptor (LXR), as this has been identified among the molecular initiating events leading to liver 

steatosis. The novelty of this work is twofold: the integration of molecular modelling methods with 

(Q)SAR approaches for predicting binding potential, and the application of consensus model for 

ranking chemicals. The case studies were based on a dataset of 1356 molecules, including a set of 

356 LXR binders extracted from the literature (mainly drugs or drug candidates with measured IC50 

LXRβ binding affinity data) and 1000 Decoy molecules selected from Schrödinger 1K Drug-Like 

Ligand Decoys Set (molecules presumed to be inactive against LXR). We studied different 

combinations of in silico models for the prediction of LXR binding potential, which leads to the 

following conclusions: 

• Among different in silico approaches we tested (e.g., docking, fingerprints, pharmacophore, 

QSAR and structural alerts), Ensemble Docking was the best-performing approach for the 

identification of potential LXR binders. This result can be explained by the structure of the 

LXR receptor, for which the docking performs exceptionally well, and by the endpoint type, 

i.e. binding affinity, where 3D information encoded by docking allows for a better 
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prediction performance than the other employed modelling approaches (QSAR and 

structural alerts), which are based only on 2D information.   

• Normalization approaches, either based on min-max or z-score methods, did not 

significantly affect the performance of the ranking approaches in the 1–20% range. 

• Among the ranking methods tested in the use case 1 (MM approaches), the two consensus 

modelling approaches, namely Random Forest and Logistic Regression showed better 

results than the use of docking alone to rank chemicals based on their LXR binding 

potential. 

• Among the ranking methods tested in the use case 2 (in silico approaches), only Logistic 

Regression showed better results than the use of docking as a single measure to rank 

chemicals based on their LXR binding potential. 

• Both use cases proved that combined methods for screening chemicals give better evidence 

than using a single approach. 

• Both consensus models give better results than the other ranking approaches. 

• The implementation of ranking models as KNIME workflows increased the transparency 

and allowed for further applicability of the developed prioritization strategies.  

The application of molecular modeling approaches, which have been developed and optimized for 

drug discovery, in the context of toxicology, e.g. for ranking purposes, is promising, especially 

when dealing with endpoints involving 3D interactions of ligands (e.g., exogenous chemicals) 

toward specific targets (e.g., receptors), as in the presented case study of LXR binding. However, 

their practical implementation presents several issues, especially concerning the assessment of 

model predictivity and applicability domain.  Common metrics usually applied for (Q)SARs to 

assess prediction reliability and applicability domain are not directly applicable to molecular 

modelling approaches.  In the presented case studies the approaches were validated by EF using the 

top 1–20% range, thus focusing only on the potentially most active compounds.  Calculation of the 
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applicability domain was handled using a set of decoy molecules with structural and physico-

chemical properties similar to LXR binders. Finally, the superior performance of the MM 

approaches was found to be at the expense of a higher complexity than traditional (Q)SAR 

approaches.  

Using ranking in chemical screening allows for identification of chemicals that can be potentially 

dangerous or having given properties. If the true outcome is unknown for these selected chemicals, 

further experimental testing should be conducted. In the present study, chemicals are ranked based 

on their potency to bind to the LXR receptor. It was not possible to identify a direct relationship 

between LXR binding (in terms of IC50 data) and liver toxicity due to the absence of liver toxicity 

data for the studied compounds. Thus, it is not possible to conclude that top-ranked compounds are 

the most toxic. However, since LXR binding has been recognized as a molecular initiating event 

(MIE) leading to liver steatosis, we could conclude that the top-ranked compounds, which exhibit 

higher LXR binding potency (lowest IC50 values), could be those of higher concern for liver 

toxicity, thus focusing further investigation on these prioritized compounds (e.g., experimental 

testing). 

In this paper we demonstrated the application and power of statistical and non-statistical modeling 

techniques in the context of chemical screening. We also proposed a framework for integration of 

various models for the same endpoint.  The results show that consensus models outperform other 

standard ranking approaches and can be successfully used for chemical prioritization. 

The use of ranking methodologies, which in the presented case studies was limited to the integration 

of different models predicting LXR binding potential, can be further extended to combine data 

(predicted as well as experimental) across multiple endpoints. Other case studies developed within 

the COSMOS project (not reported in the present paper) were based on the integration of results on 

LXR binding potential and liver toxicity potential (based on in silico predictions generated by 

different models). In these additional case studies, ranking methods allowed for the prioritization of 
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compounds of major concern for liver toxicity possibly acting through a specific MoA (e.g., from 

LXR binding to liver steatosis). 

Overall, the procedure presented here, which makes use of in silico modelling approaches and 

chemometric tools, is part of an integrated strategy which combines multiple methodologies 

alternative to in vivo animal testing (e.g., in silico, in vitro, mechanistic information) to support 

repeated dose and target organ toxicity prediction in the MoA/AOP framework. 
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APPENDIX A - THE LXR DATASET 
 

Among the reviewed literature, we identified 21 key papers reporting experimental data for LXR 

binding affinity (affinity toward both α and β isoforms of the receptor). These papers often included 

additional data obtained from a variety of functional biological assays which measured LXR 

agonism and/or antagonism, as well as molecular responses induced upon the activation of LXR, 

such as the induction of LXR target genes (e.g., SREBP1c) and cellular triglyceride (TG) 

accumulation. A list of the selected papers is provided in Table A.1. 

