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Human cystatin C (HCC) is a 120-amino acid protein that belongs to the cystatin 

super-family. It is expressed in all nucleated human cells and is found in almost all 

tissues and body fluids. HCC plays a physiological role by acting as a high-affinity 

inhibitor of cathepsins B, H, K, L and S. It also acts as a potent cysteine protease 

inhibitor, exhibiting pleiotropic roles in human vascular pathophysiology and serving 

as a biomarker for kidney disease. HCC is present in high concentrations in 

cerebrospinal fluid. Abnormal changes in the HCC expression in the brain can lead to 

various neurological disorders and neurodegenerative diseases, such as human cystatin 

C amyloid angiopathy and recurrent hemorrhagic stroke, respectively. However, wild-

type (WT) HCC can also form part of the amyloid deposits in the brain arteries of 

elderly people with amyloid angiopathy.  

Although the multiple roles of HCC have been broadly investigated, the most well-

characterized cysteine protease inhibitor in cystatin type 2 super family is chicken 

cystatin (cC) because of its thermophilic and pH stabilities. Chicken cystatin is a 

secreted protein of low molecular weight (~14kDa). The protein was originally isolated 

from hen egg-white, and subsequently found in various chicken tissues. The secondary 

structure of cC consists of a five-stranded antiparallel β-sheet and a large central α-

helix. The connectivity within the β-strands is: (N)-β1-(α)-β2-Loop1-β3-(AS)-β4-

Loop2-β5-(C), in which a region consisting of 20 amino acid residues, called the 

appending structure (AS) exists between the β3-strands and β4-strands (Fig. 1) (He et 

al., 2013).  

NMR studies have confirmed that the 3-D structure of the cC monomer is similar 

to that described for the monomeric part of HCC (Ekiel et al., 1997), with the structural 

similarity being 62.5%. In addition, the two proteins also share similar physicochemical 

properties (Yu et al., 2010). Nevertheless, the heat stability of cC is much higher than 

that of HCC (Zerovnik, Cimerman, Kos, Turk, & Lohner, 1997). The main difference 

between the two structures is the presence/absence of α-helix2 in AS (Fig. 1A). In our 

previous work, we have demonstrated that AS plays an important role in amyloidogenic 

cystatin dimerization between two cystatin monomers (Yu et al., 2012). Alignment of 

HCC and cC showed that E82 of cC corresponds to P84 of HCC (Fig. 1B). HCC does 
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not contain α-helix2 in the AS region, but P84 is located in the center of the AS region, 

Proline is known to act as a structural disruptor if it is present in the middle of a regular 

secondary structure element such as ��helices and �-sheets (MacArthur & Thornton, 

1991). We speculated that the P84 may disrupt the α-helix2 in HCC so that the HCC 

monomer is less stable than that of cC, and this could eventually lead to the dimerization 

and further fibrillization of HCC. To clearly demonstrate this hypothesis, we 

constructed an AS truncated mutant (ΔW) in which residues 77-85 of α-helix2 were 

deleted. Moreover, the disulfide bond formed between Cys71-Cys81 might be a key 

factor in initiating the unfolding of cC (Cys73-Cys83 in HCC) (Kolodziejczyk et al., 

2010). To minimize the effect induced by the loss of the Cys71-Cys81 disulfide bond 

and to investigate the importance of the proline residue in HCC, a E82P mutant of cC 

was employed in the study.     

Although cC has been used as an alternative in vitro model to study the 

amyloidogenesis of HCC, it is still not known whether the large difference in 

thermodynamic stability between HCC and cC is actually caused by the only structural 

difference between the two proteins (Ekiel et al., 1997). In this study, we evaluated the 

effect of α-helix2 on the structural stability of cC by comparing the intracellular and 

extracellular (secreted) levels of WT cC, E82P, ΔW and a classic amyloid mutant (I66Q) 

in Pichia pastoris X-33 (P. pastoris X-33). The results suggested that the absence of α-

helix 2 in the AS region could induce structural instability in cC, but further 

investigation is needed to determine what kind of structural change can trigger the 

process of dimerization and fibrillization. Our experimental and in silico studies did 

determine the influence displayed by the structural difference between HCC and cC, 

and this could shed more light on the mechanism of cystatin-associated amyloidosis.  
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Figure 1. Comparison of the structures of human and chicken cystatins. (A) The three-

dimensional structures of the human cystatin C (HCC) and chicken cystatin C (cC) 

