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Abstract

In this paper, we demonstrate how to group the nine cardi-
nal directions into sets and use them to compute a composi-
tion table. Firstly, we define each cardinal direction in terms
of a certain set of constraints. This is followed by decom-
posing the cardinal directions into sets corresponding to the
horizontal and vertical constraints. We apply two different
techniques to compute the composition of these sets. The
first technique is an algebraic computation while the second is
the typical technique of reasoning with diagrams. The ratio-
nale of applying the latter is for confirmation purposes. The
use of typical composition tables for existential inference is
rarely demonstrated. Here, we shall demonstrate how to use
the composition table to answer queries requiring the com-
mon forward reasoning as well as existential inference.Also,
we combine mereological and cardinal direction relations to
create a hybrid model which is more expressive.

Introduction
Relative positions of objects in large-scale spaces, and par-
ticularly in the geographic domain, are often described by
relations referring tocardinal directions. These relations
specify the direction from one object to another in terms of
the familiar compass bearings: north, south, east and west.
The intermediate directions north-west, north-eastetc. are
also often used. Two models for reasoning with cardinal di-
rections are thecone-shapedand projection-basedmodels
(A.Frank, 1992). We shall use the latter model in this paper.

Composition tables are widely used for computing in-
ferences involving spatial relations. Much work has been
done on the composition of cardinal direction relations for
point-like objects (D.Papadias & Theodoridis, 1997; Frank,
1992; Freksa, 1992) which is more suitable for describing
positions point-like objects in a map. Using the direction-
relation matrix, Goyal & Egenhofer (2000), composes car-
dinal direction relations for extended objects. Skiadopou-
los & Koubarakis (2001) highlight some of the flaws in
Goyal’s reasoning system. Consequently, he comes up with
a method for correctly computing the cardinal direction re-
lations. However, the set of basic cardinal relations in his
model consists of 218 elements which is the set of all dis-
junctions of the nine cardinal directions.

We shall decompose the cardinal directions into sets cor-
responding to horizontal and vertical constraints. Compo-
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sition will be computed for these sets instead of the typical
individual cardinal directions. Such a composition offers an
alternative yet elegant way of representing the clumsy dis-
junctive relations. Also, it can be used to answer common
queries using forward reasoning as well as queries using ex-
istential inference.

Some work has been done on the composition of hybrid
models. M.T.Escrig & Toledo (1998) combined qualitative
orientation and distance to get positional information while
Sharma & Flewelling (1995) infers spatial relations from
integrated topological and cardinal direction relations. We
shall combine mereological and direction relations to infer
the spatial relations between extended regions. Focus will
only be on single-pieced regions.

In this paper, we shall firstly define each cardinal direc-
tion in terms constraints and group them into sets. This is
followed by formally defining ‘part and whole’ cardinal di-
rection relations. The composition table will be computed
for each of the sets, using an algebraic method as well as
reasoning with diagrams for confirmation purposes. Next,
we shall demonstrate how to use the composition table for
answering several forms of queries.

Reasoning with Cardinal Directions
According to the projection-based model for cardinal direc-
tions (A.Frank, 1992) depicted in Figure 1. The plane is par-
titioned into nine tiles: North-West(NW ),North(N ), North-
East(NE), West(W ), Neutral Zone(O), East(E), South-
West(SW ), South(S),and South-East(SE). O, is considered
a neutral zone because in this tile, the relative cardinal direc-
tion between two objects cannot be determined due to their
proximity (A.Frank, 1992).

Definitions
A combined algebraic method and the Cartesian co-ordinate
system is used to formalise the meaning of directions for
an arbitrary single-pieced extended region. The primitives
used are:

i. Tile, R(φ), which is a tile of the extended region,φ. The
setR = {N(φ), NE(φ), NW (φ), S(φ), SE(φ),
SW (φ), O(φ), E(φ),W (φ)}

ii. Boundaries of the minimal bounding box of re-
gion φ, as illustrated in Figure 1. The setB =
{Xmin(φ), Xmax(φ), Ymin(φ), Ymax(φ)}



Figure 1: Boundaries

For an arbitrary extended region,φ, with a minimal bound-
ing box, the two implicit constraints are:

Xmin(φ) < Xmax(φ)
Ymin(φ) < Ymax(φ)

Next, we shall define all the nine tiles in terms of the
boundaries of the minimal bounding box of extended region
φ.

