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Abstract (249/ 250 Words) 

 Redox enzymes are ubiquitous proteins that modulate intracellular redox balance and 

can be secreted in response to cellular oxidative stress, potentially modulating systemic 

inflammation. Both aerobic and resistance exercise are known to cause acute systemic 

oxidative stress and inflammation; however, how redox enzyme concentrations alter in 

extracellular fluids following bouts of either type of exercise is unknown. Recreationally 

active, healthy males (n=26, age 28 ± 8 years) took part in either: 1) two separate energy-

matched cycling bouts: one of moderate intensity (MOD) and a bout of high intensity interval 

exercise (HIIE) or 2) an eccentric exercise protocol. Alterations in plasma (study 1) and 

serum (study 2) peroxiredoxin (PRDX)-2, PRDX-4, superoxide dismutase-3 (SOD3), 

thioredoxin (TRX-1), TRX-reductase and Interleukin (IL)-6 were assessed before and at 

various timepoints after exercise. There was a significant increase in SOD3 (+1.5 ng/mL) and 

PRDX-4 (+5.9 ng/mL) concentration following HIIE only, peaking at 30 and 60min post-

exercise respectively. TRX-R decreased immediately and 60 min following HIIE (-7.3 

ng/mL) and MOD (-8.6 ng/mL) respectively. In non-resistance trained males, no significant 

changes in any of the redox enzymes were observed up to 48 hours following eccentric 

exercise. IL-6 concentration increased in response to all trials, however there was no 

significant relationship between absolute or exercise-induced changes in redox enzyme 

concentrations. These results collectively suggest that HIIE, but not MOD or eccentric 

exercise increase the extracellular concentration of PRDX-4 and SOD3. Exercise-induced 

changes in redox enzyme concentration do not appear to directly relate to systemic changes in 

IL-6 concentration.  

 

Abbreviations: ANOVA: Analysis of Variance, BMI: Body Mass Index, CK: Creatine 

Kinase, ELISA: Enzyme Linked Immunosorbent Assay, EV: Extracellular Vesicle, H2O2: 

Hydrogen Peroxide, HIIE: High Intensity Interval Exercise, IL: Interleukin, IPAQ: 

International Physical Activity Questionnaire, LDH: Lactate Dehydrogenase, MOD: 

Moderate Intensity Exercise, NADH: reduced nicotinamide adenine dinucleotide, ONOO-: 

Peroxynitrite, PBS: Phosphate Buffered Saline, PBSwC: Phosphate Buffered Saline Wash 

Casein, PRDX: Peroxiredoxin, ROS: Reactive oxygen species, SD: Standard deviation, SOD: 

Superoxide Dismutase, TLR: Toll-like Receptor, TRX: Thioredoxin, TRX-R: Thioredoxin-

Reductase, VO2MAX: Maximum oxygen consumption.  



Introduction 

It is well documented that acute exercise perturbs cellular reduction-oxidation (redox) 

balance through the increased production of reactive oxygen species (ROS) within actively 

contracting skeletal muscle 1, as well as other infiltrating cell types 2. Evidence suggests that 

ROS such as hydrogen peroxide (H2O2) and peroxynitrite (ONOO-) have important roles in 

facilitating muscle contractile activity 3 and regulating the expression of genes involved with 

metabolism and endogenous antioxidant protection 4,5. Conversely, heightened levels of 

exercise-induced H2O2 at the expense of antioxidant defense systems can elicit oxidative 

stress, which may limit contractile function and promote fatigue 6. Given this biphasic 

relationship, studies have previously evaluated alterations in redox balance in response to 

both aerobic and resistance type exercise. These studies have primarily focused on the 

quantification of distal markers in extracellular fluids, such as the oxidation biomolecules 

and/or activity of antioxidant enzymes in plasma 7, serum 8, saliva 9 and urine 10; highlighting 

exercise duration 11, intensity  12 and muscle-damage 13 as factors governing greater increases. 

However, criticisms are commonly made with regards to the direct relationship of these 

markers with the redox state of active tissues during exercise 14. Recent evidence has 

highlighted that intracellular redox enzymes, such as peroxiredoxin (PRDX) can be secreted 

from skeletal muscle myocytes 15 and immune cells 16 in response to increasing 

concentrations of H2O2 in vitro. Human studies are also beginning to provide strong evidence 

that plasma/ serum PRDX-2 and PRDX-4 concentrations serve as important biomarkers of 

intracellular redox state in the context of acute and chronic inflammatory conditions 16,17. 