Source dataset Dataset Endpoint * 

Farnegardh et al., 
200344 

TO-901317 and GW 3965  LXRα/β binding affinity 

Hoerer et al., 200342 TO-901317 LXRβ binding affinity 

Svensson et al., 
200338 

TO-901317 LXRα binding affinity 

Liu et al., 200545 podocarpid acid analogs 
(n=25) 

 

LXRα/β binding affinity 

LXRα/β agonist activity (Gal4 TA) 

Szewczyk et al., 
200646 

heterocyclic LXR agonists 
(n=29) 

 

LXRα/β binding affinity 

LXRα/β agonist activity (βLac TA) 

PPARα/β/γ binding affinity 

Hu et al., 200647 phenyl acetic acid substituted 
quinolones (n=12) 

LXRα/β binding affinity 

 

Hu et al., 200748 phenyl acetic acid substituted 
quinolones (n=27) 

LXRα/β binding affinity 

 

Wrobel et al., 200849 substituted 2-benzyl-3-aryl-7-
trifluoromethylindazoles 
(n=17) 

 

LXRα/β binding affinity 

LXRα/β agonist activity (Gal4 TA, 
ABCA1 and SREBP1c expression) 
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Source dataset Dataset Endpoint * 

Chao et al., 200839 N-Phenyl Tertiary Amines 
(n=21) 

LXRα/β binding affinity 

TG accumulation 

Hu et al., 200850 Carboxylic acid based 
quinolines (n=22) 

LXRα/β binding affinity 

 

Bernotas et al., 
200951 

Biarylether amide quinolines 
(n=17) 

LXRα/β binding affinity 

LXRα/β agonist activity (Gal4 TA, 
ABCA1 expression) 

Hu et al., 200952 cinnolines/quinolines (n=27) LXRα/β binding affinity 

 

Fradera et al. 201040 GW 3965 and 
SureCN2898933 

LXRα/β binding affinity 

Bernotas et al., 
201041 

4-(3-Aryloxyaryl)quinoline 
sulfones (n=23) 

LXRα/β binding affinity 

LXRα/β agonist activity (Gal4 TA, 
ABCA1 expression) 

Travins et al 201053 1-(3-Aryloxyaryl) 
benzimidazole sulfones 
(n=31) 

LXRα/β binding affinity 

LXRα/β agonist activity (ABCA1 
expression) 

TG accumulation 

Ullrich et al 201054 series of 4-(3-
biaryl)quinolines with sulfone 
substituents on the terminal 
aryl ring (n=18) 

LXRα/β binding affinity 

LXRα/β agonist activity (Gal4 TA, 
ABCA1 and SREBP1c expression) 

TG accumulation 

Singhaus et al. 
201055 

3-(3-
Aryloxyaryl)imidazo[1,2-
a]pyridine sulfones (n=32) 

LXRα/β binding affinity 

LXRα/β agonist activity (Gal4 TA) 

Hu et al., 201056 phenyl sulfone substituted 
quinoxaline (n=15) 

LXRα/β binding affinity 

LXRα/β agonist activity (Gal4 TA, 
ABCA1 expression) 

TG accumulation 
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Source dataset Dataset Endpoint * 

Zuercher et al., 
201043 

tertiary sulfonamides (n=14) LXRβ binding affinity 

LXRα/β agonist activity (Gal4 TA) 

Jiao et al., 201257 benzenesulfonamides (n=52) LXRβ binding affinity 

LXRα/β agonist activity (Gal4 TA) 

Kopecky et al., 
201258 

pyrrole derivatives (n=9) LXRα/β binding affinity 

Table A.1. List of selected literature sources reporting experimental data for LXR binding affinity 
and activation. 

The dataset provided as a supplementary research data consists of 13 columns containing the 

following information: ID (internal), SMILES, pIC50 LXRbeta BA (collected from literature), 

Activity_classification (based on IC50 LXRbeta), status (active/decoy), 7 columns containing 

results from molecular modelling described in Table A.2 and a source. 

 
Scoring function Approach Software Outcome 

docking_score Molecular Docking Glide - 
Schrödinger 

 

Fitness Pharmacophore Matching Phase - 
Schrödinger 

 

FPsimilarity30 Tanimoto similarity using binary 
fingerprints  

(Molprint2d) using as reference cmpd 
30 of LXR dataset 

Canvas - 
Schrödinger 

 

FPsimilarity145 Tanimoto similarity using binary 
fingerprints  

(Molprint2d) using as reference cmpd 
145 of LXR dataset 

Canvas - 
Schrödinger 

 

NRass_WF_LXR_Alert Structural Alerts for LXR binding by 
applying the  

KNIME WF: 
NRassHepatSteat_03092014_FS 

KNIME 1= presence LXR 
alert. 0= no LXR 
alerts 
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PLS_class PLS-DA QSAR based on MOSES 
descriptors (HDon_O, 
Polariz,NRotBond, NAtoms, NStereo, 
Complexity, Rgyr) 

KNIME 1= active. 
0=inactive 

PLS_AD Applicability Domain of PLS QSAR 
model based  

on Similarity 

KNIME reliable (into AD); 
unreliable (out 
AD) 

Table A.1. List of columns in LXR dataset. 
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