• N(φ) = {〈x, y〉|Xmin(φ) ≤ x ≤ Xmax(φ) ∧ y ≥
Ymax(φ)}
• NE(φ) = {〈x, y〉|x ≥ Xmax(φ) ∧ y ≥ Ymax(φ)}
• NW (φ) = {〈x, y〉|x ≤ Xmin(φ) ∧ y ≥ Ymax(φ)}
• S(φ) = {〈x, y〉|Xmin(φ) ≤ x ≤ Xmax(φ) ∧ y ≤

Ymin(φ)}
• SE(φ) = {〈x, y〉|x ≥ Xmax(φ) ∧ y ≤ Ymin(φ)}
• SW (φ) = {〈x, y〉|x ≤ Xmin(φ) ∧ y ≤ Ymin(φ)}
• E(φ) = {〈x, y〉|x ≥ Xmax(φ) ∧ Ymin(φ) ≤ y ≤

Ymax(φ)}
• W (φ) = {〈x, y〉|x ≤ Xmin(φ) ∧ Ymin(φ) ≤ y ≤

Ymax(φ)}
• O(φ) = {〈x, y〉|Xmin(φ) ≤ x ≤ Xmax(φ)∧Ymin(φ) ≤

y ≤ Ymax(φ)}

Notations
The composition of two relations,R andS, is written as
(R;S) It is defined by the following equivalence:

∀xz[(R;S)xz ←→ ∃y[Rxy ∧ Syz]]

Horizontal and Vertical Constraints
Horizontal Constraints
For the horizontal sets, the range of values fory remains
constant while the values forx change either in an ascending
or descending order. As shown in Figure 2, the three hori-
zontal sets of tiles for the regionφ are:(NW (φ) ∪N(φ) ∪
NE(φ)), (W (φ) ∪ O(φ) ∪ E(φ)), and(SW (φ) ∪ S(φ) ∪
SE(φ)).

If there is a referent regiona, and another arbitrary region,
b, the possible horizontal sets of binary relations and their
constraints can be written as follows:

Figure 2: Sets of tiles

• If b ⊆ (NW (a) ∪N(a) ∪NE(a)) then
Nab = {NW(a, b),N (a, b),NE(a, b)},
and the constraints are:Ymax(a) ≤ Ymin(b)∧Ymax(a) <
Ymax(b).

• If b ⊆ (W (a) ∪O(a) ∪ E(a)) then
Hab = {W(a, b),O(a, b), E(a, b)},
and the constraints are:Ymax(a) ≥ Ymax(b)∧Ymin(a) <
Ymax(b) ∧ Ymin(a) ≤ Ymin(b) ∧ Ymax(a) > Ymin(b).

• If b ⊆ (SW (a) ∪ S(a) ∪ SE(a)) then
Sab = {SW(a, b),S(a, b),SE(a, b)},
and the constraints are:Ymin(a) ≥ Ymax(b)∧Ymin(a) >
Ymin(b).

Vertical Constraints

As for the vertical sets, the range of values forx remains
constant while the values fory change either in an ascending
or descending order. The vertical sets of tiles for the region
φ are:(NE(φ) ∪E(φ) ∪ SE(φ)), (N(φ) ∪O(φ) ∪ S(φ)),
and(NW (φ) ∪W (φ) ∪ SW (φ)).

The possible vertical sets of binary relations and their con-
straints can be written as follows:

• If b ⊆ (NE(a) ∪ E(a) ∪ SE(a)) then
Eab = {SE(a, b), E(a, b),NE(a, b)},
and the constraints are:Xmax(a) ≤ Xmin(b) ∧
Xmax(a) < Xmax(b).

• If b ⊆ (N(a) ∪O(a) ∪ S(a)) then
Vab = {S(a, b),O(a, b),N (a, b)},
and the constraints are:Xmax(a) ≥ Xmax(b) ∧
Xmin(a) < Xmax(b) ∧ Xmin(a) ≤ Xmin(b) ∧
Xmax(a) > Xmin(b).