PRDXs are a major family of ubiquitous redox proteins, which modulate intracellular 

redox balance through a highly reactive cysteine thiolate group. The reaction rate of this 

cysteine is markedly greater than any other thiol-containing protein 18, allowing rapid 

regulation of cellular H2O2, with some evidence to suggest that this may facilitate muscle 

contraction 19. PRDX’s are therefore reliable footprints of intracellular redox state, with 

heightened oxidation of the PRDX cysteine indicative of oxidative stress 20. Recent work has 

begun to explore changes in the PRDX catalytic cycle in blood cells isolated from humans 

before and after acute exercise 21–23. In parallel with increases in soluble markers of 

inflammation (e.g. Interleukin (IL)-6 and CRP), an increase in the oxidation PRDX (i.e. 

dimer and over-oxidised states) has been reported following intensive cycling and running 

exercise 21,23. To our knowledge, the extracellular concentration of PRDX has yet to be 

explored in the context of exercise in humans. Interestingly, PRDX-2 can be secreted in 



tandem with its enzymatic reducing partners, thioredoxin (TRX-1) and thioredoxin reductase 

(TRX-R) 16,26. TRX-1 and TRX-R are cysteine and selenium based-antioxidant enzymes 

respectively, with higher reduction potentials than PRDX, thus contributing towards 

maintaining the antioxidant function of PRDX. In addition, the enzyme superoxide dismutase 

3 (SOD3) is an extracellular antioxidant released upon cellular stimulation, providing an 

immediate change in extracellular antioxidant capacity 26,27. Given the emerging body of 

literature supporting a relationship between intracellular oxidative stress, redox enzyme 

secretion and soluble inflammatory markers, the quantification of PRDX-2, PRDX-4, TRX-1, 

TRX-R and SOD3 in extracellular fluids offers the potential for accurate assessment of 

changes in oxidative stress and inflammation after different types of exercise. 

Based upon existing knowledge of the factors that can impact acute changes in 

exercise-induced oxidative stress, we sought to perform two experiments to understand how 

novel markers, such as PRDX-2, PRDX-4, TRX-1, TRX-R and SOD3 respond to acute 

exercise, and whether relationships exist between changes in inflammation. Specifically, we 

aimed to characterise how these markers would be impacted by aerobic exercise intensity and 

eccentric-based resistance exercise. We tested the hypothesis that both protocols would elicit 

an increase in the concentrations of redox enzymes within plasma/ serum after exercise; with 

higher exercise intensity causing a larger increase following aerobic exercise. 

 

Methods 

Participants 

Healthy, untrained participants were recruited for two independent studies (Table 1) 

Participants in both studies completed the International Physical Activity Questionnaire 

(IPAQ), which addresses habitual levels of weekly physical activity. Participants gave their 

informed written consent and all studies were approved by the local Ethical Review 

Committee, in accordance with the Declaration of Helsinki, 2008. Participants were all non-

smokers and had not taken any antioxidant vitamin supplements or anti-inflammatory drugs 

for 4 weeks prior to the laboratory visits. All participants were required to refrain from any 

strenuous physical activity, consumption of alcoholic beverages or caffeine for at least two 

days prior to the experimental sessions. 

 

Experimental Sessions 



The full workflow for this project is detailed in Figure 1. Experimental sessions took 

place in the morning (7.00 - 8.00 am start time) under stable climatic conditions (18 - 20°C 

and humidity between 45 – 55%) and following at least a 10-hour fast. After a period of rest, 

height (Seca Alpha, Hamburg, Germany) and mass (Tanita, Tokyo, Japan) were determined. 

