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Abstract: In the domestic water supply industry, the reduction of pumping costs is a 

continuing objective. With the efficient scheduling of pumping operations, it is 

considered that 10% of the annual expenditure on energy and related costs may be 

saved.  A typical cost function will include all of the expenditure caused by the pumping 

process and also consider the electrical cost of pumping taking into account the various 

electrical tariffs, as well as peak demand and pump switching costs. Using only fixed 

speed pumps, it is possible to use an efficient dynamic programming based method, 

provided that the storage reservoir levels are known. Other techniques that are showing 

fruitful results in optimisation are genetic programming and simulated annealing. This 
paper compares these methods and discusses which is more appropriate in this type of 

pump scheduling problem. 

 

1 INTRODUCTION 

 

A typical problem in the water supply industry is the transfer of water between interconnected reservoir 

systems using a least cost operation. The authors are currently engaged on a project in collaboration 

with the water industry to investigate cost-effective control of water transfer using fixed speed pumps, 

which may be either on, or off. Making certain assumptions regarding decoupling and simplification, 

allows us to consider the system as a source reservoir supplying a controlled reservoir via a pumping 

station and an equivalent pipe-line with a water demand from the controlled reservoir which is assumed 
to be known in advance. 

 

The supply system considered in this paper is a section of water supply network using four fixed speed 

pumps to supply a reservoir from a large capacity source reservoir. The pumps may be switched at 

hourly intervals, and the schedule is optimised over a 24-hour period. System constraints are 

considered, which consist of upper and lower reservoir level constraints, and start and finish reservoir 

level expectations. The tariffs for day and night electricity consumption are considered, but peak tariff 

and switching costs are ignored for the purpose of this study. The proposal considers the pump 

characteristics in terms of their pumping capacities and the amount of electricity used. The scheme is 

used as a means of investigating a variety of techniques for the optimisation of pumping to give 

minimum cost. 

 

2 PROBLEM FORMULATION 

 

The pump-scheduling problem proposed by Mackle et al [1] is used as a starting point for setting up a 

model which can then be addressed for optimizing. The same problem is discussed by Savic et al [2]. 

The problem at this stage considers the pumping capacities of the fixed speed pumps and the amount of 

electricity used per hour as shown in Table 1. The system considered consists of one water    

 

Table 1 Pumping capacities of the fixed speed pumps 

 

Pump Amount of water pumped in 

one hour 

[cu m] 

Amount of electricity used in 

one hour 

[kWh] 

Pump 1 5 12 

Pump2 15 30 

Pump3 25 44 

Pump4 50 80 

 
distribution reservoir, which is, supplied by four fixed speed pumps through a single water main. The 

optimization period is set to one day, as historic patterns of the water demand of an average day are 



commonly used for pump scheduling [3]. The time interval over which the electricity tariff structure is 

repeated is also modelled to be on 24 hours. 

 

As is common in many electricity supply systems, the model incorporates a cheap night and more 

expensive day tariff. For the problem used in this paper the day-time tariff cost is set to be twice that 

charged during the night. The period for which the higher day-tariff applies is, for convenience, taken 
as being from 0800 h through to 0200 h. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Water Supply System Schematic Figure 2 Water demand from reservoir 

 

The optimization period is divided into intervals of one hour, i.e. the pumps can be either switched on 

or off during any hour of the day. As each of the four pumps can be run during any time interval there 

are 16 possible combinations of the pumps during each hour of the day. A schematic of the system is 

shown in Figure 1 where:  

 

u(k) is the total quantity of pumped water (cu m/hr)  d(k) is the water demand in cu m/hr 

x(k) is the reservoir level      x(0) is initial reservoir level  

The constraints are xmin < x(k) < xmax  - min and max allowable levels. 
 

The hourly demand is taken from Coulbeck [4] and is as shown in Figure 2.  Electricity tariffs are 

2.86p for peak tariff 0800 - 0200 through the day (18 hours) and 1.2p for off peak tariff 0200 - 0800 

through the night (6 hours). Total reservoir capacity is 2500 cu m 
 

3 OPTIMISATION TECHNIQUES CONSIDERED 

 

The fundamental aim of optimisation is to establish a cost function, which is a measure of the 

performance of some aspect of the process under consideration. Classical methods of optimisation 

include linear programming, dynamic programming, hill climbing, statistical methods such as 

simulated annealing, and evolutionary programming methods such as genetic algorithms. 

