
Citation:
Subbiah, U and Ramachandran, M and Mahmood, Z (2019) Software engineering approach to
bug prediction models using machine learning as a service (MLaaS). In: ICSOFT 2018 - 13th
International Conference on Software Technologies, 26th to 28th July 2018, Porto, Portugal.

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/6191/

Document Version:
Conference or Workshop Item (Published Version)

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Copyright © 2018 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved.

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/6191/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

Keywords: Machine Learning, Machine Learning as a Service, Bug Prediction, Bug Prediction as a Service, Microsoft
Azure.

Abstract: The presence of bugs in a software release has become inevitable. The losses incurred by a company due to

the presence of bugs in a software release is phenomenal. Modern methods of testing and debugging have

shifted focus from “detecting” to “predicting” bugs in the code. The existing models of bug prediction have

not been optimized for commercial use. Moreover, the scalability of these models has not been discussed in

depth yet. Taking into account the varying costs of fixing bugs, depending on which stage of the software

development cycle the bug is detected in, this paper uses two approaches – one model which can be

employed when the ‘cost of changing code’ curve is exponential and the other model can be used otherwise.

The cases where each model is best suited are discussed. This paper proposes a model that can be deployed

on a cloud platform for software development companies to use. The model in this paper aims to predict the

presence or absence of a bug in the code, using machine learning classification models. Using Microsoft

Azure’s machine learning platform this model can be distributed as a web service worldwide, thus providing

Bug Prediction as a Service (BPaaS).

Software Engineering Approach to Bug Prediction Models Using

Machine Learning as a Service (MLaaS)

Uma Subbiah

Department of Computer Science and Engineering

Amrita School of Engineering

Amrita Vishwa Vidyapeetham

Coimbatore, India

umasubbiah19@gmail.com

Dr. Muthu Ramachandran

School of Computing, Creative Technologies, and Engineering

Leeds Beckett University

Leeds, UK

M.Ramachandran@leedsbeckett.ac.uk

Dr. Zaigham Mahmood

Debesis Education, UK

Shijiazhuang Tiedao University, Hebei, China

United Kingdom

mailto:umasubbiah19@gmail.com

1 INTRODUCTION

The presence of bugs in any written software in
inevitable. However, the cost of fixing these bugs
varies significantly, depending on when the bug is
detected. Boehm’s cost of change curve (Figure 1) is
an exponential curve, implying that the cost of fixing
a bug at a given stage will always be greater than the
cost of fixing it at an earlier stage (Boehm, 1976).
Hence, if software developers are able to detect bugs
at an earlier stage, the cost incurred in fixing the bug
would be significantly lower.

More recent trends revolve around the fact that bugs
can now be predicted, much before they are
detected. So, by determining the presence or absence
of a bug in a software release, developers can predict
the success of a software release even before it is
released, based on a few features (characteristics) of
the release version. If this prediction is performed at
a stage earlier than production in the software
development cycle, it will reduce the cost of fixing

the bug. Moreover, if the information available at the
production stage of a version release is fed back
(Ambler, 2009) to the requirements stage (Figure 2),
we might be able to develop a bug prediction model
efficient enough to be used commercially in the
software development industry.

This prediction can be done using machine
learning techniques. This paper uses Microsoft’s
popular MLaaS cloud tool Azure to make these
predictions and compare the results.

This paper goes on to propose the use of
machine learning as a service (MLaaS) to provide a
viable solution to software developers for predicting
the presence of bugs in the written software, thereby
providing Bug Prediction as a Service (BPaaS).

2 LITERATURE REVIEW

Software companies around the world use predictive
analysis to determine how many bugs will appear in
the code or which part of the code is more prone to
bugs. This has helped cut down losses due to
commercial failure of software releases. However,
the extent to which these measures reduce the cost of
changing the code is yet to be explored. By looking
at the cost of change curve (Boehm, 1976; Beck,
1999) for various software development methods it
is evident that the earlier a bug is fixed, the less it
will cost a company to rectify the bug. More
recently, service oriented computing allows for
software to be composed of reusable services, from
various providers. Bug prediction methods can thus
be provided as a reusable service with the help of
machine learning on the cloud.

