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Abstract
In our previous paper (Kor and Bennett, 2003), we have shown
how the nine tiles in the projection-based model for cardina
directions can be partitioned into sets based on horizonta and
vertical constraints (called Horizontal and Vertical Constraints
Model). In order to come up with an expressive hybrid model
for direction relations between two-dimensional single-piece
regions (without holes), we integrate the well-known RCC-8
model with the above-mentioned model. From this expressive
hybrid model, we derive 8 atomic binary relations and 13
feasible as well as jointly exhaustive relations for the x and y
directions respectively. Based on these atomic binary relations,
we derive two separate 8x8 composition tables for both the
expressive and weak direction relations. We introduce a
formulathat can be used for the computation of the composition
of expressve and weak direction relations between ‘whole or
part’ regions. Lastly, we also show how the expressive hybrid
model can be used to make severa existentia inferences that
are not possible for existing models.

Introduction

Papadias and Theorodis (1994) describe topological and
direction relations between regions using their minimum
bounding rectangles (MBRs). However, the language
used is not expressive enough to describe the direction
relations. Additionaly, the MBR technique yields
erroneous outcome when the involving regions are not
rectangular in shape (Goyal and Egenhofer, 2000). In
order to come up with a more expressive language for
direction relations, we shal combine mereological,
topological, and cardinal directions relations.

Typicaly, composition tables are used to infer spatial
relations between objects. However, existing composition
tables for cardinal relations(Escrig and Toledo, 1998;
Skiadopoulos and Koubarakis, 2000) are weak and not
expressive enough. Consequently, these tables cannot
make some existentia inferences that will be shown at
the later part of this paper. Here, we shall show how we
come up with an expressive hybrid model for direction
relations. Based on this model, we derive two 8x8
composition tables for expressive as well as weak
direction relations.

In this paper, we shall describe the binary relations in the
expressive hybrid model for direction relations, and
define "whole and part’ relations. This is followed by
introducing a formula which could be used to compute
both expressive and weak direction relations for ‘whole
and part’ regions. Finaly, we shall demonstrate how the

model could be used to make several types of existentia
inferences.

Horizontal and Vertical Constraints Model

In the projection-based model for cardinal directions

(Frank, 1992), the plane of an arbitrary single-piece

region a, is partitioned into nine tiles, North-West,

NW(a); North, N(a); North-East, NE(a); South-West,

SW(a); South, S(a); South-East, SE(a); West, W(a);

Neutral Zone, O(a); East, E(a). In our previous paper

(Kor and Bennett, 2003), we have shown how to partition

the nine tiles into sets based on horizontal and vertical

constraints called the Horizontal and Vertical Constraints

Model. However, in this paper, we shall rename the sets

for easy comprehenson purposes. The following are the

definitions of the partitioned regions:

¢« WeakNorth(a) is the region that covers the tiles NW(a),
N(a), and NE(a)

¢ Horizontd(a) isthe region that coversthetilesW(a), O(a),
and E(a)

¢ WeakSouth(a) is the region that covers the tiles SW(a),
S(a), and SE(a)

¢ WeakWest(a) is the region that covers the tiles SW(a),
W(a), and NW(a)

» Vertical(a) is the region that covers the tiles S(a), O(a),
and N(a)

*  WeakEast(a) isthe region that covers thetiles SE(a), E(a),
and NE(a)

The set of boundaries of the minimal bounding box for

region a is could be represented as {X,.(a), X, .(&),

Y...[@), Y, (&} Figure 1 depicts the horizontal and

vertical setsof tilesfor a.
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Figure 1: Horizontal and Vertical Setsof Tiles

RCC-8 Modél

The RCC-8 (Randell et a, 1992) model consists of 8
atomic binary relations. PO(a,b), TPP(a,b), NTPP(ab),



EQ(ab), NTPPi(ab), TPPi(ab), EC(ab), and DC(ab)
which shall be defined later in this paper.

Expressive Hybrid Model
In order to come up with a more expressive model for the
composition of cardina directions, we integrate the RCC-
8 and the Horizontal and Vertical Constraints Model. We
shall consider two-dimensional single-piece regions
without hole. We shall consider the x and y dimensions
separately.