• If b ⊆ (NW (a) ∪W (a) ∪ SW (a)) then
Wab = {SW(a, b),W(a, b),NW(a, b)},
the constraints are:Xmin(a) ≥ Xmax(b) ∧ Xmin(a) >
Xmin(b).



Combined Mereological and Cardinal
Direction Relations

In this section, we shall make a distinction between part and
whole direction relations between two extended regions. A
direction relationPR(a, b) means that only part of the des-
tination extended region,b, is in tile R(a). The direction
relation AR(a, b) is used when the whole of region,b, is
completely within the tileR(a).

For example, ifb is completely North ofa, this direction
relation can be represented as below:

AN (a, b) = PN (a, b) ∧ ¬PNE(a, b) ∧
PNW (a, b) ∧ ¬PS(a, b) ∧ ¬PSE(a, b)

∧¬PSW (a, b) ∧ ¬PE(a, b) ∧
¬PW (a, b) ∧ ¬PO(a, b)

We shall define the ‘whole’ direction relations in terms of
the sets followed by a set of constraints.

• AN (a, b) ≡ Nab ∩ Vab
[Ymax(a) ≤ Ymin(b) ∧ Ymax(a) < Ymax(b)]∧
[Xmax(a) ≥ Xmax(b) ∧Xmin(a) < Xmax(b)
∧Xmin(a) ≤ Xmin(b) ∧Xmax(a) > Xmin(b)]

• ANE(a, b) ≡ Nab ∩ Eab
[Ymax(a) ≤ Ymin(b) ∧ Ymax(a) < Ymax(b)]∧
[Xmax(a) ≤ Xmin(b) ∧Xmax(a) < Xmax(b)]

• ANW (a, b) ≡ Nab ∩Wab
[Ymax(a) ≤ Ymin(b) ∧ Ymax(a) < Ymax(b)]∧
[Xmin(a) ≥ Xmax(b) ∧Xmin(a) > Xmin(b)]

• AS(a, b) ≡ Sab ∩ Vab
[Ymin(a) ≥ Ymax(b) ∧ Ymin(a) > Ymin(b)]∧
[Xmax(a) ≥ Xmax(b) ∧Xmin(a) < Xmax(b)
∧Xmin(a) ≤ Xmin(b) ∧Xmax(a) > Xmin(b)]

• ASE(a, b) ≡ Sab ∩ Eab
[Ymin(a) ≥ Ymax(b) ∧ Ymin(a) > Ymin(b)]∧
[Xmax(a) ≤ Xmin(b) ∧Xmax(a) < Xmax(b)]

• ASW (a, b) ≡ Sab ∩Wab
[Ymin(a) ≥ Ymax(b) ∧ Ymin(a) > Ymin(b)]∧
[Xmin(a) ≥ Xmax(b) ∧Xmin(a) > Xmin(b)]

• AE(a, b) ≡ Hab ∩ Eab
[Ymax(a) ≥ Ymax(b) ∧ Ymin(a) < Ymax(b)
∧ Ymin(a) ≤ Ymin(b) ∧ Ymax(a) > Ymin(b)]
∧[Xmax(a) ≤ Xmin(b) ∧Xmax(a) < Xmax(b)]

• AW (a, b) ≡ Hab ∩Wab
[Ymax(a) ≥ Ymax(b) ∧ Ymin(a) < Ymax(b)
∧ Ymin(a) ≤ Ymin(b) ∧ Ymax(a) > Ymin(b)]
∧[Xmin(a) ≥ Xmax(b) ∧Xmin(a) > Xmin(b)]

• AO(a, b) ≡ Hab ∩ Vab
[Ymax(a) ≥ Ymax(b) ∧ Ymin(a) < Ymax(b)
∧ Ymin(a) ≤ Ymin(b) ∧ Ymax(a) > Ymin(b)]
∧[Xmax(a) ≥ Xmax(b) ∧Xmin(a) < Xmax(b)
∧Xmin(a) ≤ Xmin(b) ∧Xmax(a) > Xmin(b)]

Computation of the Composition Table
The outcome of the composition of general ordered binary
relations is shown in Table 1.