(Bode et al., 1988; Kolodziejczyk et al., 2010). (B) Comparison of the amino acid 

sequences that span �3 and��4 of HCC and cC.  

 

Materials and methods 

Molecular Dynamic Simulations 

Molecular dynamics (MD) simulations were carried out using the GROMACS 4.5.0 

software package. The structure of cC (PDB code: 1CEW) was used as the wild type 

(WT), whereas I66Q, ΔW and E82P models were constructed from WT using Swiss-

PDB Viewer (Guex & Peitsch, 1997). The GROMOS96 43al force field (Pronk et al., 

2013) was applied in all simulations. The models were separately immersed in the cubic 

boxes with a distance between protein and box edges of at least 10Å. The linear 

constraint solver (LINCS) method was used to constrain bond lengths, allowing an 

integration step of 2 fs. Electrostatic interactions were calculated using the particle 

mesh Ewald algorithm with a distance cut off of 9 Å. Lennard-Jones potential was used 

for describing the short-range attractive and repulsive dispersion interactions with a 10-

Å cut off. The temperature and pressure were coupled using V-rescale and Parrinello-

Rahman algorithm respectively (Yu et al., 2010). The system was neutralized by adding 
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the counter ions Cl�, and then energy-minimized using the Steepest Descent algorithm 

to remove the inappropriate contacts. After equilibration, MD simulations were carried 

out over a 20-ns period at 330 K, pH2.0 and 1 bar pressure. The coordinate trajectories 

were saved every 1 ps for subsequent data analysis. 

 

Strains, Plasmids and culture conditions 

P. pastoris X-33 and Plasmids pPICZαA were purchased from Invitrogen. Yeast cells 

were cultured at 30℃in Yeast Peptone Dextrose medium (YPD) (1% yeast extract, 2% 

peptone and 2% glucose) and recombinant proteins were induced in Yeast Extract 

Peptone Medium (YPM) (1% yeast extract, 2% peptone, 0.5% Methanol (v/v)). 

Recombinant DNA manipulations were carried out in E. coli strain TOP10 (Invitrogen), 

which was cultured at 37℃ in LB medium. pPICZαA-WT and pPICZαA-I66Q were 

constructed, and E. coli and P. pastoris strain were transformed with these plasmids as 

described in our previous work (He et al., 2005). 

 

Construction of expression plasmids 

The truncated mutant (ΔW) which carried a deletion at amino acid residues 77-85 was 

amplified from the DNA of WT cC using overlap extension PCR. Two pairs of primers 

were used: the first pair contained the forward primer 5’-

GGGCTCGAGAAAAGAAGCGAGGA-3’ (XhoI site underlined), and the reverse 

primer, 5’-ACCTGATGACTTGGGGCAAGTTGT-3’, whereas the second pair 

contained the forward primer 5’-GCACAACTTGCCCCAAGTCATCAGGTGAGCC- 

AGAGATGGCTAAGTATACC-3’ (Overlapping section underlined) 5 and the reverse 

primer 5’-GGGTCTAGATTACTGGCACTTGCT-3’ (Xba I site underlined) (Hussain 

& Chong, 2016). Similarly, the E82P substitution was introduced using the forward 

primer 5’-CAGAGCTGCCCATTCCACGAT-3’ and the reverse primer 5’-

GTGGAATGGGCAGCTCTGGAG-3’ (mutation site underlined). The PCR product 

was digested with Xho I and Xba I and ligated into Xho I-Xba I digested pPICZαA 

vector, generating pPICZαA/ΔW vector or pPICZαA/E82P vectors. 
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Transformation into P. pastoris and small-scale expression of cC mutants 

