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ABSTRACT 

Exercise places a unique set of physiological demands on the airway tract. Historically, most 

work in this area has focused on the lower airway response, however it is now becoming 

increasingly apparent that the structural and functional behaviour of the upper airway and 

large central airways is equally important. Dysfunction in these sections of the airway tract 

can act to either hinder or modulate the exercise ventilatory response and as such lead to an 

increased work of breathing and the development of troublesome respiratory symptoms. This 

article provides an overview of the way in which the entire airway tract is challenged by the 

heightened ventilatory state mandated by physical activity, highlighting recent developments 

in our understanding of the physiology of laryngeal, large central and lower airway function 

during exercise.  
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INTRODUCTION 

Exercise places a unique set of physiological demands on the respiratory system. Even low 

levels of physical activity mandate an immediate rise in minute ventilation (VE) and vigorous 

exertion is recognised to place significant physical, thermal and chemical stress on the 

structures of the airway tract. Indeed, it has long been recognised that high-intensity exercise, 

particularly when performed in certain environments (e.g. cold dry air), can promote the 

development of airway hyper-responsiveness, manifest as exercise-induced 

bronchoconstriction (EIB) (1, 2). 

Over the past decade it has also become increasingly evident that physical exertion also places 

specific demands on other components of the airway tract, notably the upper airway (i.e. 

laryngeal region) (3) and large central airways (i.e. trachea and main bronchi (4). As peak 

airway resistance is typically below the 5th airway generation, the upper sections of the airway 

tract have historically been most often viewed as a relatively passive ‘conduit’, acting simply 

to facilitate the bulk-flow of air for distal gas exchange. It is now apparent however that the 

structural and functional behaviour of these components of the airway tract can act to either 

hinder or modulate the exercise ventilatory response and thus result in the development of 

troublesome respiratory symptoms (5). Accordingly, studies have recently described a high 

prevalence of excessive laryngeal closure during exercise (6); a condition termed exercise-

induced laryngeal obstruction (EILO), that can be viewed as being ‘maladaptive’, by impairing 

airflow and increasing the work of breathing (7). 

There has also been an improved appreciation of the role of the large or central airway 

response to exercise. An exaggerated pattern of large central airway collapse, termed 

excessive dynamic airway collapse (EDAC) appears to be a prevalent co-morbidity in chronic 

obstructive pulmonary disease (COPD) (6) and severe asthma, yet may also be prevalent in 
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young, otherwise healthy, athletic individuals with exertional breathlessness (8). This problem 

is not reliably identified with static physiological measures (9) and yet intervention is 

important because strategies such as the application of positive pressure ventilation and 

pursed lip breathing have been shown to enhance exercise capacity in some individuals (10, 

11). 

This review provides a clinical and physiological overview of the way in which the airway tract 

responds to exercise. The review is divided by anatomical sections of the airway; namely the 

upper (i.e. covering laryngeal closure), large airway (i.e. covering tracheal and large central 

bronchi physiology) and lower (i.e. pertaining to bronchoconstriction) (Figure 1), but with the 

appreciation that the ‘airway response’ must be viewed as the integrated outcome of the 

entire respiratory system. 

UPPER AIRWAY RESPONSE  

Structure and function 

Many of the established physiological models of breathing consider the upper airway and 

larynx to represent a relatively fixed or static component of the conductive airways. As such, 

they fail to address the complexity and impact of the dynamic functional properties of the 

larynx. Although vocalisation and airway protection are considered the main functions of this 

multi-purpose organ, its valve-type structure represents a considerable flow-limiting point in 

the airway tract. In healthy individuals, the glottic opening has a smaller cross-sectional area 

than both the hypopharynx and trachea (Figure 2) (12). Thus, in situations of heightened VE 

the larynx effectively becomes an airflow ‘choke-point’, increasingly exposed to the Venturi 

effect. As airway resistance is proportional to airway radius to the fourth power (law of 

Poiseuille) even small decreases in airway diameter may impact significantly on airway 
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resistance. The larynx normally facilitates airflow by abduction of the vocal folds, in order to 

increase the cross-sectional area of the glottic inlet (13). 