 

Linear and dynamic programming methods make a sequence of decisions, which together constitute an 

optimal policy. This approach lends itself well in principle to the pump-scheduling problem. Hill 

climbing and evolutionary methods generate a deterministic sequence of trial solutions based on the 

gradient of the cost function. 
 

3.1 Dynamic Programming 

 

Dynamic programming was developed by Bellman to solve problems in which a sequence of decisions 

is required to be made. The method lends itself ideally, in theory, to the problem of pump scheduling.  

Bellmans statement of the Principle of Optimality [5] is that an optimal policy has the property that 

whatever the initial state and initial decisions are, the remaining decisions must constitute an optimal 

policy with regard to the state resulting from the first decision. 

 

Let tx be the state at any time t. Let TU be the control action at time t. In this case control of the 

pumps is by pumps being either on or off. Let )( TT xV  be the cost of reaching Tx at time T. 

Let ),( TTT yxg  be the cost of transition from state Tx  at time T (T>t). Then the minimum principle 

can be expressed as: 
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i.e. the minimum of (the cost of transition from tx to Tx + minimum of getting to the point tx ) 

 

The minimum principle holds for any form of cost function and whatever the effect of the controls on 

the system. Dynamic programming is, in effect, the repeated application of the minimum principle at a 
sequence of intervals. In the pump-scheduling problem considered, the state of the system is taken as 

the volume of water in the reservoir. In order to calculate the minimum cost, the reservoir is divided 

into discrete levels. The stages are taken as the hourly decisions made over the 24-hour period. [6]. 

 

In order to give sufficient accuracy in the calculation, it is necessary to divide the reservoir into about 

50 levels. Using four pumps with therefore 16 combinations, the number of possible transitions at each 

stage is 16x50. For hourly decisions over the 24-hour period, the cost must therefore be stored at 

16x50x24. Clearly as more reservoirs and more pumps are considered, the time and storage 

requirements of dynamic programming become very large. 

 

3.1.1 Optimisation of Pumping using Dynamic Programming 

 
The classical approach for optimal scheduling of water pumping is: 

 

Minimise{pumping cost+treatment cost} 

Subject to: 

Water network equations, pressure constraints at critical nodes, flow constraints in critical 

pipes, reservoir level constraints [7 ]. The resulting controlled reservoir level over the 24-hour 

period is shown in Figure 3 with the pump schedule in Figure 4. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Reservoir level with optimal scheduling   Figure 4 Pumps ON or OFF during 24  

of pumping using dynamic programming    hour period P1, P2, P3 and P4 

 

 

3.2 Simulated  Annealing 

 

The heart of the method of simulated annealing is an analogy with thermodynamics called annealing. 

This is the process by which liquids freeze and crystallise, or metals cool and anneal. At high 

temperatures, the molecules of a liquid move freely with respect to one another. As the liquid is slowly 

cooled, thermal mobility reduces. The atoms line themselves up and form a pure crystal which is 

completely ordered. The crystal is the state of minimum energy of the system. At each temperature 
during the annealing process, slow cooling enables the system to achieve equilibrium. If the 

temperature is lowered too quickly, the system does not have sufficient time to achieve equilibrium, 

and the resulting configuration might have many defects in the form of high-energy, metastable, locally 

optimal structures. Natures minimisation algorithm is based on the Boltzmann probability distribution, 

 

prob(E) ~ exp(-E/kT) 
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This describes the process by which a system in thermal equilibrium at a temperature T has its energy 

probabilistically distributed among all different energy states E. Even at low temperatures, there is a 

small chance of a system being in a high energy state. This means that there is a corresponding chance 

for the system to get out of a local minimum energy state in favor of finding a better, more global, 

minimum. The quantity k is Boltzmann’s constant and is a constant of nature, which relates 

temperature to energy. 
 

The original incorporation of these principles into numerical calculations was first carried out by 

Metropolis [8]. Consider a system which is assumed to change its configuration from energy E1 to 

energy E2 with probability p = exp[-(E1-E2)/kT]. If E2 < E1 then the system is arbitrarily assigned a 

probability p=1, and the system will always take this option (it is a reduction in energy). If however E2 

> E1 then the scheme may take this option with a probability p.  The scheme is one, which goes in the 

general direction of reducing energy, but sometimes allowing an energy increase.  

 

The requirements of a Metropolis algorithm are: 

 

1 A description of the possible system configurations 

2 A means of generating random changes in the configuration. These are the ‘options’ presented to the 
system 

3 An objective function E, which is an analogue of the energy. The goal of the procedure is the 

minimisation of this function  

4 A control parameter T which is the analogue of temperature. The temperature is lowered at each 

successive pass through the algorithm using an annealing schedule. 

