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Abstract: The presence of bugs in a software release has become inevitable. The losses incurred by a company due to

the presence of bugs in a software release is phenomenal. Modern methods of testing and debugging have

shifted focus from “detecting”  to “predicting” bugs in the code. The existing models of bug prediction have

not been optimized for commercial use. Moreover, the scalability of these models has not been discussed in

depth yet. Taking into account the varying costs of fixing bugs, depending on which stage of the software

development  cycle  the bug  is  detected in,  this  paper  uses  two approaches –  one model  which can be

employed when the ‘cost of changing code’ curve is exponential and the other model can be used otherwise.

The cases where each model is best suited are discussed. This paper proposes a model that can be deployed

on a cloud platform for software development companies to use. The model in this paper aims to predict the

presence or absence of a bug in the code, using machine learning classification models. Using Microsoft

Azure’s machine learning platform this model can be distributed as a web service worldwide, thus providing

Bug Prediction as a Service (BPaaS). 
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1 INTRODUCTION

The  presence  of  bugs  in  any  written  software  in
inevitable.  However,  the  cost  of  fixing these  bugs
varies significantly, depending on when the bug is
detected. Boehm’s cost of change curve (Figure 1) is
an exponential curve, implying that the cost of fixing
a bug at a given stage will always be greater than the
cost of fixing it at an earlier stage (Boehm, 1976).
Hence, if software developers are able to detect bugs
at an earlier stage, the cost incurred in fixing the bug
would be significantly lower. 

More recent trends revolve around the fact that bugs
can  now  be  predicted,  much  before  they  are
detected. So, by determining the presence or absence
of a bug in a software release, developers can predict
the success  of a  software release  even before it  is
released, based on a few features (characteristics) of
the release version.  If this prediction is performed at
a  stage  earlier  than  production  in  the  software
development cycle, it will reduce the cost of fixing

the bug. Moreover, if the information available at the
production  stage  of  a  version  release  is  fed  back
(Ambler, 2009) to the requirements stage (Figure 2),
we might be able to develop a bug prediction model
efficient  enough  to  be  used  commercially  in  the
software development industry. 

This  prediction  can  be  done  using  machine
learning  techniques.  This  paper  uses  Microsoft’s
popular  MLaaS  cloud  tool  Azure  to  make  these
predictions and compare the results. 

This  paper  goes  on  to  propose  the  use  of
machine learning as a service (MLaaS) to provide a
viable solution to software developers for predicting
the presence of bugs in the written software, thereby
providing Bug Prediction as a Service (BPaaS).

2 LITERATURE REVIEW

Software companies around the world use predictive
analysis to determine how many bugs will appear in
the code or which part of the code is more prone to
bugs.  This  has  helped  cut  down  losses  due  to
commercial  failure  of  software  releases.  However,
the extent to which these measures reduce the cost of
changing the code is yet to be explored. By looking
at  the  cost  of  change  curve  (Boehm,  1976;  Beck,
1999) for various software development methods it
is evident that the earlier a bug is fixed, the less it
will  cost  a  company  to  rectify  the  bug.  More
recently,  service  oriented  computing  allows  for
software to be composed of reusable services, from
various providers. Bug prediction methods can thus
be provided as a reusable service with the help of
machine learning on the cloud.

2.1 Early use of machine learning

The use  of  machine  learning  to  create  an  entirely
automated method of deciding the action to be taken
by  a  company  when  a  bug  is  reported  was  first
proposed  by  Čubranić  and  Murphy  (2004).  The
method adopted uses  text  categorization to  predict
bug severity. This method works correctly on 30%
of the bugs reported to developers. Sharma, Sharma
and Gujral (2015) use feature selection to improve
the accuracy of the bug prediction model. Info gain
and Chi square selection methods are used to extract
the best features to train a naive Bayes multinomial
algorithm and a K-nearest neighbours algorithm.

2.2 Bug prediction

The above mentioned methods work when the bug is
directly reported, though they introduce the concept

Figure 1: The traditional cost of change curve

Figure 2: The traditional cost of change curve 
with feedback
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of  machine  learning  for  software  defect
classification.  The following papers  aim to predict
the presence of a bug in the software release. 