2.1 Early use of machine learning

The use of machine learning to create an entirely
automated method of deciding the action to be taken
by a company when a bug is reported was first
proposed by Čubranić and Murphy (2004). The
method adopted uses text categorization to predict
bug severity. This method works correctly on 30%
of the bugs reported to developers. Sharma, Sharma
and Gujral (2015) use feature selection to improve
the accuracy of the bug prediction model. Info gain
and Chi square selection methods are used to extract
the best features to train a naive Bayes multinomial
algorithm and a K-nearest neighbours algorithm.

2.2 Bug prediction

The above mentioned methods work when the bug is
directly reported, though they introduce the concept

Figure 1: The traditional cost of change curve

Figure 2: The traditional cost of change curve
with feedback

Flow of information

of machine learning for software defect
classification. The following papers aim to predict
the presence of a bug in the software release.

Sivaji et al. (2015) envisions bug prediction
methods being built into the development
environment for maximum efficiency. This requires
an exceptionally accurate model. They weigh the
gain ratio of each feature and select the best features
from the dataset to predict bugs in file level changes.
They conclude that of the entire dataset, 4.1 – 12.52
% of the total feature set yields the best result for file
level bug prediction. Zimmermann, Premraj and
Zeller (2007) address the important question – which
component of a buggy software actually contains the
defect. It analyses bug reports at the file and package
level using logistic regression models. The use of
linear regression to compute a bug proneness index
is explored by Puranik, Deshpande and
Chandrasekharan (2016). They perform both linear
and multiple regression to find a globally well fitting
curve for the dataset. This approach of using
regression for bug prediction did not yield
convincing results. In agreement with Challagulla et
al. (2005), since one prediction model cannot be
prescribed to all datasets, this paper documents the
evaluation metrics of various prediction models.
This paper too, did not find any significant
advantage of using feature extraction and/or
principle component analysis (PCA) on the dataset
prescribed by D'Ambros, Lanza and Robbes (2010).

2.3 Dataset

An extensive study of the various methods of
predicting bugs in class level changes of six open
source systems was conducted by (D'Ambros, Lanza
and Robbes, 2010). The paper proposed a dataset
that would best fit a prediction model for bug
prediction in class level changes of the Eclipse IDE.
This dataset has been used for bug prediction in this
paper. According to previous findings (Nagappan
and Ball, 2005; Nagappan, Ball and Zeller, 2006) the
dataset that was used to train the prediction model
includes code churn as a major feature and is given
due weightage. By including bug history data along
with software metrics, in particular CK metrics in
the dataset used for prediction, we hope to improve
the prediction accuracy. In future we shall work
towards overcoming the `lack of formal theory of
program` in bug prediction as specified by Fenton
and Neil (1999).

3 BUG PREDICTION IN
SOFTWARE DEVELOPMENT

3.1 Importance of Bug Prediction

A software defect may be an error in the code
causing abnormal functionality of the software or a
feature that does not conform to the requirements.
Either way, the presence of a bug is undesirable in
the commercial release of a software or a version
thereof. The most common bugs occur during the
coding and designing stages. The Software Fail
Watch report- 5th edition (https://www.tricentis.com/
software-fail-watch, 2018) by a software company
called Tricentis claimed that 606 reported software
bugs had caused a loss of $1.7 trillion worldwide, in
2017. It is evident that an efficient means of
predicting software defects will help cut down the
loss due to software production globally.

3.2 Current Bug Prediction in the
Market.

The waterfall model of software development
suggests testing for defects after integrating all of the
components in the system. However, testing each
unit or component after it has been developed
increases the probability of finding a defect.

The iterative model incorporates a testing
phase for each smaller iteration of the complete
software system. This leads to a greater chance of
finding the bugs earlier in the development cycle.

The V-model has intense testing and
validation phases. Functional defects are hard to
modify in this model, since it is hard to go back once
a component is in the testing phase. The agile model
also uses smaller iterations and a testing phase in
each iteration.

The various prototyping models too have
testing methods for each prototype that is created.
From this, we can see that the testing phase is
always done later on in the development cycle. This
will inevitably lead to larger costs of fixing the
defect.