Definitions

If thereisareferent region a, and another arbitrary region

b, the possible atomic binary relations between them can

be defined asfollows:

¢ WeakNorth(b,a) - b 0 WeakNorth(a)

Horizontal (b,a) - b O Horizontal (a)

WeakSouth(b,a) - b O WeakSouth(a)

WeakEast(b,a) - b [ WeakEast(a)

Vertical(b,a) - b O Vertical(a)

WeakWest(b,a) - b 0 WeakWest(a)

DCy(a,b) — y-dimension of a is disconnected from y—

dimension of b

¢« EQy(ab) —y-dimension of aisidentical with y—dimension
of b

e o o o o o

e POy(ab) — y-dimenson of a partialy overlaps y—
dimension of b

¢ ECx(ab) — y-dimension of ais externaly connected to x—
dimension of b

¢ TPPy(a,b) —y-dimension of ais atangential proper part of
y—dimension of b

*  NTPPy(ab) — y-dimension of a is a nontangentid proper
part of y—dimension of b

«  TPPiy(a,b) — y-dimension of ais atangential proper part
of y—dimension of a

«  NTPPiy(a,b) — y-dimension of b is a nontangential proper
part of y-dimension of a

Atomic Binary Rdations of the Hybrid Model

In this section, we shall demonstrate how we come up

with all possible binary direction relations for the hybrid

model. All the possible atomic binary relations for each

horizontal set are shown in Figure 2. The notations that

will be used in this section are:

¢ RELy(b,2) is any aomic binary relation between b and the
horizontally partitioned region, Z

*  RELx(b,2) is any atomic binary relation between b and the
vertically partitioned region, Z

Based on Table 1, the total number of possible binary

relations for the hybrid model in the y-direction is

[(2+4+2) + (2x4) + (2x2) + (4x2) + (2x4x2)] which

equals 44 cases. However, due to the single-piece

condition, the following rules apply:

¢ Rulel: b0 =(WeakNorth(a) OWeakSouth(a))

¢ Rule2: Assume U to be {WeakNorth(a), Horizontal(a),
WeakSouth(a)}. If NTPPy(b,R)
where R0 U then —[[NTPPy(b,R) O RELy(b,S)] O
[NTPPy(b,R) O RELy(b,S) O RELy(b,T)]] where
SOU-R, TOU-S

¢ Rule3: Assume U to be {WeakNorth(a), WeakSouth(a)}.
If [TPPy(b,Horizontal(a)) 0 ECy(b,R)] where R O U then
~[TPPy(b,Horizontal) 0 ECy(b,R) O RELy(b,S)] where SO
U-R
Based on the rules above, the total number of feasble
binary relations for single-piece regions in the y-direction
is (44 — 4 — 23 — 4) which equals 13 cases. The thirteen
feasible and jointly exhaudtive binary relations for the
hybrid model are depicted in Figure 3. This meansthat in
the hybrid model, the number of jointly exhaustive binary
relations (in both the x and y directions) that hold
between two single-piece regions will be 13x13. This
concurs with the 13x13 atomic relations in the Rectangle
Algebra Model (Balbiani et al. 1998).