 

3.2.1 Optimisation of Pumping using Simulated Annealing 

 

As a problem in simulated annealing, the pump optimisation problem is handled as follows: 

 

1 Configuration. The four pumps may be either on or off. This may be represented as a 0 or a 1. Since 
we are considering the state of these four pumps on an hourly basis over 24 hours we have 4X24 = 96 

possibilities. 

2 Random Rearrangements. Two useful rearrangements suggested by Lin [9] are (a) to remove a 

section of the possibles and replace them in the opposite order and (b) to remove a section and replace 

in a different position. 

3 Objective Function. The cost function in the case considered is a combination of the electricity cost 

together with the penalties for not meeting the end reservoir level requirement and for exceeding the 

upper and lower level limits. E = Sum of Elec costs at various tariffs + sum of exceed limits + final 

error 

4 Annealing Schedule. This is arrived at by experimentation. It may be appropriate to choose some 

random rearrangements and use them to determine the range of values of deltaE that will be obtained. 

This then allows the choice of T with starting value considerably larger than deltaE, and then gradually 
reducing T in multiplicative steps until either the limiting number of temperature steps has been 

reached, or the number of successful reconfigurations has reduced to zero [10][11]. The results of the 

scheduling optimisation using simulated annealing are shown in Figure 5 

    

 

 

 

 

 

 

 
 

 

 

 

 

Figure 5  Reservoir level - results of the   Figure 6 Minimum estimation problem similar  

scheduling optimisation using simulated annealing  to pump optimisation scheme 
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3.3 Genetic Algorithms 

 

Genetic algorithms (GAs) use a stochastic global search method, which mimics natural genetic 

evolution. They operate on a population of potential solutions by applying the principle of ‘survival of 

the fittest’ to produce increasingly better approximations to the solution. At each generation, a new set 

of approximations is generated by the process of selecting individuals according to their level of fitness 
of the cost function in the problem in which they are being used. This leads to the creation of a set of 

individuals better suited to the environment in which they exist than the individuals from which they 

were created. To progress from one population to the next, members of the current population may be 

modified using reproduction, crossover, mutation and inversion. 

 

A string of numbers is often used to represent the decision variables and the possible choices. In the 

case of the pumping station considered in this investigation it is convenient to represent each of the 

four pumps by a 1 or a 0 as to whether it is on or off. This leads to a convenient representation of the 

population over a 24-hour period by a binary string word length of 4 x 24 (i.e. 96). 

 

The overall cost function used with the pumping schedule includes the total electricity cost of pumping 

over the 24 hour period together with penalty costs associated with violating constraints such as 
exceeding reservoir levels and not meeting final level requirements. 

 

3.3.1 Optimisation of Pumping using Genetic Algorithms 

 

The GA search first generates a family of initial population using random seeding. A fitness function is 

then used to assess the performance of each of the individual members of the population. A proportion 

of these are then chosen according to their relative fitness and recombined to produce the next 

generation.  

 

Genetic operators such as recombination and mutation are used to manipulate the chromosomes on the 

assumption that certain individual’s genes produce, on average, fitter individuals. Finally the objective 
function is evaluated, a fitness value assigned to each individual, and the individuals selected again for 

mating according to their fitness. 

 

The process continues through subsequent generations until either a certain number of generations have 

been completed or a mean deviation in the population has been achieved [12][13][14][15]. 

 

A typical cost function graph for a range of chromosomes is shown in Figure 6 with successive 

estimates of minimum shown as circles. This figure shows the seeming randomness of the problem 

with a problem such as pump scheduling. The corresponding minimisation is shown in Figure 7. The 

reservoir level with GA pump optimisation is shown in Figure 8. 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 7 Cost function minimisation Figure 8 Reservoir level using genetic algorithm 

pump optimisation 

 

4 CONCLUSIONS 

 

In comparing the three different approaches to optimisation, dynamic programming is generally faster 

than the others, but has the problem that as the complexity of the system increases, the size of the 
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storage requirements becomes excessive. It is for example not appropriate for pump optimisation 

systems with more than two reservoirs. Simulated annealing provides a sub-optimal result taking about 

10 minutes to run with the pump optimisation problem. The development of an appropriate cost 

function is worth some consideration, and may lead to a better optimal result. Genetic algorithms are 

easy to use, but again it is the cost function, which presents the problem. The algorithm took 

approximately 20 minutes to run in this case.  
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