The model that this paper proposes for bug
prediction hopes to predict the presence of a bug at
an earlier stage, by feeding back information gained
throughout the development cycle of one version
release to the beginning of the next version release
(i.e.,) given information from previous bug reports
and specifics of the current version release, the
model will predict whether the software is buggy or
not. A more sophisticated prediction model may
even tell the developer which part of the code
actually contains the bug. This may replace

traditional methods of software testing like black
box, white box, grey box, agile and ad hoc testing.

3.3 Cost of Change

This paper works on two models trained on two
different datasets of bug reports form an Eclipse
version release. One model predicts the presence of
a bug based only on the types of bugs found in
versions before this release. This model can be used
to fix a bug at the earliest stage, with minimal cost.
The second model uses a dataset of CK metrics and
code attributes to predict a defect. Though the
second model has a slightly better performance, the
details in the dataset used to train the second model
will only be available to the developer during design
or (worst case) after the coding stage.

This paper proposes two models – one based
solely on previous version data and a second based
on attributes of the class in the current version. If
Ambler’s cost of change curve (Figure 3) is
followed (for the agile software development cycle),
the first model is preferred, since it can predict
buggy code at an earlier stage. However, if Kent
Beck’s cost of change curve (Figure 4) (Beck, 1999)
for eXtreme Programming (XP) is followed, the
second model’s higher AUC score (though available
only at a later stage) might be more desirable, since
the cost does not grow exponentially.

3.4 Bug Prediction as a Service

Figure 5 shows the schematic flowchart of the
process of bug prediction using machine learning.
The bug reports from various development
environments along with various software metrics
are stored in a bug database. This database is used to
train a suitable machine learning model. By
deploying the machine learning model on the cloud,
bug prediction can be provided as a cloud based
service to software development companies across
the world.

4 DATASET

The models that this paper proposes are based on
two different datasets, both of which are freely
available at http://bug.inf.usi.ch. For this paper, the
“Change metrics (15) plus categorized (with severity
and priority) post-release defects” dataset for model
1 and the “Churn of CK and other 11 object oriented
metrics over 91 versions of the system” dataset for
model 2 have been used, but this method can easily
be extended to any dataset required.

4.1 Model 1

The “Change metrics (15) plus categorized (with
severity and priority) post-release defects” dataset
used to train the first model is described below:

Figure 3: Ambler’s traditional cost of change curve

Figure 4: Kent Beck’s cost of change curve

Figure 5: Bug Prediction as a Service (BPaaS) Life
Cycle diagram.

http://bug.inf.usi.ch/

4.1.1 Description

The features in the dataset are:
1. classname
2. numberOfVersionsUntil
3. numberOfFixesUntil
4. numberOfRefactoringsUntil
5. numberOfAuthorsUntil
6. linesAddedUntil
7. maxLinesAddedUntil
8. avgLinesAddedUntil
9. linesRemovedUntil
10. maxLinesRemovedUntil
11. avgLinesRemovedUntil
12. codeChurnUntil
13. maxCodeChurnUntil
14. avgCodeChurnUntil
15. ageWithRespectTo
16. weightedAgeWithRespectTo
17. bugs
18. nonTrivialBugs
19. majorBugs
20. criticalBugs
21. highPriorityBugs

Since this paper aims to detect the presence or
absence of bugs in a software release, we replace
columns 17, 18, 19, 20 and 21 with a single column.
Let the name of the column be ‘clean’; it will take
the value 1 if there are no bugs in the code, and a
value 0 if at least one bug exists in the software.

4.2 Model 2

The “Churn of CK and other 11 object oriented
metrics over 91 versions of the system” dataset used
to train model 2 uses CK metrics to predict the
presence of bugs in a software release.

4.2.1 CK metrics

Code churn refers to the amount of change made to
the code of a software system / component. This is
used along with CK metrics in this dataset. The
Chidamber and Kemerer metrics were first proposed
in 1994, specifically for object oriented design of
code. The CK metrics are explained in Table 1.