Combined Mereological, Topological and
Cardinal Direction Relations
In this section, we shall make two distinctions; ‘whole
and part’ cardinal directions , as well as ‘weak and
expressive’ relations. We shall rewrite the notations used
in our previous paper (Kor and Bennett, 2003). P.(b,a)
means that only part of the destination extended region,
b, isintile R(a). The direction relation A(b,a) means that
whole degtination extended region, b, isin the tile R(a).
As an example, when b is completely in the South-East
tile of a, this direction relation can be represented as
bel ow:
A.(ba) = -P,(b,a) 0-P,(b,a) O-P,(ba) 0
-P(b,a) OP_(b,a) O-P_(ba) O
-P,(b,a) 0-P.(b,a) 0-P,(b,a)
The ‘whole and weak’ direction relations are defined in
terms of horizontal and vertical sets.
*  A/(b,a) =WeakNorth(b,a) O Vertical (b,a)
A (b,a) = WeakNorth(b,a) 0 WeakEast(b,a)
A, (b,a) = WeakNorth(b,a) O WeakWest(b,a)
A(b,a) = WeakSouth(b,a) O Vertical (b,a)
A(b,a) = WeakSouth(b,a) [ WeakEast(b,a)
A, (b,a) = WeakSouth(b,a) [ Weak\West(b,a)
A.(b,a) = Horizontal (b,a) O Vertical (b,a)
A,(b,a) = Horizontal (b,a) O WeakEast(b,a)
e A, (ba) = Horizontalh(b,a) 0 WeakWest(b,a)
The ‘whole and expressive’ direction relations are
defined in terms of expressive horizontal and vertical
sets. A general form of such direction relation can be
represented as follows:

"0 A (5,8)] ey = RELY(b,H) ORELX(B,V) ...(1)
where H and V are horizontally and vertically partitioned
regions for a respectively, and R(a) 0 H OR(a) O V.

e o o o o o o

Composition Table
The composition tables computed for the horizontal and
vertical sets are shown in Table 1 and Table 2. The
composition of atomic binary relations in the expressive
model can be collapsed into weak relations as shown in
the above-mentioned tables (with shaded boxes).
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Figure 2: Possible atomic binary relaions for each horizontally
partitioned region

Composition of Regionswith Parts
In our previous paper (Kor and Bennett, 2003), the
method for the computation of part regions is not robust
enough because it does not hold for all cases. In order to
address such a problem, we introduce a formula
(Equation 2.a). The basis of the formulaisto consider the
direction relation between a and each individud part of b
followed by the direction relation between each
individual part of b and c. Assume that the region b
covers one or more than one tile of region a while region
¢ encompasses one or more than one tile of region b. The
formula for the composition of weak direction relations
can be written asfollows:
P_(b,a) OP(c,b)
= [P (b,a) OP(b,a)... OP.(b,a)] O[Pc.b)]

TPPy(b, WeakNorth(a)) O
ECy(b,Horizontal (a))

TPPy(b, Horizontal (a)) O
ECy(b,WeakSouth(a))

TPPy(b, WeakSouth(a)) I
ECy(b,Horizontal (a))
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POy (b, WeakNorthl(a)) O
POy(b, Horizontall(a)) O
DCy(b,WeakSouth(a))

POy (b, WeakSouth(a)) O
POy(b, Horizontall(a)) O
DCy(b,WeakNorth(a))

POy (b, WeakNorthl(a)) O
POy(b, Horizontall(a)) O
ECy(b,WeakSouth(a))

POy (b, WeakSouthl(a)) O
POy(b, Horizontall(a)) O
ECy(b,WeakNorth(a))

POy (b, WeakNorthl(a)) O
POy (b, WeakSouthl(a)) O
NTPPiy(b,Horizontal (a))

Figure 3: Thirteen feasible and jointly exhaustive binary
relations in the y-direction for the hybrid model
Firstly, establish the direction relation between each
individual part of b and c. The above composition can be
rewritten as follows.
[[P.(6,8)] D[P..(c.b) OPfc,b,) ... Oy (c,b)]] O

[[P.(b,8)] O[P.(c,b,) OPu(c,b,) ... (P, (c,,0)]] O

[[P.(0,@] T[Pu.(c.b,) TP, b,) ... OP,.(c, b]]
...(2)

wherel<k<9,and1<m<9

Consider the composition of direction for each individual
part of b and c. Equation (1) becomes:




[[P. (0,8 OP..(c,b)] O[P.(b,a) OP.(c,.b,)] O...
[P.(b,) OP.(c,.b)]] O

[[P.(0,a) 0P (c,b,)] O[P.(b,a) OP_(c,b,)] O...
[P.(b,a) 0P, (c,.b)]] O

[[Pa(b,8) OP,(c.b)] D[P (b,2) OP.(c,b)] O...