Sivaji et al. (2015) envisions bug prediction
methods  being  built  into  the  development
environment for maximum efficiency. This requires
an  exceptionally  accurate  model.  They  weigh  the
gain ratio of each feature and select the best features
from the dataset to predict bugs in file level changes.
They conclude that of the entire dataset, 4.1 – 12.52
% of the total feature set yields the best result for file
level  bug  prediction.  Zimmermann,  Premraj  and
Zeller (2007) address the important question – which
component of a buggy software actually contains the
defect. It analyses bug reports at the file and package
level  using  logistic  regression  models.  The use  of
linear regression to compute a bug proneness index
is  explored  by  Puranik,  Deshpande  and
Chandrasekharan (2016).  They perform both linear
and multiple regression to find a globally well fitting
curve  for  the  dataset.  This  approach  of  using
regression  for  bug  prediction  did  not  yield
convincing results. In agreement with Challagulla et
al.  (2005),  since  one  prediction  model  cannot  be
prescribed to all datasets, this paper documents the
evaluation  metrics  of  various  prediction  models.
This  paper  too,  did  not  find  any  significant
advantage  of  using  feature  extraction  and/or
principle component analysis (PCA) on the dataset
prescribed by D'Ambros, Lanza and Robbes (2010).

2.3 Dataset

An  extensive  study  of  the  various  methods  of
predicting bugs in class level  changes of  six open
source systems was conducted by (D'Ambros, Lanza
and  Robbes,  2010).  The paper  proposed  a  dataset
that  would  best  fit  a  prediction  model  for  bug
prediction in class level changes of the Eclipse IDE.
This dataset has been used for bug prediction in this
paper.  According  to  previous  findings  (Nagappan
and Ball, 2005; Nagappan, Ball and Zeller, 2006) the
dataset that was used to train the prediction model
includes code churn as a major feature and is given
due weightage. By including bug history data along
with software  metrics,  in  particular  CK metrics in
the dataset used for prediction, we hope to improve
the  prediction  accuracy.  In  future  we  shall  work
towards  overcoming the  `lack  of  formal  theory  of
program` in bug prediction as specified by Fenton
and Neil (1999).

3 BUG PREDICTION IN 
SOFTWARE DEVELOPMENT

3.1 Importance of Bug Prediction

A software defect may be an error in the code
causing abnormal functionality of the software or a
feature  that  does not conform to the requirements.
Either way, the presence of a bug is undesirable in
the commercial  release  of  a  software  or  a  version
thereof.  The most  common bugs  occur  during  the
coding  and  designing  stages.  The  Software  Fail
Watch report- 5th edition (https://www.tricentis.com/
software-fail-watch,  2018) by a  software  company
called Tricentis claimed that 606 reported software
bugs had caused a loss of $1.7 trillion worldwide, in
2017.  It  is  evident  that  an  efficient  means  of
predicting software defects  will  help cut down the
loss due to software production globally. 

3.2  Current  Bug  Prediction  in  the
Market.

The  waterfall  model  of  software  development
suggests testing for defects after integrating all of the
components  in  the  system.  However,  testing  each
unit  or  component  after  it  has  been  developed
increases the probability of finding a defect. 

The  iterative  model  incorporates  a  testing
phase  for  each  smaller  iteration  of  the  complete
software system. This leads to a greater  chance of
finding the bugs earlier in the development cycle. 

The  V-model  has  intense  testing  and
validation  phases.  Functional  defects  are  hard  to
modify in this model, since it is hard to go back once
a component is in the testing phase. The agile model
also uses  smaller  iterations  and a testing phase  in
each iteration. 

The  various  prototyping  models  too  have
testing methods for  each  prototype that  is  created.
From  this,  we  can  see  that  the  testing  phase  is
always done later on in the development cycle. This
will  inevitably  lead  to  larger  costs  of  fixing  the
defect. 

The model that  this paper proposes for bug
prediction hopes to predict the presence of a bug at
an earlier stage, by feeding back information gained
throughout  the  development  cycle  of  one  version
release to the beginning of the next version release
(i.e.,)  given information from previous bug reports
and  specifics  of  the  current  version  release,  the
model will predict whether the software is buggy or
not.  A  more  sophisticated  prediction  model  may
even  tell  the  developer  which  part  of  the  code
actually  contains  the  bug.  This  may  replace



traditional  methods  of  software  testing  like  black
box, white box, grey box, agile and ad hoc testing.

 
3.3 Cost of Change

This  paper  works  on  two  models  trained  on  two
different  datasets  of  bug  reports  form  an  Eclipse
version release. One model predicts the presence of
a  bug  based  only  on  the  types  of  bugs  found  in
versions before this release. This model can be used
to fix a bug at the earliest stage, with minimal cost.
The second model uses a dataset of CK metrics and
code  attributes  to  predict  a  defect.  Though  the
second model has a slightly better performance, the
details in the dataset used to train the second model
will only be available to the developer during design
or (worst case) after the coding stage. 