Recent work however has revealed that a significant proportion of young individuals (up to 

7% in some series) may be susceptible to inappropriate closure of the larynx during exercise - 

detected via continuous laryngoscopy during exercise (CLE) (Figure 3) (14, 15). This has led to 

the identification of several common conditions, collectively termed EILO, whereby closure of 

the laryngeal inlet impacts breathing during strenuous exertion, whilst appearing and 

behaving normally at rest (16). In athletes, closure is most often observed at the supraglottic 

level (i.e. collapse of the arytenoid region) and less frequently at the glottic level (i.e. closure 

at the level of the vocal folds) (17). It is currently not clear why this condition arises or the 

underlying pathophysiological mechanisms, but it is likely that an interplay exists between 

several different mechanisms, including a potential structural inadequacy of laryngeal 

structures in young individuals (4).  

Physiological impact of upper airway / laryngeal dysfunction during exercise  

The development of EILO is closely related to exercise intensity; the degree of obstruction 

typically being maximally evident at peak exercise intensity (18). Individuals with laryngeal 

obstruction experience breathlessness and audible breathing sounds during the inspiratory 

phase of the breathing cycle (i.e. stridor).  

The increased inspiratory resistance that develops during episodes of laryngeal closure leads 

to an increase in work of breathing and heightened neural respiratory drive (7); this coincides 

with breathing pattern changes of increased tidal volumes (VT) and a slight decrease in 

breathing frequency, except at peak exercise. In a recent study by Walsted et al. (7) these 

changes in ventilatory pattern were evident in those with subsequent EILO, compared with 

matched healthy controls. This breathing pattern appeared to precede any visible laryngeal 
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obstruction, during an incremental exercise test. This has been confirmed in a recent study in 

young individuals with EILO and healthy controls, examining ventilatory patterns in EILO using 

optoelectric plethysmography (19, 20). The study found increased VE, inspiratory duty cycle 

and end-expiratory lung volumes, but no difference in VT. This also correlates with 

experimental data (i.e. increased oxygen uptake, reduced breathing frequency and 

enlargement of tidal volume to maintain VE) from artificially induced fixed airway obstruction 

when applied to healthy individuals during exercise (21). In the study by Walsted et al. there 

was no differences in perceived dyspnoea intensity between patients and control subjects, 

despite increased neural respiratory drive and this may relate to perceptive adaptation in 

individuals with EILO (7). Whilst speculative, it is hypothesised that the altered ventilatory 

pattern (i.e. increased VE and VT and decreased breathing frequency) might be an adaptive 

response to maintain ventilation, or a consequence of a maladaptive metabolic response to 

modulate carbon dioxide clearance particularly during heavy exercise due to the onset of 

metabolic acidosis. Certainly, further research is required in this area to further delineate the 

physiological interactions between the larynx, the diaphragm and to better understand 

dyspnoea.  

The consequences of these physiological adaptations on athletic performance have not been 

systematically studied but several potentially limiting factors may apply including the impact 

of an increased work of breathing relating to development of dyspnoea and perception of 

effort in a competitive sporting environment.  

LARGE AIRWAY RESPONSE  

Structure and function 

The ‘large’ airways are typically defined as the section of the airway tract that extends from 

the immediate sub-glottis to the end of the large bronchi and includes the trachea, carina and 
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left and right main bronchi. Recently, there has been increased focus on the role of this section 

of the airway under physiological stress; e.g. when performing forced expiratory manoeuvres 

and/or during exercise.  

In health, the muscular posterior segment of the trachea closes partially (i.e. up to 50% 

reduction in tracheal lumen) during expiration, principally to facilitate cough and airway 

clearance. In some individuals this inward movement may however become more marked and 

deemed ‘excessive’. This phenomenon appears to be most apparent in several clinical ‘airway’ 

conditions, such as COPD, or in those in which the inter-pulmonary pressure gradient is altered 

in favour of airway closure; e.g. obesity. 

There is currently a lack of consensus regarding the diagnostic criteria or level of closure that 

constitutes ‘excessive’ dynamic airway collapse (EDAC) and whilst a >50% reduction in airway 

calibre is often taken as ‘abnormal’, this level of collapse can be observed in normal healthy 

individuals. Moreover, EDAC is typically diagnosed at either bronchoscopic assessment or 

during supine computer tomography (CT) imaging, acquired typically during a dynamic 

‘forced’ expiratory respiratory manoeuvre and it is not clear how this relates to more 

physiologically relevant challenges, such as upright exercise.  