[P, (b,a) OP,.(c,b)]]

...(2.9)
By applying distributive law we have the following
equation:
[[P.(b,8) O [Prs(Cb,) OPw(C, b,) 0P, b)]] O
[[P.(b,8) O[Prs(cub,) OPw(C, b,) 0P, b)]] O
[[Pa(0,8) O [PaclC,b) OPu(c,b) O... Pan(c,b)]]

...(2b)

Firstly, we shall demonstrate how to apply the formula
for the composition of weak direction relations followed
by more expressive direction relations.

Composition of Weak Direction Relations
Type 1. A(b,a) OAL(c,b)
Find the composition of A (b,a) OA,(c,b)
Use Equation 2.awithk=1,and m=1.
Pr(b,8) OP(c.b,) = P(ba) OP,(cb)
= [Horizontal (b,a) O Vertical (b,a)] O

[ WeakSouth(c,b) [ Weak\West(c,b)]
= [Horizontal (b,a) 0 WeakSouth(c,b)] 0

[ Vertical (b,a) 0 WeakWest(c,b)]

The outcome of the compositionis
[Horizontal (c,a) 0 WeakSouth(c,a)] O
[ Vertical (c,a) 0 Weakwest(c,a)]

This means that the region ¢ 0 O(a)lW(a)0S(a)0Sw(a).

Type 2: A(b,a) OP.(c,b)
Find the composition of A(b,a) O[P,,(c,b) OP,(c,b)]
Use Equation 2.awithk=1,and1<m<2.
[[P.(0.8) OP..(c,b)] O[P.(b.a) OP,(c,b)]]
=[[P(ba) OP(bc,)] O[P.(ba) OP(b.c)]]
= [ [Horizontal(b,a) 0 WeakEast(b,a)] O
[ WeakNorth(c, b) (1 WeakWest(c,b)]] O
[ [Horizontal(b,a) O WeakEast(b,a)] O
[ WeakNorth(c,,b) 0 Vertical(c,,b)]
= [ [Horizontal (b,a) 0 WeakNorth(c,b)] O
[WeakEast(b,a) 0 WeakWest(c,b)] | O
[ [Horizontal(b,a) 0 WeakNorth(c,b)] O

[WeakEast(b,a) O Vertical(c,b)]]

The outcome of the compositionis
[[Horizontal(c,a) 0'WeakNorth(c,a)] O
[WeakEast(c,.a) 0 Vertical(c,a) 0 WeakWest(c,a)] | O
[ [Horizontal(c,a) 01WeakNorth(c,a)] O
[WeakEast(c,a)] ]

Both ¢, O ¢ and c,0 ¢, so the above outcome can be
written as:

[ [Horizontal(c,a) 0 WeakNorth(c,a)] O

[WeakEast(c,a) 0 Horizontal (c,a) 0 WeakWest(c,a)] |
This means that the region ¢ O E(a)0J0(a)0w(a)d
NE(a)ON(a)ONW(a).

Type 3: P(b,a) OA.(c,b)
Find the composition of [P (b,,a) O P(b,a)] OA.(c,b)

Establish the relationship between ¢ and each individua
part of b. In this case, when A.(cb), P.(cb, ) and
P..(c,b, ) holds (thisis not necessarily true for all cases).

Use Equation 2.awith1<k<2and m=1
[[P.(b.@] O[P.c.b)]] O[[Patb.a)] O[P.c,b)]]
= [[Pb.a)] O[Pch)]] O[[Pyb,a)] O[Pech)]]

Therefore, the above composition can be rewritten as:
[[Pb.2] DIP.tcb)]] D[P (b.a)] O[PLcb,)]]
= [[Horizontal(b,,a) O Vertical (b,a)] O
[WeakNorth(c,b,) 0 WeakEast(c,b,)] | O
[ [WeakNorth(b,.a) 0 Vertical(b,a)] O
[ WeakNorth(c,b, ) 0 WeakEast(c,b, )]
= [[Horizontal (b,,a) O WeakNorth(c,b,)] O
[Vertical (b,a) OWeakEast(cb,)]] O
[ [WeaknNorth(b,,a) [ WeakNorth(c,b,)] O
[ Vertical (b,,a) 0 WeakEast(c,b, )]