Table 1: Composition of binary ordered relations
b < c b = c b > c

a < b a < c a < c a>c
a = b a < c a = c a > c
a > b a>c a > c a > c

In this section, we shall compute two separate composi-
tion tables. One is for the horizontal sets (Table 2) while the
other is for the vertical (Table 3) sets. We shall employ two
different techniques to compute the tables. The first typi-
cal technique is reasoning with diagrams. As for the second
technique, it uses algebra and the composition table in Table
1.

Technique 1: Reasoning with a diagram
R(a, b)∧S(b, c) whereR(a, b) ∈ Nab, andS(b, c) ∈ N bc.

Figure 3: Composition of sets of relationsNab andN bc

The inequalities that can be derived from Figure 3 are as
follows:

Ymax(a) ≤ Ymin(b) (1)

Ymax(b) ≤ Ymin(c) (2)

By default,

Ymax(b) > Ymin(b) (3)

By substituting inequality (3) into inequality (2), we get in-
equality (4).

Ymin(b) < Ymin(c) (4)

By combining inequalities (1) and (4), we get the relation

Ymax(a) < Ymin(c) (5)

Substitute this inequalityYmax(a) < Ymax(c) into inequal-
ity (5), and we get another relation,

Ymax(a) < Ymax(c) (6)

The solution is:

Ymax(a) < Ymin(c) ∧ Ymax(a) < Ymax(c)



Technique 2: An algebraic computation
Use the composition table in Table 1 to compute the follow-
ing composition:

R(a, b) ∧ S(b, c)
whereR(a, b) ∈ Nab, andS(b, c) ∈ N bc

We shall represent the above as:

Nab ∧N bc

By using the sets of constraints listed earlier, we transform
the composition into the following algebraic expression:

[(Ymax(a) ≤ Ymin(b) ∧ (Ymax(a) < Ymax(b)]∧
[(Ymax(b) ≤ Ymin(c) ∧ (Ymax(b) < Ymax(c)]

Substitute the following into the above composition:
Ymax(a) with a,
Ymin(b) with b1,
Ymax(b) with b2,
Ymin(c) with c1,
Ymax(c) with c2.

We will now have the form:
[(a ≤ b1) ∧ (a < b2)]∧
[(b2 ≤ c1) ∧ (b2 < c2)]

Apply the distributive law and we get the following expres-
sion (7).

(a ≤ b1) ∧ [(b2 ≤ c1) ∧ (b2 < c2)] ∧
(a < b2) ∧ [(b2 ≤ c1) ∧ (b2 < c2)] (7)

Part 1 of inequality (7)

(a ≤ b1) ∧ [(b2 ≤ c1) ∧ (b2 < c2)]
= [(a ≤ b1) ∧ (b2 ≤ c1)] ∧ [(a ≤ b1) ∧ (b2 < c2)] (8)

Part 1.1 of inequality (8)

(a ≤ b1) ∧ (b2 ≤ c1)
= [(a < b1) ∨ (a = b1)] ∧ [(b2 < c1) ∨ (b2 = c1)]

= (a < b1) ∧ [(b2 < c1) ∨ (b2 = c1)] ∨
(a = b1) ∧ [(b2 < c1) ∨ (b2 = c1)]

= (a < b1) ∧ (b2 < c1) ∨ (a < b1) ∧ (b2 = c1) ∨
(a = b1) ∧ (b2 < c1) ∨ (a = b1) ∧ (b2 = c1) (9)

By default,b2 > b1, inequality (9) becomes:

(a < b2) ∧ (b2 < c1) ∨ (a < b2) ∧ (b2 = c1) ∨
(a < b2) ∧ (b2 < c1) ∨ (a < b2) ∧ (b2 = c1)

= (a < c1) ∨ (a < c1)
= (a < c1) (10)

Part 1.2 of inequality (8)

(a ≤ b1) ∧ (b2 < c2)
= [(a < b1) ∧ (a = b1)] ∧ (b2 < c2)

= [(a < b1) ∧ (b2 < c2)] ∧ [(a = b1) ∧ (b2 < c2)] (11)