 CBO (Coupling between Objects) CBO is
the number of classes that a given class is coupled
with. If a class uses variables of another class or
calls methods of the other class, the classes are said

to be coupled. The lower the CBO, the better, since
the independence of classes decreases with increase
in coupling.
 DIT (Depth of Inheritance Tree) DIT is the
number of classes that a given class inherits from.
DIT should be maximal because a class is more
reusable, if it inherits from many other classes.
 LCOM (Lack of Cohesion of Methods)
LCOM is the number of pairs of functions that
access the same data (i.e.,) variables. A larger
LCOM indicates more cohesion, which is more
desirable.
 NOC (Number of Children) NOC is the
number of immediate subclasses to a class. NOC is
directly proportional to the reusability, since
inheritance is a form of reuse (Bieman and Zhao,
1995). Hence, NOC should be large.
 RFC (Response For Class) RFC is the sum
of the number of methods in the class and the
number of methods called by the class. A large RFC
is usually the result of complex code, which is not
desirable.
 WMC (Weighted Methods for Class) WMC
is a measure of the total complexity of all the
functions in a class. WMC must be low for the code
to be simple and straightforward to test and debug.

4.2.2 Description

The features in the dataset are:

1. classname
2. cbo
3. dit
4. fanIn
5. fanOut
6. lcom
7. noc
8. numberOfAttributes
9. numberOfAttributesInherited
10. numberOfLinesOfCode
11. numberOfMethods
12. numberOfMethodsInherited
13. numberOfPrivateAttributes
14. numberOfPrivateMethods
15. numberOfPublicAttributes
16. numberOfPublicMethods
17. rfc
18. wmc
19. bugs
20. nonTrivialBugs
21. majorBugs
22. criticalBugs
23. highPriorityBugs

Column 4 fanIn refers to the count of classes that
access a particular class, while Column 5 fanOut is

for every entry i in the dataset:
clean

i
= 1 , if bugs

i
 =0

 0, otherwise

the number of classes that are accessed by the class
under study. Here, accessing a class could mean
calling a method or referencing a variable.

Again, to detect the presence or absence of bugs in a
software release, we replace columns 19, 20 and 21,
22, 23 with a single column. Let the name of the
column be ‘clean’; it will take the value 1 if there are
no bugs in the code, and a value 0 if at least one bug
exists in the software.

5. EXPERIMENT

5.1 MLaaS

Machine Learning as a Service is a term used for the
cloud services that provide automated machine
learning models with in-built preprocessing,
training, evaluation and prediction modules. Some
of the forerunners in this domain are Amazon’s
Machine Learning services, Microsoft’s Azure
Machine Learning and Google’s Cloud AI, to name
a few. MLaaS has a huge potential (Yao et al., 2010)
and is also much easier to deploy as a web service,
for software companies worldwide.

5.2 Microsoft Azure

Azure is Microsoft’s cloud computing service which
provides a wide variety of services globally. The
Azure ML Studio is a component of the Cortana
Intelligence Suite for predictive analysis and
machine learning. It has a user friendly interface and
allows for easy testing of a number of machine
learning models provided by the studio. Azure
provides an option to set up a web service, in turn
allowing bug prediction to be provided as a service
on the cloud. A schematic flowchart for the process
is shown in Figure 6.

5.3 Machine Learning Models

The four categories of machine learning models
offered by Microsoft Azure are Anomaly detection,
Classification, Clustering and Regression. Anomaly
detection is usually used to detect rare, unusual data
entries from a dataset. Classification is used to
categorize data. Clustering groups the data into as
many sets as it may hold, usually useful for
discovering the structure of the dataset. Regression
is used to predict a value in a specified range.

Therefore, we use binomial classification for both
the models to categorize our dataset into two classes
– buggy or clean.

6. RESULTS

6.1 Metrics

Each predicted outcome of the experiment (i.e.,) the
code is clean or buggy can be classified under one of
the following types:

1. True Positive (TP)
2. True Negatives (TN)
3. False Positives (FP)
4. False Negatives (FN)

The definition of each type is given in Figure 7.