The outcome of the compositionis

[ [Horizontal(c,a) 0 WeakNorth(c,a)] O
[WeakEast(c,a) O Vertical(c,a)] | O

[[NTPPy(c, WeakNorth(a)] O
[WeakEast(c,a) 0 Vertical (c,a)] ]

= [[NTPPy(c, WeakNorth(a)] O
[WeakEast(c,a) O Vertical (¢.a)]]

This means that the Y, (c) of the minima bounding box
for region ¢ is greater than Y, (&) of the minimal

bounding box for region a and ¢c 0 NE(a)(N(a).



Type 4: P(b,a) OP.(c,b)
Find the composition of
[Po(b,,a) OP\(b,,8)] O[Py(c,b) OP,(c,b) OP(c,b)]

The diagram Figure 4 has been drawn for this example.

]
|
|
- o<c—q-—————————-
|

\\ ik

R [ U gy

— Boundaries of minimal bounding box for region a
-- Boundaries of minimal bounding box for region b

Figure 4: An example
Establish the direction relation between each individua
part of band c.
Use Equation 2.a with 1 < k < 2, the value of m, for b,is
1< m < 4. whilethevauem, for b,isl< m < 7.
[[P. (0,8 OP,(c,b)] O[P.(b,a) OP.(c,b)]0
[P.(b,) OP_(c,b,)] O[P.(b,a) OP.(c..b)]] O
[[P. (0,8 OP_(c,b,)] D[P (b,a OP_(c,b)] O
[P (b,a) OP,(c,.b)] O[P,(b,a) OP.(c,b,)] O
[P (b,a) OP,(c..b,)] O[P,(b,a) OP.(c.,b,)] O
[P(b.@) 0P, (c,b)]]
= [[P.(b.2) OP(c,b,)] O[P,(b,2) OP,(c,b,)]0
[P,(b,a) OP,(c,b,)] O[P(b,a) OPc,.b)]] O
[[P.(b,a) OP(c,b,)] O[P.(b,8) OPc,b,)] O
[P.(b,.8) OP,(c,.b,)] O[Pb,a) OPLc,,b,)] O
[P.(b,a) OPc,,b)] O[P.(b,a) OP,c,,b,)] O
[P..(b,a) OP,(c,b)]]

Apply the distributive law as in Equation 2.b, and we will
get:
[[P.(b,8) O[PLc,b,) OPy(c,b,) OP,(c,b,) O

P.(c,.b)]] ... part(1)
0
[[Pub,a) O[P(c,b,) DR, b,) OPfc, b,) O

P.(c,/b,) OP,(c,,b,) OP,(c,.b,) OPy(c,b)]] ...part(2)

In part(1) of composition, ¢, ¢, ¢, ¢, c. To simplify the
composition, we consider the combined horizontal and
vertical sets of al the parts of ¢. Thus we have the
following:

[ WeakNorth(b,,a) 0 WeakEast(b,,a)] O

[[Horizontal(c,b,) 0'WeakSouth(c,b,)] O
[ Vertical(c,b,) 0'WeakWest(c,b,)]]
= [ [WeakNorth(b,,a)] O] Horizontal (c,b, ) [ WeakSouth(c,b, )] ]
0 [WeakEast(b,,a)] 0 Vertical(c,b, ) 0 WeakWest(c,b, )] ]
= WeakNorth(c,a) O Horizontal (c,a) [IWeakSouth(c,a)] O
[WeakEast(c,a) O Vertical (c,a) 0 WeakWest(c,a)]

In part(2) of composition, ¢, ¢, ¢, C, C; G, ¢, I c. The
simplified verson of the composition isasfollows:
[Horizontal (b,,a) O Vertical(b,,a)] O
[ [WeakNorth(c,b,) 0 Horizontal(c,b,) [ WeakSouth(c,b,)] O

[WeakEast(c,b,) O Vertical (cb,) 0 WeakWest(c,b,)] ]
= [ [Horizontal (b,,a)] O WeakNorth(c,b,) O