In study 1, participants first visited the laboratory for an assessment of 

cardiorespiratory fitness ( MAX) using a ramp test to exhaustion on an electromagnetically 

braked cycle ergometer (Lode Excalibur Sport, Groningen, Netherlands). The protocol 

involved commencing pedalling at 100 Watts, followed by fixed 30-Watt power increments 

every 4 minutes. Oxygen uptake was assessed continuously using a breath-by-breath system 

(Oxycon Pro, Jaeger, Wuerzberg, Germany) and heart rate monitored using a Polar Vantage 

heart rate monitor (Polar, Kempele, Finland). The test ended when the participant reached 

volitional exhaustion or when a plateau in oxygen consumption was observed with an 

increase in workload 28. A final obtained value of rate of oxygen consumption was accepted 

as MAX and expressed relative to body weight (mL.kg-1min-1). At least one week later, 

participants then undertook the first of two energy and time-matched cycling trials in a 

randomised order, at least one week apart: a moderate bout of steady-state cycling at 60% 

MAX for 58 minutes (MOD) and a bout of high intensity interval exercise (HIIE), 

consisting of 10 x 4-minute intervals at 85% MAX, with 2-minute rest intervals. In both 

studies, oxygen uptake was assessed continuously to maintain target  and equal energy 

expenditure between MOD and HIIE (study 1). Rating of Perceived Exertion was assessed 

throughout both trials. 

In study 2 (n = 17), non-resistance trained males undertook a muscle-damaging 

eccentric exercise protocol adapted from a previous study by Alemany et al 29. The eccentric 

muscle damage protocol was performed on a Humac Norm dynamometer (CSMI, 

Massachusetts, USA). The dynamometer lever arm was programmed to flex the participant’s 

knee from a start position of 10° of flexion to 90° of flexion, thus allowing a range of motion 

of 80°. The participants began with their leg at the start position and were asked to maximally 

contract their quadriceps against a resistance while the lever arm moved to the finish position 

(90° knee flexion). Once at the finish position they were advised to relax their leg and the 

dynamometer moved them back to the start position to avoid a concentric contraction being 

performed. The lever arm moved at a set speed of 60°·s-1. The bout consisted of 20 sets of 10 

repetitions with each set being separated by 1 minutes rest. Visual feedback and verbal 

encouragement was provided to all participants to maximise torque output for each 
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contraction. Following the muscle damaging protocol, all participants completed another 

maximal quadricep contraction. 

 

Blood sampling and Plasma Isolation 

For both studies, a catheter (Appleton Woods, Birmingham, UK) was inserted into the 

antecubital vein of the arm prior to exercise to obtain a baseline blood sample after thirty 

minutes of rest (Pre). The catheter was continually kept clear with isotonic saline solution 

(0.9% sodium chloride). As indicated in Figure 1, blood samples were then taken 

immediately, 30 minutes and 60 minutes after both HIIE and MOD (Study 1 – Pre, Post+0, 

Post+30 and Post+60) and post muscle damage, post-performance, 3 hours and 48 hours after 

the eccentric exercise protocol (Study 2 – Pre, Post-MD, Post-Per, Post+3hr and Post+48hr). 

The post+48 hr (Study 2) blood sample was taken via venepuncture. At each time point, 12 

mL of blood was drawn into vacutainer tubes containing either potassium ethylene 

diaminetetraacetic acid in study 1 (Becton, Dickson & Company, Oxford, UK) or no 

anticoagulant in study 2. In study 1, whole blood was centrifuged at 1525g for 15 minutes, at 

room temperature. In study 2, whole blood was allowed to clot at room temperature for 20 

mins and then centrifuged at 1500g for 15 minutes. The resulting plasma (study 1) and serum 

(study 2) were aliquoted and frozen at -80°C for future analysis of redox enzymes and IL-6. 

Finger prick blood samples were obtained to determine lactate (study 1) and creatine kinase 

(CK)/ lactate dehydrogenase (LDH) (study 2) concentrations. 

 

Analytical Procedures 

PRDX-2, PRDX-4. TRX-1, TRX-R and SOD3 ELISAs 

ELISAs for the detection of PRDX-2, PRDX-4, TRX, TRX-R and SOD3 were 

developed in-house. Commercially available antigens and antibodies (i.e. PRDX-2. PRDX-4, 

TRX and TRX-R) were purchased from either Abcam, Cambridge, UK (ab) or Sigma Aldrich, 

Dorset, UK (SRP). The human SOD3 antigen and rabbit antiserum directed against human 

SOD3 were developed as previously described 26,30. Plasma or serum and standards (100 μL) 

were loaded onto individual wells of an ELISA plate (Thermo Scientific F8 polysorp immune 

wells) and protein left to bind overnight at 4 ºC. Wells were then pre-washed with PBS wash 

buffer, supplemented with 0.1% casein (PBSwC, 200 μL) and then blocked with 1% casein in 