By default,b2 > b1, inequality (11) becomes:

[(a < b2) ∧ (b2 < c2)] ∧ [(a < b2) ∧ (b2 < c2)]
= (a < b2) ∧ (b2 < c2)

= (a < c2) (12)

Substitute inequalities (10) and (12) into inequality (8), and
we get

(a < c1) ∧ (a < c2) (13)
Part 2 of the inequality (7)

(a < b2) ∧ [(b2 ≤ c1) ∧ (b2 < c2)]
= [(a < b2) ∧ (b2 ≤ c1)] ∧ [(a < b2) ∧ (b2 < c2)]

= (a < b2) ∧ [(b2 < c1) ∨ (b2 = c1)]
∧[(a < b2) ∧ (b2 < c2)]

= [(a < c1) ∨ (a < c1)] ∧ (a < c2)
= (a < c1) ∧ (a < c2) (14)

Substitute inequalities (13) and (14) into (7), we get
(a < c1) ∧ (a < c2) ∧ (a < c1) ∧ (a < c2)

= (a < c1) ∧ (a < c2)
= Ymax(a) < Ymin(c) ∧ Ymax(a) < Ymax(c) (15)

The conclusion is that for the above composition, the
algebraic method yields the same results as the graphical
method.

Composition table
Two composition tables computed for the sets are depicted
in Table 2 and Table 3. The notationNac∗ in Table 2,
means that it is has the constraints ofNac minus the equal-
ity Ymax(a) = Ymin(c). The same goes forSac∗ in Table 2,
Eac∗, andWac∗ in Table 3 . We shall use these composition
tables for forward reasoning as well as existential inference.

Queries for Forward Reasoning
Query 1: AR(a, b) ∧AR(b, c) Composition

Example 1: Find the composition ofAN (a, b)∧AN (b, c).

When represented in sets,the above composition can be
rewritten as:
[Nab ∩ Vab] ∧ [N bc ∩ Vbc] = [Nab ∧N bc] ∧ [Vab ∧ Vbc]
Use composition tables in Table 2, and 3, we get the follow-
ing outcome:

Nac∗ ∧ Vac
This is equivalent toAN (a, c) with region c disjoint from
the boundaryYmax(a) of the minimum bounding box for
a. This means that the extended regionc is disjoint from
extended regiona because the regionb between them is ex-
tended as well. The outcome of this composition concurs
with the model presented by Skiadopoulos & Koubarakis
(2001). However, our result here is more expressive because
it gives us some insight into the topological relationship be-
tweena andc as well.

Example 2: Find the following composition:
ANE(a, b) ∧ASW (b, c)

When represented in sets, the above composition can be
rewritten as:
[Nab ∩ Eab] ∧ [Sbc ∩Wbc] = [Nab ∧ Sbc] ∧ [Eab ∧Wbc]
Use composition tables in Table 2, and 3, we get the follow-
ing outcome:

[Nac ∨Hac ∨ Sac] ∧ [Eac ∨ Vac ∨Wac]
The above disjunction implies that the outcome of

the composition includes all tiles and this result is also
consistent with the results presented by Skiadopoulos &
Koubarakis (2001).



Table 2: Composition of horizontal set relations
Note: Nac∗ has the constraints ofNac minus the equalityYmax(a) = Ymin(c)

Sac∗ has the constraints ofSac minus the equalityYmin(a) = Ymax(c)

N bc Hbc Sbc

Nab Ymax(a) < Ymin(c)∧ Ymax(a) ≤ Ymin(c)∧ Ymax(a)>Ymin(c)∧
Ymax(a) < Ymax(c) Ymax(a) < Ymax(c) Ymax(a)>Ymax(c)

Nac∗ Nac Nac ∨Hac ∨ Sac

Hab Ymax(a)>Ymin(c)∧ Ymax(a) ≥ Ymax(c)∧ Ymin(a)>Ymin(c)∧
Ymax(a)>Ymax(c) Ymin(a) ≤ Ymin(c)∧ Ymin(a)>Ymin(c)
Ymin(a) < Ymin(c) Ymax(a) > Ymin(c)∧ Ymax(a) > Ymax(c)
Nac ∨Hac Ymin(a) < Ymax(c) Hac ∨ Sac