Pichia pastoris X33 was transformed with Sac I-linearized pPICZαA-ΔW/ pPICZαA-

E82P by electroporation and positive transformants were selected on YPDS plates (1% 

yeast extract, 2% peptone, 2% glucose, 1M sorbitol and 2% agar) containing 100 �g/mL 

zeocin (Invitrogen). To induce the expression of the recombinant protein, P. pastoris 

cells were first grown in 25 ml YPD medium (1% yeast extract, 2% peptone and 2% 

glucose) at 30℃ for about 24 h with shaking (200 rpm) until the OD600 was about 5.0. 

The cells were harvested and resuspended in 50 ml YPM medium (1% yeast extract, 2% 

peptone) and incubated for 72 h. The culture was supplemented with 0.5% (v/v) 

methanol at every 24 h. 

 

Preparation of extracellular and intracellular protein sample 

For extracellular protein sample preparation, yeast cultures were centrifuged at 4℃ 

1,900× g for 10 min to pellet the cells, and the supernatant was further centrifuged at 

4℃ 4,866 × g  for 30 min to remove the insoluble protein aggregate. The supernatant 

was used for extracellular protein analysis. 

For intracellular protein sample preparation, yeast cultures were centrifuged at 4℃ 

1,900 × g for 10 min. The cell pellets were resuspended in lysis buffer (10 mM Tris-

HCl pH 7.4, 0.1 M NaCl, 1 mM EDTA, 10% SDS, 4% glycerin (v/v), 1% Triton X-100, 

5mM DTT and 1mM PMSF), and then mixed with Zirconium beads and shaken 

violently to break up the cells for five times every 30s. The cell extracts were 

centrifuged at 4℃  12,848 × g for 10 min and the supernatants, which contained 

intracellular proteins, were retained. The protein concentration in each supernatant was 

determined by BCA protein assay kit (Beyotime, China) and normalized before the 

analysis. All of the protein samples were treated with protein loading buffer at 100°C 

for 5 min and stored at -80 ℃  in preparation for SDS polyacrylamide gel 

electrophoresis (PAGE) and Western blotting analysis. 

 

SDS-PAGE and Western blotting 
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Protein samples were analyzed by 15% SDS-PAGE under denaturing conditions. 

Proteins in the gels were visualized after staining with Coomassie Brilliant Blue. After 

electrophoresis, the protein bands were transferred to a polyvinylidene difluoride 

(PVDF) membrane for 1 h 20 min at 100 mA in blotting buffer (20 mM glycine, 25 mM 

Tris, 20% methanol). The membrane was blocked by incubation in Tris-buffered saline 

(TBS) containing 5% BSA and 0.05% Tween 20 at room temperature for 3 h on an 

orbital shaker. This was followed by incubation with rabbit anti–chicken cystatin 

antiserum (2 × 10–3 in 0.05% Tween 20) in Tween-TBS at room temperature for 1 h. 

After that, the membrane was extensively washed and then incubated with anti–rabbit 

peroxidase conjugate (1 × 10–4 in Tween-TBS) at room temperature for 1 h and 20 min, 

followed by detection performed with an ECL-Plus kit (Beyotime, China).  

 

Results and Discussions  

The α-helix 2 contributes to the stabilization of chicken Cystatin C 

Our previous report has suggested that AS might trigger the unfolding of cC and 

accelerates the formation of cystatin aggregation or amyloid fibril. Comparison of the 

crystal structure of cC with that of HCC showed the main difference between HCC and 

cC is the presence/absence of α-helix2 in AS (Fig. 1A). To investigate whether α-helix 

2 would contribute to the difference in amyloid fibril formation between HCC and cC, 

we constructed a mutant form of cC (ΔW) lacking the α-helix 2 and performed 

molecular dynamic simulation to investigate the potential influence of the α-helix 2. 