PBS (200 μL) for 30 minutes at room temperature, with gentle agitation. Anti-human rabbit 

antibodies for PRDX-2 (ab133481, 1:2000), PRDX-4 (ab59542, 1:2000) and SOD3 (in-

house, 1:2000), and anti-human mouse antibodies for TRX-1 (ab16965, 1:8000) and TRX-R 



(ab16847, 1:1000) were then added to each well, diluted in PBSwC for 45 minutes at room 

temperature. Following this, 100 μL of anti-rabbit (1:5000) or anti-mouse (1:500) IgG Biotin 

antibodies in PBSwC, and streptavidin-horseradish peroxidase (1:2000 in PBSwC) were 

added separately to each well, both for 45 minutes, with gentle agitation. Between all stages, 

all wells were washed three times with PBSwC. Finally, 100 μL of 3,3’,5,5’-

tetramethylbenzidine (10ug) was added per well, and the plate left to develop in the dark for 

15-25 minutes. Stop solution (1.5mM H2SO4, 50 μL) was then added to each well and 

absorption at 450nm subsequently evaluated by using a plate reader (Multiskan Ascent, 

Thermo Labsystems). Concentration of each antigen was then determined by comparing 

absorbance values of recombinant PRDX-2 (ab167977, Abcam), PRDX-4 (ab93947, Abcam), 

TRX-1 (ab51064, Abcam), TRX-R (SRP6081, Sigma Aldrich) and SOD3 (in-house) proteins 

(0-50 ng/mL). ELISA validation experiments showed no cross-reactivity of the PRDX-2, 

PRDX-4, TRX-1, TRX-R and SOD3 antibodies with the respective antigens, nor with serum 

albumin. All values were adjusted for plasma volume, according to previous methods 31. 

 

Other Analyses 

In both studies, a cytometric bead array was used to quantify plasma (study 1) and 

serum (study 2) IL-6 concentrations on a BD C6 Accuri Flow Cytometer (BD Biosciences, 

Berkshire). In study 1, blood lactate and glucose concentrations were determined after 4 min 

of exercise and then every 6 min thereafter (i.e. end of each HIIE interval) using an 

automated lactate and glucose analyser (Biosen C-Line Clinic, EKF-diagnostic GmbH, 

Barleben, Germany) to verify intensity-dependent differences between each protocol. In 

study 2, serum CK and LDH concentrations were determined to monitor muscle damage 

using an automated ABX Pentra 400 system (Horiba UK Ltd, UK). Haematocrit and 

haemoglobin concentrations were used to ascertain plasma volume changes and make 

appropriate adjustments in plasma redox enzyme and IL-6 concentrations (Beckman Coulter, 

London, UK).  

 

Statistical Analysis  

The Shapiro Wilk test was used to test for normality in scale data at all time points. 

Differences between participant characteristics and the physiological responses to exercise in 

both studies were assessed using unpaired samples T-tests or non-parametric Mann-Whitney 

U Tests. The influence of exercise on plasma/ serum PRDX-2, PRDX-4, SOD3, TRX-1, 

TRX-R and IL-6 concentration was assessed over time by repeated-measures analysis of 



variance (ANOVA) or non-parametric Wilcoxon signed rank tests, depending variable 

normality. Post hoc analysis of any significant effect of time or interaction effect (study 1; 

Group*Time) was performed by a test of simple effects by pairwise comparisons, with 

Bonferroni correction. Effect sizes for main effects and interaction effects of ANOVA are 

presented as partial eta2 (η2
p), using Cohen’s definition of η2

p of 0.01, 0.06 and 0.14 for 

‘small’, ‘medium’ and ‘large’ effects respectively 32.  All values are presented as means ± 

standard deviation or error (indicated throughout manuscript). Statistical significance was 

accepted at the p < .05 level. Statistical analyses were performed using SPSS (PASW 

Statistics, release 23.0, SPSS Inc., Chicago, IL, USA).   

 

Results 

For each of the respective studies, participants completed the continuous moderate 

intensity, HIIE and eccentric exercise protocols. There was no significant difference in age or 

BMI between the participants taking part in the two studies, Participants in study 1 (p = 

0.004) had significantly higher self-reported physical activity than in study 2.  