Physiological impact of large airway dysfunction during exercise  

The physiological impact of dysfunction in this section of the airway is complex and is currently 

poorly understood. It is apparent from catheter-based studies, evaluating airway flow, that 

there is a disconnect between what may be observed to be excessive ‘collapse’ and what is 

physiologically ‘relevant’ or causing physiological impact; i.e. what may appear to be excessive 

collapse may actually not impact flow within the airway tract (22). Indeed, in a cohort of 

patients with COPD, the degree of central airway collapse was found to be independent of 

other markers of disease severity, such as lung function, functional capacity and symptom 
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burden (9). Recently Weinstein and colleagues (23) evaluated military personnel with 

unexplained exertional breathlessness and wheeze and found EDAC (defined as >75% 

collapse) as the likely cause of breathlessness in a case series. The response to therapeutic 

intervention is not clearly described and indeed the optimum therapeutic algorithm for EDAC 

remains to be fully determined. Recent work however suggests that the application of non-

invasive positive pressure ventilation during exercise can increase exercise tolerance (6) and 

is likely to be favoured initially over other options such as stent placement or tracheal surgery 

(6). 

LOWER AIRWAY RESPONSE  

Structure and function 

The lower or small airways extend from the main bronchi and are typically defined as those 

with an internal diameter of less than 2mm that occur at approximately generation eight of 

the tracheobronchial tree (24). The lower airways differ both structurally and physiologically 

from large airways; they lack cartilaginous support and mucous glands and there is a 

surfactant lining which reduces surface tension to prevent closure during expiration and at 

low lung volumes (25).  

The ‘normative’ or physiologically appropriate airway response to vigorous exercise in both 

healthy and asthmatic individuals is the development of mild bronchodilation (primarily due 

to withdrawal of vagal cholinergic tone) (26). However, it is now well established that a 

significant proportion of otherwise healthy individuals exhibit an ‘abnormal’ or 

pathophysiological airway response to intense exercise exposure (27). Indeed, it is estimated 

that approximately 10% of the general population and up to 70% of elite endurance athletes 

experience transient lower airway narrowing during and/or post vigorous physical exertion 

(28).  
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For individuals performing frequent or repeated bouts of vigorous exercise over a sustained 

period of time (i.e. endurance athletes) it is thought that dehydration of the small airways and 

increased forces exerted to the airway epithelium may actually cause lower ‘airway injury’ (2). 

Indeed, biomarkers of epithelial damage have recently been reported to correlate directly 

with achieved ventilation during continuous moderate intensity exercise (29). Furthermore, 

non-volitional lung function assessment have recently detected evidence of low-grade airway 

remodelling in athletes with EIB in comparison to healthy counterparts (30).  

Although the most appropriate methodology and criteria to secure a diagnosis of EIB remains 

debated (31-33), it is widely recognised that due to the limited value of a symptom-based 

approach to diagnosis (34), indirect bronchoprovocation should be conducted to objectively 

confirm evidence of airway narrowing prior to initiating treatment. In this context, exercise 

challenge testing or eucapnic voluntary hyperpnoea are most often employed for this purpose 

(35).  

Physiological impact of small airway dysfunction during exercise  

Exercise-induced bronchoconstriction is primarily considered a post-exercise phenomenon 

and thus argued to have limited relevance or impact on exercise capacity or performance. 

Despite limitations in available methodologies to evaluate in-exercise airflow (i.e. the lower 

airways are relatively inaccessible), bronchoconstriction has the potential to impede 

performance through several physiological mechanisms (for a detailed review see Price et al) 

(36). For example, individuals experiencing bronchoconstriction (particularly athletes 

achieving high ventilation rates during heavy exercise) are susceptible to an increase in end-

expiratory lung volume (EELV) and development of dynamic hyperinflation (37). Alterations 

to EELV may inhibit or impair the mechanical efficiency of breathing (i.e. increase respiratory 

muscle oxygen cost) and therefore potentially reduce skeletal muscle blood flow via a 
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respiratory muscle metaboreflex (i.e. increased sympathetic vasoconstrictor outflow) (38). In 

addition, it has been proposed that lower airway narrowing may also contribute to ventilation-

perfusion abnormalities potentially leading to arterial hypoxemia, reduced gas exchange 

and/or impaired oxygen uptake dynamics or ‘kinetics’ (39, 40). Taken together, these factors 

may contribute to increased work of breathing and/or heightened perception of dyspnoea. 