Considering that α-helix 2 contributes to the formation of the C71-C81 disulfide bond 

and E82 of cC is replaced by a rigid and structural disruptor, P84, in HCC, we replaced 

E82 of cC with a proline to disrupt α-helix 2. This change would have minimal effect 

compared with the direct breakage of the C71-C81 disulfide bond.  

To predict the stability of the ΔW and E82P mutants, the root-mean-square 

deviations (RMSD) of the backbone α carbon atoms of cC were calculated for all 

simulations. It has been demonstrated that in MD simulations, high temperature and 

low pH value can accelerate protein unfolding without changing the pathway of the 
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unfolding process (Day, Bennion, Ham, & Daggett, 2002). Therefore, we performed 

the simulations under the same extreme conditions (330 K (57 °C) and pH 2) as those 

used in our previous experiments (He et al., 2005; Yu et al., 2012; Yu et al., 2010), 

which allow the system to reach the equilibrated regions in minimum simulation time 

and with minimum computational expense. The RMSD value reached a relative 

equilibrium region in 10 ns in all simulations (Fig. 2). As previously reported, the 

classic amyloidogenic mutant I66Q displays an obvious RMSD fluctuation compared 

to WT (Fig. 2), and this is considered to be a characteristic that promotes amyloid 

fibrillization (Yu et al., 2012). Interestingly, the RMSD of I66Q and �W increased 

dramatically as soon as the simulation began. However, the RMSD of E82P gradually 

increased during the first 7 ns, suggesting that I66Q and �W would be more likely to 

become unstable compared with WT and E82P. The lower stability of �W might be 

caused by the deletion of the 9 residues, which resulted in the AS being too short to 

provide stability for the remaining structure. Interestingly, both ΔW and E82P 

demonstrated a similar RMSD profile to that observed for I66Q, implying that the 

disruption or conformational changes of α-helix 2 may promote amyloid fibrillization 

or simply accelerate the protein aggregation by destabilizing the secondary structure of 

the protein (Fig. 2). Indeed, the extracellular level of recombinant ΔW and E82P 

induced with 0.5% methanol for 3 days was reduced to various extents (Fig. 3A), 

especially the secretion of ΔW and E82P, and was consistent with the MD prediction 

(Fig. 2). The E82 to P mutation within the α-helix 2 could indeed disrupt the stability 

of cC to some extent, but with less sensitivity compared to the disruption observed for 

ΔW. A possible reason for this could be that in the case of E82P, the proline substitution 

may only promote the unfolding of α-helix 2 and weaken the C71-C81 disulfide bond, 

whereas in ΔW, both α-helix 2 and the C71-C81 disulfide bond were completely 

destroyed.  
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Figure 2. RMSDs of the Cα-positions during the 20 ns simulations. The RMSDs of the 

wild-type (WT) cC and the classic amyloidogenic mutant I66Q were obtained from our 

earlier study (Yu et al., 2012). 

 

Dimerization characterization of the recombinant proteins 

The secreted proteins were further confirmed by western blot analysis (Fig. 3C). 

We have previously reported that I66Q can easily form dimers in the culture medium 

during methanol induction. However, no dimers were found in the extracellular proteins 

of either the ΔW or E82P mutant, indicating that these two mutants are not prone to 

form dimers, but they would aggregate/unfold as a result of the destruction of the 

secondary structure. Intracellular expression of recombinant cC and its mutants was 

also analyzed by western blot. The level of monomeric WT cC was highest among the 

four recombinant cCs, but the major form of I66Q was a dimer, and fewer monomers 

were found inside the yeast cells than in the extracellular environment. The intracellular 

levels of monomeric ΔW and E82P were also lower than that of WT cC, but no dimer 

was detected, suggesting that ΔW and E82P may only promote amorphous aggregation, 

but not amyloid fibrillization as in the case of I66Q. Unfortunately, further amyloid 

fibrillization and aggregation assay could not be performed in vitro as no stable 

monomeric ΔW and E82P were obtained after purification. On balance, it is very likely 
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that the structural changes caused by ΔW and E82P simply induce protein unfolding, 

which were then subjected to degradation through the ER-associated degradation 

pathway, leading to lower protein production.  