 

Effects of aerobic exercise on physiological responses and blood markers 

For study 1, the physiological responses during each exercise bout are reported in 

Table 2. Peak  and RPE were significantly greater in HIIE compared to MOD (p < 

0.00001), but there were no statistically significant differences in mean  and energy 

expenditure. Whole blood lactate and glucose data are reported in Table 2. Average lactate 

concentration was significantly higher during HIIE than MOD (p < 0.0001), but there was no 

significant difference in average glucose concentration between trials. 

 

Effects of eccentric exercise on muscle damage markers 

In study 2, there was a stepwise increase (Post+48hr > Post+3hr > Post-Per > Post 

MD > Pre) in serum CK over time, with the concentration peaking above Pre at Post+48hr 

(Units/ L: Pre: 147.6 ± 27.1 and Post+48hr: 575.9 ± 290.8; p > 0.001). Serum LDH 

concentration was elevated above Pre at all post-exercise timepoints (Units/ L: Pre: 254.9 ± 

130.6 and peak at Post+48hr: 299.9 ± 165.2; p < 0.05), also increasing Post+3hr, relative to 

Post-MD (Units/ L: Post-MD: 274.1 ± 77.1 & Post+3hr: 290.3 ± 77.8; p = 0.011).  

 

Effects of aerobic and eccentric exercise on IL-6 concentration 
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IL-6 data is presented in Figure 3. In study 1, plasma IL-6 increased in both trials 

(Time effect: F (3) = 15.5, p < 0.0001, η2 = 0.66), being elevated above resting values, both 

immediately (p = 0.004) and Post+30 (p = 0.002), but not Post+60 (Figure 3A). The 

magnitude of this increase was significantly greater Post-Ex in HIIE (p = 0.031), than MOD 

(Time x Condition effect: F (3) = 7.0, p < 0.001, η2 = 0.47). IL-6 concentration decreased 

Post+30 (p = 0.004) and Post+60 (p = 0.007), relative to Post+0, and Post+60, relative to 

Post+30 (p = 0.026) in HIIE only. In study 2 (Figure 3B), IL-6 concentration was 

significantly higher at all timepoints up to three hours, but not 48 hours after exercise, 

relative to Pre (Time effect: F (4) = 14.3, p < 0.0001, η2 = 0.30).  

 

Effects of aerobic exercise on PRDX-2, PRDX-4, TRX-1, TRX-R and SOD3 concentration 

No differences were observed in resting concentrations of PRDX-2, PRDX-4, TRX-1, 

TRX-R or SOD3 when quantified in plasma and serum across all trials. Changes in plasma 

PRDX-2, PRDX-4, TRX-1, TRX-R and SOD3 in response to MOD and HIIE are reported in 

Figure 2A. There was a significant increase in plasma SOD3 (Trial x Time Effect: F (3,1) = 

5.3, p = 0.028, η2 = 0.31) and PRDX-4 following HIIE only (non-parametric tests: all p < 

0.05). SOD3 concentration was elevated above pre-exercise values at all post-HIIE 

timepoints, peaking at Post+0 (p = 0.015) and Post+30 (p = 0.013), but only significantly 

higher than MOD at Post+30 (p = 0.05). Plasma SOD3 concentration decreased relative to 

Post+30 at Post+60 (p = 0.013). Relative to Pre, PRDX-4 concentration increased at Post+30 

(p = 0.015) and Post+60 (p = 0.008) following HIIE, with PRDX-4 concentration higher at all 

post-exercise timepoints compared with MOD (p < 0.038). There was a significant decrease 

in plasma TRX-R concentration in both MOD and HIIE. Relative to Pre, TRX-R significantly 

decreased at Post+0 in HIIE only (p = 0.021), with values significantly less than MOD (p = 

0.011). Following MOD, TRX-R was significantly lower at Post+60, relative to all 

timepoints (all p < 0.038). There were no statistically significant changes in PRDX-2 and 

TRX-1 concentration over time in either trial; however, TRX-1 concentration was 

significantly higher in HIIE than MOD Post+60 only (p = 0.021). 