Hac

Sab Ymax(a)>Ymin(c)∧ Ymin(a) ≥ Ymax(c)∧ Ymin(a) > Ymax(c)∧
Ymax(a)>Ymax(c) Ymin(a) > Ymin(c)∧ Ymin(a) > Ymin(c)∧
Nac ∨Hac ∨ Sac Sac Sac∗

Table 3: Composition of vertical set relations
Note: Eac∗ has the constraints ofEac minus the equalityXmax(a) = Xmin(c)

Wac∗ has the constraints ofWac minus the equalityXmin(a) = Xmax(c)

Ebc Vbc Wbc

Eab Xmax(a) < Xmin(c)∧ Xmax(a) ≤ Xmin(c)∧ Xmax(a)>Xmin(c)∧
Xmax(a) < Xmax(c) Xmax(a) < Xmax(c) Xmax(a)>Xmax(c)

Eac∗ Eac Eac ∨ Vac ∨Wac

Vab Xmax(a)>Xmax(c)∧ Xmax(a) ≥ Xmax(c)∧ Xmin(a)>Xmax(c)∧
Xmax(a)>Xmin(c) Xmin(a) ≤ Xmin(c)∧ Xmin(a)>Xmin(c)
Xmin(a) < Xmin(c) Xmax(a) > Xmin(c)∧ Xmax(a) > Xmax(c)

Eac ∨ Vac Xmin(a) < Xmax(c) Vac ∨Wac
Vac

Wab Xmax(a)>Xmin(c)∧ Xmin(a) ≥ Xmax(c)∧ Xmin(a) > Xmax(c)∧
Xmax(a)>Xmax(c) Xmin(a) > Xmin(c)∧ Xmin(a) > Xmin(c)∧
Eac ∨ Vac ∨Wac Wac Wac∗

Query 2:
PR(a, b) ∧AR(b, c) Composition
Find the following composition:

[PN (a, b) ∧ PNE(a, b)] ∧AN (b, c)

When represented in sets, the above composition can be
rewritten as follows:

[[Nab ∩ Eab] ∪ [Nab ∩ Vab]] ∧ [N bc ∩ Vbc]

= [Nab ∧N bc] ∧ [[Eab ∧ Vbc] ∨ [Vab ∧ Vbc]]

Use composition tables in Tables 2 and 3, we get the
following outcome:



Nac∗ ∧ [Eac ∨ Vac]

This means that the outcome of the composition is
[PN (a, c) ∧ PNE(a, c)] ∨ AN (a, c) ∨ ANE(a, c) but once
again, with regionc disjoint from the boundaryYmax(a) of
the minimum bounding box fora.

Queries for Existential Inference
In this section, we shall demonstrate how the composition
tables in Table 2 and 3 can be used to answer queries using
existential inference. This section will also show the out-
come of existential inference with certainty and uncertainty.

Query 1: R(a, b) ∧AR(b, c) = AR(a, c)
If given the constraints forAR(b, c) and(AR(a, c), we have
to find whatR(a, b) is.

Example 1: Find R(a, b) when given ANW (b, c) and
ANW (a, c).

The sets for the relationsANW (b, c) areN bc andWbc and
ANW (a, c) can be{Nac, Nac∗} and{Wbc,Wbc∗} . We
shall tabulate the given information in Table 4.

Table 4: Query forANW (b, c) andANW (a, c)
R1(a, b) R2(b, c) R3(a, c)

? N bc Nac∗

Nac
? Wbc Wac∗

Wac

From Tables 2 and 3
With certainty
Nab N bc Nac∗

Wab Wbc Wac∗

With uncertainty
Hab N bc Nac ∨Hac
Sab N bc Nac ∨Hac ∨ Sac
Vab Wbc Vac ∨Wac
Eab Wbc Eac ∨ Vac ∨Wac

Based on the results in Table 4, with the given constraints
ANW (b, c) andANW (a, c), R(a, b) is eitherANW (a, c) or
[PNW (a, c)∧[PNE(a, c)∨PN (a, c)∨PE(a, c)∨PO(a, c)∨
PW (a, c) ∨ PSE(a, c) ∨ PS(a, c) ∨ PSW (a, c)]]. The latter
relation is subject to the ‘single-piece’ condition. It is true
when the existing parts are connected.