The criteria used to evaluate the classification model
are:

 Accuracy:
Accuracy is the ratio of correct predictions
to the total number of predictions.

 Accuracy =

for every entry i in the dataset:
clean

i
= 1 , if bugs

i
 =0

 0, otherwise

Figure 6: Schematic flowchart of the machine
learning experiment in Azure.

(TP+TN)

(TP+FP+TN+FN)

 Precision
Precision is the proportion of the

positive predictions that are actually
positive.

 Precision =

 Recall
Recall is the proportion of the positive

observations that are predicted to be
positive.

 Recall =

 F1 Score
F1 score is the harmonic average of

the precision and the recall. It is not as
intuitive as the other metrics, however it is
often a good measure of the efficiency of
the model. F1 score is a good metric to

follow if both false positives and false
negatives have the same cost (or here, loss
incurred by the company).

 F1 Score =

 Area Under the Receiver Operating Curve
The AUC denotes the probability that

a positive prediction chosen at random is
ranked higher than a negative prediction
chosen at random by the model.

6.2 Obtained Results

There are nine models offered by Azure ML Studio
for binomial classification. They are logistic
regression, decision forest, decision jungle, boosted
decision tree, neural network, averaged perceptron,
support vector machine, locally deep support vector
machine and Bayes’ point machine.

The results from training model 1 and model
2 on each of the nine models are tabulated in Table 1
and Table 2 respectively.

The threshold is a measure of trade off
between false positives and false negatives. Here, a
false positive would be a clean software version
being classified as buggy. This is of great burden on
the developer who ay spend hours searching for a
bug that does not exist. A false negative would mean
a bug in the release, which is a bother to the end
user. Assuming the loss due to both these situations
is the same, the threshold was set to 0.5.

6.3 Interpretation

From Table 1 and table 2, we conclude that a two
class averaged perceptron model for the first dataset

Figure 7: Classification of Predicted Outcomes.

(TP)

(TP+FP)

(TP)

(TP+FN)

(2∗Recall∗Precision)

(Recall+Precision)

Table 1 : Results obtained from various classification models with training dataset 1.

and a two class decision jungle for the second
dataset are the best suited.

The ROC curves for both the datasets are
plotted in Figure 8 and Figure 10. The high area
under the ROC curve indicates a high chance that a

positive prediction chosen at random will be ranked
higher than a negative prediction chosen at random.

The Precision-Recall curves are plotted in
Figure 9 and Figure 11. The area under the precision
recall graph in very high in Figure 9 denoting a high

Table 2 : Results obtained from various classification models with training dataset 2.

Figure 8 : The ROC curve for model 1

Figure 10 : The ROC curve for model 2

Figure 9 : The Precision-Recall curve for model 1

Figure 11 : The Precision-Recall curve for model 2

precision and a high recall. Since high precision
corresponds to a low FP rate and high recall
corresponds to a low FN rate, this denotes that this
model is very accurate. These graphs are plotted by
the Microsoft Azure ML Studio under the option
‘Evaluate model’.

We have given equal weightage to all five
evaluation metrics used in this paper, and have
decided upon a suitable model. However, the metrics
for various models have all been documented for
comparison. A software tester may feel that a
different evaluation metric describes his needs
better, for instance when a false positive costs more
than a false negative or vice versa. In such cases, the
machine learning model can easily be switched for a
more suitable machine learning model. This is the
advantage of using machine learning as a service
(MLaaS) on the cloud for bug prediction.

7. CONCLUSION AND FUTURE
WORK

The model proposed by this paper has an F1
score of 91.5% for model 1, which works with only
previously known data, so as to predict the presence
of a bug in the earliest possible stage of software
development. This is more suitable for agile
software development, where the F1 score combined
with a reduced cost of rectifying the defect
(according to Ambler’s cost of change curve) is
profitable. The second model proposed uses a two
class decision jungle model with an F1 score of
90.7%. This model uses details known at design and
coding phase, to predict the presence of a bug and
can be used in XP development due to the level
increase in the cost of change curve. The accuracy
and precision of the models in this paper are high
enough for these models to be commercially used in
software development companies. Moreover, the
memory footprint of the two class decision jungle is
lower than any other model. Future work may
include increasing the accuracy of these models with
commercial datasets (as opposed to the open-
sourced datasets used in this experiment). The use of
MLaaS in this paper allows the bug prediction
models to be deployed on the cloud, as a service.
When these models are provided as a web service on
the cloud, the proposed model of Bug Prediction as a
Service becomes a viable option for software
development companies.