This paper proposes two models – one based
solely on previous version data and a second based
on attributes of the class in the current  version. If
Ambler’s  cost  of  change  curve  (Figure  3)  is
followed (for the agile software development cycle),
the  first  model  is  preferred,  since  it  can  predict
buggy code  at  an  earlier  stage.  However,  if  Kent
Beck’s cost of change curve (Figure 4) (Beck, 1999)
for  eXtreme  Programming  (XP)  is  followed,  the
second model’s higher AUC score (though available
only at a later stage) might be more desirable, since
the cost does not grow exponentially.

3.4 Bug Prediction as a Service

Figure  5  shows  the  schematic  flowchart  of  the
process  of  bug  prediction  using  machine  learning.
The  bug  reports  from  various  development
environments  along  with  various  software  metrics
are stored in a bug database. This database is used to
train  a  suitable  machine  learning  model.  By
deploying the machine learning model on the cloud,
bug  prediction  can  be  provided  as  a  cloud  based
service  to  software  development  companies  across
the world. 

4 DATASET

The models  that  this  paper  proposes  are  based  on
two  different  datasets,  both  of  which  are  freely
available at  http://bug.inf.usi.ch. For this paper, the
“Change metrics (15) plus categorized (with severity
and priority) post-release defects” dataset for model
1 and the “Churn of CK and other 11 object oriented
metrics over 91 versions of the system” dataset for
model 2 have been used, but this method can easily
be extended to any dataset required. 

4.1 Model 1

The  “Change  metrics  (15)  plus  categorized  (with
severity  and  priority)  post-release  defects”  dataset
used to train the first model is described below:

Figure 3: Ambler’s traditional cost of change curve

Figure 4: Kent Beck’s  cost of change curve

Figure 5: Bug Prediction as a Service (BPaaS) Life 
Cycle diagram.

http://bug.inf.usi.ch/


4.1.1 Description

The features in the dataset are:
1.  classname 
2.  numberOfVersionsUntil
3.  numberOfFixesUntil
4.  numberOfRefactoringsUntil  
5.  numberOfAuthorsUntil
6.  linesAddedUntil  
7.  maxLinesAddedUntil  
8.  avgLinesAddedUntil  
9.  linesRemovedUntil  
10.  maxLinesRemovedUntil  
11.  avgLinesRemovedUntil  
12.  codeChurnUntil  
13.  maxCodeChurnUntil  
14.  avgCodeChurnUntil  
15.  ageWithRespectTo  
16.  weightedAgeWithRespectTo  
17.  bugs 
18.  nonTrivialBugs 
19.  majorBugs 
20.  criticalBugs 
21.  highPriorityBugs 

Since this paper aims to detect the presence or
absence  of  bugs in  a  software  release,  we replace
columns 17, 18, 19, 20 and 21 with a single column.
Let the name of the column be ‘clean’; it will take
the value 1 if there are no bugs in the code, and a
value 0 if at least one bug exists in the software.

4.2 Model 2

The  “Churn  of  CK  and  other  11  object  oriented
metrics over 91 versions of the system” dataset used
to  train  model  2  uses  CK  metrics  to  predict  the
presence of bugs in a software release. 

4.2.1 CK metrics

Code churn refers to the amount of change made to
the code of a software system / component. This is
used  along  with  CK  metrics  in  this  dataset.  The
Chidamber and Kemerer metrics were first proposed
in  1994,  specifically  for  object  oriented  design  of
code. The CK metrics are explained in Table 1.

 CBO (Coupling between Objects)   CBO is
the number of classes that a given class is coupled
with.  If  a  class  uses  variables  of  another  class  or
calls methods of the other class, the classes are said

to be coupled. The lower the CBO, the better, since
the independence of classes decreases with increase
in coupling.  
 DIT (Depth of Inheritance Tree)  DIT is the
number of classes that a given class inherits from.
DIT  should  be  maximal  because  a  class  is  more
reusable, if it inherits from many other classes.
 LCOM  (Lack  of  Cohesion  of  Methods)
LCOM  is  the  number  of  pairs  of  functions  that
access  the  same  data  (i.e.,)  variables.  A  larger
LCOM  indicates  more  cohesion,  which  is  more
desirable.
 NOC  (Number  of  Children)  NOC  is  the
number of immediate subclasses to a class. NOC is
directly  proportional  to  the  reusability,  since
inheritance  is  a  form of reuse  (Bieman and Zhao,
1995). Hence, NOC should be large.
 RFC (Response For Class) RFC is the sum
of  the  number  of  methods  in  the  class  and  the
number of methods called by the class. A large RFC
is usually the result of complex code, which is not
desirable. 
 WMC (Weighted Methods for Class) WMC
is  a  measure  of  the  total  complexity  of  all  the
functions in a class. WMC must be low for the code
to be simple and straightforward to test and debug.