Although it is logical to conclude that bronchoconstriction likely has a deleterious impact on 

respiratory function and exercise performance, it is important to note that recent findings 

have indicated pre-exercise airway function (whether bronchodilated or bronchoconstricted) 

does not impede the ventilatory response to exercise in individuals with variable expiratory 

airflow limitation (41). Furthermore, the most recent series of performance-based studies 

evaluating the impact of high-dose short-acting bronchodilator therapy in trained cyclists with 

EIB failed to detect a meaningful difference in time-trial performance despite observing 

significant improvements in resting lung function (42, 43) .  

SUMMARY AND FUTURE RESEARCH PRIORITIES  

Our understanding of the stress placed on the entire airway tract during exercise has evolved 

significantly over the past decade. As such, sections of the airway that were historically viewed 

as simple conduits are now recognised to play an important role in modulating airflow with 

important consequences for ventilatory mechanics, thoracic loading, work of breathing and 

dyspnoea. Moreover, any pathological condition that affects a section of the airway tract has 

the capability to have an impact on the more proximal or distal regions (44, 45) and thus 

overall it would appear somewhat facile to simple consider the impact of laryngeal closure 

alone without considering downstream effects on small airway function. To this end, Baz et 

al. (44) Hull et al. (46) previously showed that excessive laryngeal closure during the expiratory 

phase of respiration may actually modulate lung emptying, in the context of chronic airflow 
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obstruction. As such, this integrated response could be viewed as an ‘adaptive’ as opposed to 

‘maladaptive’ state. Future work therefore needs to focus on the development of 

physiological models of performance to obtain an ‘integrated’ view of the entire airway tracts 

response to exercise; with consideration for specific disease endotype(s) and phenotype(s) 

(Table 1). Additional challenges include the requirement to establish accurate measurements 

of pressure change and flow across the airway tract during exercise. Recent work highlights 

the feasibility of this approach when applied to the upper airways (47) but future work should 

provide an integrative view of changes across the entire airway tract.  

In conclusion, the airway tract faces several challenges to respond effectively to the 

heightened ventilatory state mandated by exercise. This response should be viewed in an 

integrated way, but to truly understand the physiological response and clinical symptoms that 

may arise during exercise, requires an appreciation of not only small airway function but the 

response of the entire airway tract.   
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Elequoent study in patient cohort with COPD who have apparent excessive expiratory phase 

larygneal closure. This appears to be associated with lung emptying and may be considered 

akin to pursed-lip breathing; i.e occuring at the level of the larynx.  
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TABLE HEADER 

Table 1. The total airway response to exercise - what do we need to know?  

 

FIGURE LEGEND(S) 

Figure 1. Schematic detailing the anatomical sections of the total airway tract.  

 
Figure 2. Relevant anatomical structures and landmarks in the upper airway: (A) axial plane 
(laryngoscopic view) and (B) mid-sagital plane. Note the posi�on of the 
cuneiforme/corniculate tubercles and the aryepiglo�c fold in rela�on to the vocal folds.  

Reproduced with permission from Walsted ES. Evalua�ng diagnos�c approaches in exercise- 
induced laryngeal obstruc�on. 2018; (Doctoral thesis). 

 
 
Figure 3. Continuous laryngoscopy during exercise. The laryngoscope is placed in situ and 
secured to a headset via a facemask. The screen(s) provide real-time feedback of the structural 
and functional behaviour of the larynx and gas exchange during cycling.  
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Table 1.  
 

Airway tract Physiological response to exercise Pathophysiological response to 
exercise 

Impact of airway dysfunction  Future research: what do we need to know?  