8. REFERENCES

Boehm, B., 1976. ‘Software Engineering and Knowledge
Engineering’, Proceedings of IEEE Transactions on
Computers. IEEE, pp. 1226–1241.

Scott W. Ambler. 2009. Why Agile Software
Development Techniques work: Improved feedback.
[ONLINE] Available at: http://www.ambysoft.com.

Čubranić, D. & Murphy, G. C., 2004. ‘Automatic bug
triage using text classification’, Proceedings of
Software Engineering and Knowledge Engineering.
pp. 92–97.

Sharma, G., Sharma, S. & Gujral, S., 2015. ‘A Novel Way
of Assessing Software Bug Severity Using Dictionary
of Critical Terms’, Procedia Computer Science, 70,
pp.632–639.

Shivaji, S. et al., 2009. Reducing Features to Improve Bug
Prediction, Proceedings of IEEE/ACM International
Conference on Automated Software Engineering. pp.
600–604.

D'Ambros, M., Lanza, M. & Robbes, R., 2010. An
extensive comparison of bug prediction approaches.
Proceedings of the 7th IEEE Working Conference on
Mining Software Repositories (MSR).

Puranik, S., Deshpande, P. & Chandrasekaran, K., 2016. A
Novel Machine Learning Approach for Bug Prediction.
Procedia Computer Science, pp.924–930.

Zimmermann, T., Premraj, R. & Zeller, A., 2007.
Predicting Defects for Eclipse. Proceedings of the
Third International Workshop on Predictor Models in
Software Engineering. p. 9.

Fenton, N.E. & Neil, M., 1999. ‘A critique of software
defect prediction models’, Proceedings of IEEE
Transactions on Software Engineering, pp. 675–689.

Challagulla, V. U. B., Bastani, F. B.; Yen, I-Ling, Paul, R.
A., (2005). ‘Empirical assessment of machine learning
based software defect prediction techniques’,
Proceedings of the 10th IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems.
pp. 263-270.

Nagappan, N. & Ball, T., 2005. ‘Use of Relative Code
Churn Measures to Predict System Defect Density’,
Proceedings of the 27th international conference on
Software engineering, St. Louis, pp. 284–292.

Nagappan, N., Ball, T. & Zeller, A., 2006. ‘In Mining
metrics to predict component failures’, Proceedings of
the 28th international conference on Software
engineering, Shanghai, pp. 452–461.

Tricentis, 2018. Software Fail Watch: 5th Edition,
Tricentis. Available at:
https://www.tricentis.com/software-fail-watch.

Yao, Y et al., 2010. Complexity vs. performance:
empirical analysis of machine learning as a service.
Proceedings of the Internet Measurement Conference.
pp. 384–397.

Chidamber, S. R. and Kemerer, C. F., 1994, ‘A Metrics
Suite for Object Oriented Design’, Proceedings of

http://www.ambysoft.com/

IEEE Transactions on Software Engineering, 20(6),
pp. 476-493.

Hand, D.J. & Till, R.J., 2001. A Simple Generalisation of
the Area Under the ROC Curve for Multiple Class
Classification Problems. Machine Learning, 45(2),
pp.171–186.

Hassan, A.E. & Holt, R.C., 2005. ‘The top ten list:
dynamic fault prediction’, Proceedings of the 21st
IEEE International Conference on Software
Maintenance, pp. 263–272.

Beck, K., 1999. Extreme programming explained:
embrace change, Boston, MA: Addison-Wesley
Longman.

Bieman, J. & Zhao, J.X., 1995. Reuse through inheritance:
a quantitative study of C software. Proceedings of
Symposium on Software reusability. pp. 47–52.

	1 introduction
	2 literature review
	3 Bug Prediction in Software Development
	4 Dataset