 

Effects of eccentric exercise on PRDX-2, PRDX-4, TRX-1, TRX-R and SOD3 concentration 

Serum redox enzyme concentration changes in response to an eccentric exercise 

protocol are presented in Figure 2B. A trend was observed for a decrease in PRDX-2 

concentration Post Performance (-1.12 ng/mL), however this did not reach statistical 



significance (Time effect: F (4) = 2.3, p = 0.065, η2 = 0.13). Similarly, no significant changes 

were noted in PRDX-4, TRX-R or SOD3 up to 48 hours following eccentric exercise. A 

significant increase in TRX-1 was shown Post+48hr, relative to Post-Per (p = 0.039), but not 

Pre (p = 0.309). 

 

 

Discussion 

The current results have characterised the kinetic responses of endogenous redox 

enzymes within the extracellular environment after exercise for the first time. The primary 

finding from this investigation was that high intensity interval cycling (study 1) caused an 

increase in the concentrations of plasma PRDX-4 and SOD3 in healthy, untrained males. 

Plasma TRX-R levels also decreased within one hour of both moderate and high intensity 

cycling exercise. These responses were not observed following muscle-damaging exercise in 

non-resistance trained males (study 2).  

The current data highlights modality and exercise-intensity specific increases in two 

abundant redox enzymes. In response to aerobic-based exercise, PRDX-4, but not PRDX-2 

concentration increased thirty minutes following HIIE and remained elevated until Post+60. 

The secretory pathways of PRDX’s are isoform specific, with endoplasmic reticulum (ER, 

i.e. PRDX-4) and cytosolic (i.e. PRDX-2) resident isoforms released via classical and non-

classical secretory pathways respectively 33. The current data therefore suggests that exercise 

may activate the ER-golgi pathway to secrete PRDX-4 in an intensity-dependent manner. 

SOD3, which is also released via this pathway, increased immediately following HIIE, with 

levels tailoring off Post+60, relative to Post+30. SOD3 is an antioxidant enzyme typically 

contained within membrane-associated vesicles, specifically secreted to modulate superoxide 

anions in the extracellular environment either on parent or target cells 26,27. Due to its 

membrane proximity, SOD3 can be rapidly secreted into the extracellular environment in 

response to cellular oxidative stress 26,27. This may explain the difference in timecourse when 

comparing SOD3 (i.e. Post+0) and PRDX-4 (i.e. Post+30) responses following HIIE. This 

may also be reflective of differential secretion rates of SOD3 and PRDX-4 from various 

tissues during and following exercise. Both proteins are expressed in skeletal muscle 34, a 

highly redox active tissue 35; however, PRDX-4 is primarily located in pancreas, liver and 

heart 36, whereas SOD3 is expressed in the heart and vasculature tissue 37. The association 

with the vasculature may explain the more rapid increase in plasma SOD3 concentration 



following HIIE. Aside from these increases, a modest decrease was observed in plasma TRX-

R after both MOD and HIIE (study 1), with this change being much more rapid in HIIE 

(Post+0), compared to MOD (Post+60). The mechanisms driving a decrease in TRX-R after 

exercise are unclear at present. The decrease may represent transient homeostatic fluctuations 

involving uptake of redox enzymes by neighboring cells and tissues, perhaps to regulate 

intracellular redox balance 43.  

A finding that was in contrast to our hypothesis was that muscle damaging eccentric 

exercise did not induce an increase in the extracellular concentrations of redox enzymes. The 

measurement of redox enzymes in plasma and serum is an emerging area of biomedical 

research, particularly in the context of acute 38 and chronic 39,40 inflammatory conditions, 

where PRDXs and TRX-1 have been shown to enhance cytokine and chemokine production 
41,42. The participants in both studies were relatively inactive, with participants in study 2 in 

particular, reporting significantly lower levels of habitual physical activity (Table 2) and 

being unaccustomed to eccentric exercise. Unaccustomed eccentric exercise induces 

significant amounts of acute muscle damage and inflammation 44, as demonstrated by the 

stepwise increases in CK and LDH concentrations up to 48 hours following our protocol, and 