4.2.2 Description

The features in the dataset are:

1. classname 
2.  cbo 
3.  dit 
4.  fanIn 
5.  fanOut 
6.  lcom 
7.  noc 
8.  numberOfAttributes 
9.  numberOfAttributesInherited 
10.  numberOfLinesOfCode 
11.  numberOfMethods 
12.  numberOfMethodsInherited 
13.  numberOfPrivateAttributes 
14.  numberOfPrivateMethods 
15.  numberOfPublicAttributes 
16.  numberOfPublicMethods 
17.  rfc 
18.  wmc 
19.  bugs 
20.  nonTrivialBugs 
21.  majorBugs 
22.  criticalBugs 
23.  highPriorityBugs 

Column 4 fanIn refers  to the count of classes that
access a particular class, while Column 5 fanOut is

for every entry i in the dataset:
clean

i 
=    1 , if bugs

i
 =0

    0, otherwise



the number of classes that are accessed by the class
under  study.  Here,  accessing  a  class  could  mean
calling a method or referencing a variable.

Again, to detect the presence or absence of bugs in a
software release, we replace columns 19, 20 and 21,
22, 23 with a single column. Let the name of  the
column be ‘clean’; it will take the value 1 if there are
no bugs in the code, and a value 0 if at least one bug
exists in the software.

5. EXPERIMENT

5.1 MLaaS

Machine Learning as a Service is a term used for the
cloud  services  that  provide  automated  machine
learning  models  with  in-built  preprocessing,
training,  evaluation  and  prediction  modules.  Some
of  the  forerunners  in  this  domain  are  Amazon’s
Machine  Learning  services,  Microsoft’s  Azure
Machine Learning and Google’s Cloud AI, to name
a few. MLaaS has a huge potential (Yao et al., 2010)
and is also much easier to deploy as a web service,
for software companies worldwide.

5.2 Microsoft Azure

Azure is Microsoft’s cloud computing service which
provides  a  wide  variety  of  services  globally.  The
Azure  ML Studio  is  a  component  of  the  Cortana
Intelligence  Suite  for  predictive  analysis  and
machine learning. It has a user friendly interface and
allows  for  easy  testing  of  a  number  of  machine
learning  models  provided  by  the  studio.  Azure
provides an option to set up a web service, in turn
allowing bug prediction to be provided as a service
on the cloud. A schematic flowchart for the process
is shown in Figure 6.

5.3 Machine Learning Models

The  four  categories  of  machine  learning  models
offered by Microsoft Azure are Anomaly detection,
Classification, Clustering and Regression.  Anomaly
detection is usually used to detect rare, unusual data
entries  from  a  dataset.  Classification  is  used  to
categorize  data.  Clustering groups the data into as
many  sets  as  it  may  hold,  usually  useful  for
discovering the structure of the dataset. Regression
is  used  to  predict  a  value  in  a  specified  range.

Therefore,  we use  binomial  classification  for  both
the models to categorize our dataset into two classes
– buggy or clean.

 

6. RESULTS

6.1 Metrics

Each predicted outcome of the experiment (i.e.,)  the
code is clean or buggy can be classified under one of
the following types:

1. True Positive (TP) 
2. True Negatives (TN)
3. False Positives (FP)
4. False Negatives (FN)

The definition of each type is given in Figure 7.

The criteria used to evaluate the classification model
are:

 Accuracy:
Accuracy is the ratio of correct predictions
to the total number of predictions.

   Accuracy =

for every entry i in the dataset:
clean

i 
=    1 , if bugs

i
 =0

    0, otherwise

Figure 6: Schematic flowchart of the machine 
learning experiment in Azure.

(TP+TN )

(TP+FP+TN+FN )



 Precision
Precision  is  the  proportion  of  the

positive  predictions  that  are  actually
positive.

      Precision =

 Recall
Recall is the proportion of the positive

observations  that  are  predicted  to  be
positive.