Larynx / upper airway • Abduction of the vocal folds 
facilitates airflow by increasing 
the cross-sectional area of the 
glottic opening 

• Exercise-induced laryngeal 
obstruction (EILO) 

• Glottic closure - i.e. adduction of 
the vocal folds  

• Supraglottic closure - i.e. 
collapse of the arytenoid region 

• Increased work of breathing and 
neural respiratory drive 

• Increased tidal volume and 
decreased breathing frequency 
below maximal exercise 
 

• Altered ventilatory pattern / 
breathing mechanics 

• Further knowledge and understanding of 
laryngeal physiology during exercise  

• Determine the physiological interactions 
between the larynx and the diaphragm  

• Improve understanding of EILO and perceived 
dyspnoea 

• Determine the impact on exercise capacity 
utilising relevant ‘performance’ based trials (e.g. 
critical power methodology) 

Large central airways • Posterior segment of trachea 
closes partially during 
inspiration; i.e. >50% tracheal 
lumen diameter  

• Exercise dynamic airway collapse 
(EDAC) 

• Posterior segment of trachea 
closes ‘excessively’ during 
inspiration - i.e. >75% tracheal 
lumen diameter 

• Development of expiratory 
wheeze and loud barking / 
honking type cough 

• Difficulty with airway clearance 
leading to recurrent infection 

• Altered breathing mechanics and 
flow volume lop alterations 

• Understand how the large airways behave during 
physiologically relevant challenge - i.e. walking 

• Develop diagnostic tests that can provide insight 
regarding the impact of airway collapse during a 
physiologically relevant challenge 

• Develop simple potentially bio-absorbable 
scaffolding mechanisms to improve tracheal 
patency 

Lower / small airways • Vagal cholinergic tone 
withdrawn resulting in mild 
bronchodilation to facilitate 
airflow and optimise gas 
exchange 

 

 

• Exercise-induced 
bronchoconstriction (EIB) 

• Transient airway narrowing - i.e. 
10-15% pre-to post; exercise 
reduction in FEV1 

 

 

• Increased work of breathing 
and/or heightened perception of 
dyspnoea 

• Increased end-expiratory lung 
volume and development of 
dynamic hyperinflation 

• Impaired ventilatory mechanics 
  

• Increased respiratory muscle 
oxygen cost 
 

• Ventilation-perfusion mismatch 
 

• Impaired oxygen kinetics 

• Establish widespread consensus concerning 
diagnostic test criteria 

• Define specific EIB phenotypes/endotypes 

• Evaluate susceptibility to respiratory tract 
infection  

• Determine the impact on exercise capacity 
utilising relevant ‘performance’ based trials (e.g. 
critical power methodology)  

• Consideration for gender, disease sub-type, 
severity, sporting discipline and athletic standard 
remains a priority 



 20 

 
 
Figure 1.  
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Figure 2.
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Figure 3.  
 

 
 
 

 


	ABSTRACT
	ABSTRACT
	INTRODUCTION
	INTRODUCTION
	UPPER AIRWAY RESPONSE
	UPPER AIRWAY RESPONSE
	Structure and function
	Structure and function
	Physiological impact of upper airway / laryngeal dysfunction during exercise
	Physiological impact of upper airway / laryngeal dysfunction during exercise

	LARGE AIRWAY RESPONSE
	LARGE AIRWAY RESPONSE
	Structure and function
	Structure and function
	Physiological impact of large airway dysfunction during exercise
	Physiological impact of large airway dysfunction during exercise

	LOWER AIRWAY RESPONSE
	LOWER AIRWAY RESPONSE
	Structure and function
	Structure and function
	Physiological impact of small airway dysfunction during exercise
	Physiological impact of small airway dysfunction during exercise

	SUMMARY AND FUTURE RESEARCH PRIORITIES
	SUMMARY AND FUTURE RESEARCH PRIORITIES
	REFERENCES
	REFERENCES
	REFERENCES OF OUTSTANDING INTEREST (**) OR SPECIAL INTEREST (*)
	REFERENCES OF OUTSTANDING INTEREST (**) OR SPECIAL INTEREST (*)
	TABLE HEADER
	TABLE HEADER
	FIGURE LEGEND(S)
	FIGURE LEGEND(S)