IL-6 up to 3 hours post-exercise (Figure 3B). It must be acknowledged that only selective 

timepoints were measured following the protocol, and perhaps the secretion of redox 

enzymes occurs between 3- and 48-hours post-exercise. Nevertheless, this study has 

highlighted for the first time that redox enzyme concentrations do not match that of 

established markers of muscle damage and inflammation when measured in serum samples 

following a muscle damaging exercise bout. In response to aerobic-based exercise, we have 

recently demonstrated a positive association between intracellular Peroxiredoxin (I-IV) over-

oxidation in immune cells and plasma IL-6 concentration 23. In the current study, IL-6 

concentration increased in an intensity-dependent manner (HIIE > MOD) following aerobic 

exercise (Figure 3A); however, there were no statistically significant relationships between 

absolute or exercise-induced changes in PRDX-4 and SOD3 with IL-6. The observations 

across both studies therefore suggest no relationship between that IL-6 and redox enzymes 

after exercise. A larger sample size may be needed to adequately address these associations 

and support the previously documented relationship between plasma/ serum redox enzymes 

and soluble inflammatory markers 16,17.  

The results of the current investigation demonstrate clear differences in the changes in 

SOD3, TRX-R and PRDX-4 following aerobic vs. anaerobic exercise. With regards to 



PRDX-2 and TRX-1, no changes were observed following aerobic or anaerobic exercise. 

Both PRDX-2 and TRX-1 are cytosolic redox enzymes that contain no N-terminal signal 

peptide for secretion and thus are released via non-classical pathways, associated with 

extracellular vesicles (EV’s), such as exosomes and nanoparticles 45. PRDX-2 and TRX-1 are 

detectable in plasma/ serum samples through their association with the exofacial surface of 

the EV membrane 46,47; however, their protein levels may be higher due to protein contained 

within the EV’s. This protein would not be detectable by antibodies when enclosed within the 

lipid membrane during ELISA quantification, as previously shown 48. Indeed, recent evidence 

has highlighted that a series of leaderless redox enzymes (i,e, PRDX-1, PRDX-2, PRDX-5, 

PRDX-6, TRX-1, SOD1 and SOD2) are secreted in EV’s via a non-classical route following 

exposure to stress, with classically secreted SOD3, TRX-R and PRDX-4 not detectable 

within EV’s 49. This may explain why plasma/ serum PRDX-2 and TRX-1 concentration in 

samples did not significantly change following both muscle-damaging and aerobic exercise. 

It must be noted that TRX-1 concentration was significantly higher 48 hours after the 

eccentric exercise protocol, relative to Post-MD (study 2) and also significantly higher at 

Post+60 in HIIE, compared to MOD (study 1). These findings again underpin intensity-

dependent differences, despite in both cases, levels not being higher than pre-exercise values. 

In response to a far more extreme bout of exercise, Marumoto et al, (2010) reported a marked 

increase in plasma volume adjusted TRX-1 levels (17.9 ± 1.2 ng/mL at baseline to 

70.1 ± 6.9 ng/mL) after a 2-day 130km ultra-endurance marathon 50; however, these exercise 

bouts were substantially different in nature and thus hard to directly compare. Further work is 

needed to clarify whether TRX-1 and PRDX-2 protein levels alter within EVs after 

conventional bouts (i.e. not ultra-endurance) of muscle-damaging and aerobic-based exercise. 

This study has quantified the responses of antioxidant enzymes in the extracellular 

environment following acute exercise in age and BMI matched individuals from two 

independent exercise studies (Table 1). We must also acknowledge that quantification of 

redox enzymes and IL-6 was undertaken in both plasma (study 1) and serum (study 2), 

however; there were no differences in any of these proteins when quantified in pre-exercise 

samples (data not shown). 

 

 

 



Perspectives 

 The current results provide valuable information on the physiological effects that 

exercise can have on extracellular redox enzyme concentrations in blood. Building on 

previous work, which has demonstrated that some redox enzymes (i.e. PRDX and TRX) are 

sensitive to exercise-induced oxidative stress within blood cells (i.e. leukocytes 51 and 

erythrocytes 52), we provide preliminary evidence to suggest that SOD3 and PRDX4 may be 

secreted following single sessions of high intensity cycling. Given the emerging link between 

these proteins and aspects of the inflammatory response in clinical settings 42, and the 

possible association with exercise intensity shown herein, we suggest that these markers are 

worthy of future investigation in the discipline of sport and exercise medicine (e.g. 

biomarkers of overtraining). 