 

 
Figure 3. Analysis of recombinant cC expressed in P. pastoris. (A) SDS-PAGE of cC 

secreted into the culture supernatant. Western blot analysis of cC from the culture 

supernatant (B) and from the cell extract (C). 

 

Conformational changes caused by the disruption of the α-helix 2 

To further explore the detailed structural changes occurring in the ΔW and E82P 

mutants of cC, we calculated the average root mean-square fluctuations (RMSF) values. 

During the 20 ns of the MD simulation, major fluctuations were found clustering around 

α-helix 2 (AS region) for all three mutants (Fig. 4A). Fluctuation also occurred in α-

helix 1 to some extent. The AS fluctuation displayed by ΔW was directly caused by the 

deletion of α-helix 2, which destroyed both Cys71-Cys81 and α-helix 2 (Fig. 4B). 

Notably, α-helix 2 in E82P was unfolded (Fig. 4B) as we predicted, supporting the 

hypothesis that P84 disrupts α-helix 2 in HCC and then decreases the stability of the 

HCC monomer, leading to dimerization of HCC and further fibrillization much more 

readily compared with monomeric cC. Helix 1 did not display obvious unfolding in ΔW 
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and the other mutants (Fig. 4B). Thus, the fluctuation around helix 1 might be caused 

by its own realignment. A previous report has suggested that the rotation of AS is 

related to cC fibrillization (Yu et al., 2012), and therefore, rotations caused by the 

absence of the Cys71-Cys81 disulfide bond and α-helix 2 in ΔW or E82P could further 

underline the significance of α-helix 2 in the conformational stability of cC.  

 
Figure 4. (A) Averaged Cα RMSFs per residue in water during the convergence period 

of MD simulations. (B) Superposition of various states of WT (cyan) and I66Q (orange), 

ΔW (red) and E82P (blue) at the end of the 20 ns MD simulation respectively.  

 

The disruption of α-helix 2 destabilizes the hydrophobic core 

The interior hydrophobic core of cystatin provides the structural stability that 

favors the native state during the protein folding process (Szymanska et al., 2012). To 

further investigate whether there is a fluctuation in the hydrophobic core caused by 

mutations in α-helix 2 (ΔW and E82P), we analyzed the RMSDs of the hydrophobic 

core. I66Q could promote the expansion of the hydrophobic core (Fig. 5), consistent 

with previous report. In contrast, ΔW and E82P both exhibited obvious fluctuations 
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during the simulations, suggesting that the structural stability of cC was compromised 

to various degrees by the disruption of α-helix 2 (Fig. 5). Considering that α-helix 1 

could contribute to formation of the hydrophobic core, the RMSF fluctuation of the α-

helix 1 observed (Fig. 4A) might be caused by the extension of the hydrophobic core.  

 

 

Figure 5. RMSDs of the hydrophobic-core backbone during the 20 ns simulations. The 

RMSDs of the wild-type (WT) cC and the classic amyloidogenic mutant I66Q were 

carried out in our earlier study (Yu et al., 2012). 

 

To date, despite extensive investigation into the amyloidogenic properties of the 

two cystatins, little has been reported on whether the only structural difference between 

HCC and cC is the key factor causing the big difference in thermodynamic stability and 

dimerization difficulty between HCC and cC. Our results suggested that the absence of 

α-helix 2 in the AS region may be one of the contributing factors in the structural 

instability of human cystatin C. However, this change might not be the key factor that 

triggers the dimerization process, which would eventually lead to amyloid fibrillization. 

Other factors might also influence the dimerization and fibrillization of cystatins, such 

as mutations at “hot spot” V57 and L68 in the HCC sequence, hinge regions, 
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glycosylation, temperature and pH (He et al., 2006; Szymanska et al., 2012). Thus the 

detailed dimerization mechanism is still unclear and requires further investigation.  
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