Query 2:
R(a, b) ∧AR(b, c) = PR(a, c)

If given the constraints forAR(b, c) andPR(a, c), we have
to find whatR(a, b) is.

Example 2: Find R(a, b) when given AN (b, c) and
PN (a, c) ∧ PNE(a, c).

The sets for the relationAN (b, c) are N bc and Vbc.
PN (a, c) are {Nac,Nac∗} and Vac. PNE(a, c) can be
{Nac, Nac∗} andEac. We shall tabulate the given infor-
mation in Table 5.

Table 5: QueryAN (b, c) andPN (a, c) ∧ PNE(a, c)
R1(a, b) R2(b, c) R3(a, c)

? N bc Nac∗

Nac
? Vbc Eac
? Vac

From Tables 2 and 3
With certainty
Nab N bc Nac∗

Eab Vbc Eac
Vab Vbc Vac

With uncertainty
Hab N bc Nac ∨Hac
Sab N bc Nac ∨Hac ∨ Sac

Based on the results in Table 5, with the given constraints
AN (b, c) andPN (a, c) ∧ PNE(a, c), the possible outcome
for R(a, b) is either[PNE(a, b)∧PN (a, b)] or [[PNE(a, b)∧
PN (a, b)]∧ [PNE(a, b)∨PO(a, b)∨PSE(a, b)∨PS(a, b)]].

Query 3:
R(a, b) ∧ PR(b, c) = AR(a, c)

If given the constraints forPR(b, c) andAR(a, c), we have
to find whatR(a, b) is.

Example 3: Find R(a, b) when given PW (b, c) ∧
PSW (b, c) ∧ PS(b, c) andASW (a, c).

The sets for the relationPW (b, c) areHbc andWbc,
PSW (b, c) areSbc andWbc, and lastly,PS(b, c) areSbc
andVbc, As forASW (a, c), it is Sac andWac.We shall tab-
ulate the given information in Table 6.

Table 6: Query forPW (b, c) ∧ PSW (b, c) ∧ PS(b, c) and
ASW (a, c)

R1(a, b) R2(b, c) R3(a, c)

? Hbc Sac∗

? Sbc Sac
? Vbc Wac∗

? Wbc Wac

From Tables 2 and 3
With certainty

Sab Sbc Sac∗

Sab Hbc Sac
Wab Wbc Wac∗

Wab Vbc Wac



Based on the results in Table 6, with the given constraints
PW (b, c) ∧ PSW (b, c) ∧ PS(b, c) andASW (a, c), the only
possible relationR(a, b) is ASW (a, b).

Example 4: Find R(a, b) when given PN (b, c) ∧
PNW (b, c) ∧ PW (b, c) andAN (a, c).

The sets for the relationPN (b, c) are N bc and Vbc,
PNW (b, c) areN bc andWbc, and lastly,PW (b, c) areHbc
andWbc, As for AN (a, c), it isNac andVac.We shall tab-
ulate the given information in Table 7.

Table 7: Query forPW (b, c) ∧ PSW (b, c) ∧ PS(b, c) and
ASW (a, c)

R1(a, b) R2(b, c) R3(a, c)

? N bc Nac∗

? Hbc Nac
? Vbc Vac
? Wbc

From Tables 2 and 3
With certainty
Nab N bc Nac∗

Nab Hbc Nac
Vab Vbc Vac

With uncertainty
Vab Wbc Vac ∨Wac

Based on the results in Table 7, with the given constraints
PN (b, c) ∧ PNW (b, c) ∧ PW (b, c) andAN (a, c), the only
possible relationR(a, b) is AN (a, b).

Conclusion
In this paper, we have shown how to decompose the nine
cardinal directions into sets corresponding to horizontal and
vertical constraints. Using these constraints, we formally
define ‘part and whole’ direction relations between extended
regions. 3x3 composition tables for sets have been computed
using an algebraic method confirmed by a graph. Such com-
position tables can be used to answer queries using forward
reasoning or existential inference.
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