 

Conclusion  

The results of the present study have highlighted that plasma SOD3 and PRDX-4 

concentration increased in response to acute exercise. Importantly, the secretion of these 

proteins appears to be intensity and modality dependent, with increases only observed in 

response to high intensity aerobic cycling in untrained individuals. A decrease in TRX-R was 

also noted following different aerobic exercise bouts, with exercise intensity driving a more 

rapid decrease in TRX-R. Future research is required to pinpoint the precise mechanisms 

governing the secretion and uptake of redox enzymes, and their role in regulating redox 

balance between tissues after exercise. 
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Tables 

Table 1.  Demographics for participants in studies 1 and 2. 

 
Energy-matched 

Trials (study 1) 

Eccentric Exercise 

(study 2) 
Statistical Analysis 

Number of Participants 9 17 n/a 

Age (years) 
29 ± 

5 

25 ± 

9 
P = NS 

Body Mass Index 

(kg/m2) 

24.2 ± 

3.4 

25.3 ± 

4.1 
P = NS 

IPAQ (METs-

min/week) 

6683 ± 

3835* 

2540 ± 

2022 

+P = 0.005 

+P = 0.004 

Watt Max (Watt/kg) 
3.4 ± 

0.5 
 n/a 

MAX 

(mL.kg-1.min-1) 

44.5 ± 

6.4 
 n/a 

 

Grey boxes indicate missing data. 

* Indicates significant difference in comparison to study 2: *P < 0.05, **P < 0.001. 

NS P > 0.05. 
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Table 2. Physiological response to aerobic-based exercise (study 1). 

 Energy-matched Cycling Trials (Study 1) 
Statistical 

Analysis 

Trial 

Continuous cycling 

for 58 min, predicted 

60% MAX 

(MOD) 

 

 

10 x 4 min cycling intervals, predicted 

85% MAX  (2 min rest intervals. Total 

time = 58 min, HIIE) 

 

-- 

Mean MAX (%) 56.5 ± 2.6 
58.9 ±  

4.3 
P = NS 

Energy Expenditure 

(kJ) 

2077 ± 

340 

2072 ± 

339 
P = NS 

Average RPE 12 ± 1 16 ± 1*** ***P < 0.0001 

Mean Blood Lactate 

(mmol/L) 
1.9 ± 0.6 6.8 ± 1.4 ***P < 0.0001 

Mean Blood 

Glucose (mmol/L) 
3.9 ± 0.3 4.5 ± 0.6 P = NS 

 

* Indicates a significant difference between MOD and HIIE: *** P < 0.0001. 

NS P > 0.05. 
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Figures 

Figure 1: Schematic of the two exercise studies. Dark lines represent the exercise session, 

with lighter lines indicating pre- and post-exercise resting periods. Gaps between dark lines 

indicate the rest periods during the HIIE trial. Blood samples taken for each study are 

indicated as arrows. 

 

Figure 2: Changes in plasma redox protein concentration in response to two energy-matched 

cycling bouts (A) - moderate steady state (MOD - black bars) and high intensity interval 

exercise (HIIE – white bars) and an eccentric exercise protocol (B): PRDX-2, PRDX-4, 

TRX-1, TRX-R and SOD3. Values are means ± standard error. * indicates significant 

differences relative to Pre: * p<.05. # indicates a significant difference relative to Post+0: # 

p<.05. $ indicates a significant difference relative to Post+30: $ p<.05. + indicates a 

significant difference between MOD and HIIE: + p<.05. 

 

Figure 3: Changes in plasma IL-6 in response to two energy-matched cycling bouts: 

moderate steady state (MOD - black bars) and high interval exercise (HIIE – white bars). 

Values are means ± standard error. * indicates significant differences relative to Pre: * p<.05; 

** p<.001. # indicates a significant difference relative to Post+0: # p<.05. $ indicates a 

significant difference relative to Post+30: $ p<.05. + indicates a significant difference 

between MOD and HIIE: + p<.05. 

 


	Participants
	Healthy, untrained participants were recruited for two independent studies (Table 1) Participants in both studies completed the International Physical Activity Questionnaire (IPAQ), which addresses habitual levels of weekly physical activity. Particip...
	Conflict of Interest
	None of the authors declare a conflict of interest.
	Funding
	This research was supported by the University of Worcester and the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the D...