            Recall =

 F1 Score
F1 score  is  the  harmonic  average  of

the  precision  and  the  recall.  It  is  not  as
intuitive as the other metrics, however it is
often a good measure of the efficiency of
the  model.  F1  score  is  a  good  metric  to

follow  if  both  false  positives  and  false
negatives have the same cost (or here, loss
incurred by the company).
   
  F1 Score =

 Area Under the Receiver Operating Curve
The AUC denotes the probability that

a  positive  prediction  chosen  at  random is
ranked  higher  than  a  negative  prediction
chosen at random by the model.

6.2 Obtained Results

There are nine models offered by Azure ML Studio
for  binomial  classification.  They are  logistic
regression, decision forest, decision jungle, boosted
decision tree, neural  network, averaged perceptron,
support vector machine, locally deep support vector
machine and Bayes’ point machine.

The results from training model 1 and model
2 on each of the nine models are tabulated in Table 1
and Table 2 respectively. 

The  threshold  is  a  measure  of  trade  off
between false positives and false negatives. Here, a
false  positive  would  be  a  clean  software  version
being classified as buggy. This is of great burden on
the developer  who ay spend hours searching for  a
bug that does not exist. A false negative would mean
a bug in the release,  which is a  bother to the end
user. Assuming the loss due to both these situations
is the same, the threshold was set to 0.5. 

6.3 Interpretation

From Table 1 and table 2, we conclude that a two
class averaged perceptron model for the first dataset

Figure 7: Classification of Predicted Outcomes.

(TP )

(TP+FP )

(TP )

(TP+FN )

( 2∗Recall∗Precision )

(Recall+Precision )

Table 1 : Results obtained from various classification models with training dataset 1.



and  a  two  class  decision  jungle  for  the  second
dataset are the best suited. 

The  ROC  curves  for  both  the  datasets  are
plotted  in  Figure  8  and  Figure  10.  The  high  area
under the ROC curve indicates a high chance that a

positive prediction chosen at random will be ranked
higher than a negative prediction chosen at random.

The  Precision-Recall  curves  are  plotted  in
Figure 9 and Figure 11. The area under the precision
recall graph in very high in Figure 9 denoting a high

Table 2 : Results obtained from various classification models with training dataset 2.

Figure 8 : The ROC curve  for model 1

Figure 10 : The ROC curve  for model 2

Figure 9 : The Precision-Recall curve  for model 1

Figure 11 : The Precision-Recall curve  for model 2



precision  and  a  high  recall.  Since  high  precision
corresponds  to  a  low  FP  rate  and  high  recall
corresponds to a low FN rate, this denotes that this
model is very accurate. These graphs are plotted by
the  Microsoft  Azure  ML  Studio  under  the  option
‘Evaluate model’.

We  have  given  equal  weightage  to  all  five
evaluation  metrics  used  in  this  paper,  and  have
decided upon a suitable model. However, the metrics
for  various  models  have  all  been  documented  for
comparison.  A  software  tester  may  feel  that  a
different  evaluation  metric  describes  his  needs
better, for instance when a false positive costs more
than a false negative or vice versa. In such cases, the
machine learning model can easily be switched for a
more suitable machine learning model.  This is  the
advantage  of  using  machine  learning  as  a  service
(MLaaS) on the cloud for bug prediction.

7.  CONCLUSION  AND  FUTURE
WORK

The  model  proposed  by  this  paper  has  an  F1
score of 91.5% for model 1, which works with only
previously known data, so as to predict the presence
of a  bug in the earliest  possible stage of  software
development.  This  is  more  suitable  for  agile
software development, where the F1 score combined
with  a  reduced  cost  of  rectifying  the  defect
(according  to  Ambler’s  cost  of  change  curve)  is
profitable.  The second model proposed uses a two
class  decision  jungle  model  with  an  F1  score  of
90.7%. This model uses details known at design and
coding phase, to predict the presence of a bug and
can  be  used  in  XP  development  due  to  the  level
increase in the cost of change curve. The accuracy
and precision of the models in this paper are high
enough for these models to be commercially used in
software  development  companies.  Moreover,  the
memory footprint of the two class decision jungle is
lower  than  any  other  model.  Future  work  may
include increasing the accuracy of these models with
commercial  datasets  (as  opposed  to  the  open-
sourced datasets used in this experiment). The use of
MLaaS  in  this  paper  allows  the  bug  prediction
models to be deployed on the cloud, as a service.
When these models are provided as a web service on
the cloud, the proposed model of Bug Prediction as a
Service  becomes  a  viable  option  for  software
development companies. 
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