Horizontal (c,b,) 0 WeakSouth(c,b,)] ] O
[[ Vertical (b, a)] C[WeakEast(c,b,) O
Vertical (c,b,) 0 WeakWest(c,b,)] ]

= [ [ WeakNorth(c,a) 0 Horizontal (c,a) 0 WeakSouth(c,a)] O

[WeakEast(c,a) 0 Vertical(c,a) 0 WeakWest(c,a)] ]

The final outcome of the composition is part(1)Opart(2) is

equivalent to:

[ WeakNorth(c,a) O Horizontal(c,a) [ WeakSouth(c,a)] O
[WeakEast(c,a) O Vertical(c,a) 0 WeakWest(c,a)]

This means that the region ¢ [0 U which is the union of

all the 9 tiles of region a. However, based on Figure 4,

region c [0 SW(a).

Composition of Expressive Dir ection Relations

We shall use the following notations to represent the 13

binary y-direction relations:

REL1y(b,a)-NTPPy(b,WeakNorth(a))

REL2y(b,a)-TPPy(b,WeakNorth(a)) JECy(b,Horizonta (a))

REL3y(b,a))-TPPy(b,Horizontal (a)) JECy(b,WeakNorth(a))

RELA4y(b,a))-TPPy(b,Horizontal (a)) JECy(b,Weak South(a))

REL5y(b,a)-NTPPy(b,Horizontal (a))

REL6y(b,a)-EQy(b,Horizontal(a))

REL 7y(b,a)-NTPPy(b,WeakSouth(a))

REL8y(b,a)-TPPy(b,WeakSouth(a)) JECy(b,Horizonta (a))

REL9y(b,a)—POy(b,WeakNorth(a)) POy (b,Horizontal(a))[

DCy(b,WeakSouth(a))

. REL10y(b,a)—POy(b,WeakNorth(a)) POy (b,Horizontal (a)) ]
ECy(b,WeakSouth(a))

. REL11y(b,a)-POy(b,WeakNorth(a)) OPOy(b,Weak South(a))
ONTPPiy(b,Horizontal (a))

. REL12y(b,a)—POy(b,Weak South(a)) 0POy(b,Horizonta (a)) ]
DCy(b,WeakNorth(a))

. REL13y(b,a)—POy(b,WeakSouth(a)) (0POy(b,Horizonta (a)) O]
ECy(b,WeakNorth(a))

Similar notations will be used to represent the 13 binary
x-direction relations (WeakNorth is replaced by
WeakEast, Horizontal with Vertical and WeakSouth by
WeakWest).



Example 1:
Find the composition of the following:

[REL3y(b‘a)[Po(b’a)] L1 | RELZy(b‘a)[PNE(bna)] RELZx(bLa)] U

[““““"”[AN(Q b)] m@‘)]
Establish the direction relation between ¢ and each
individual part of b. Use Equation 2.b, with 1 <k < 2 and
l<m<2,and1l<m,<2
[[P.(b,@] O[Prsle.b,) OP.(c.b)]] O

[[P.(b,a)] O[P.c,b,) OP.(c,b,)]]

Use Equation (1), and the above composition can be
rewritten in the following expressive form:

[[REL3y(b,2)OREL3X(b,2)] ] O] [REL1y(c,b)OREL3X(C,b,)]
C[REL1y(c,b)OREL2X(c,b)] | O
[[REL2y(b,,2)OREL2x(b,2)] ] O] [REL2y(c,.b) IREL4X(c, b,)]
C[REL2y(c,b)ORELSX(c,b)] ]
= [ REL3y(b, @) REL1y(c,b)OREL1y(c,b)] ] O
[ REL3x(b,,2) 0] REL3X(c,b) IREL2x(c,b,)] | O
[REL2y(b,,8)[ REL2y(c,.b,) CREL2y(c,b,)] | O
[ REL2x(b,,8) [ REL4x(c, b)) IRELSX(C, b,)] |

Use Tables 1 and 2, and ¢, O ¢ and c,00 c. Thus, the
outcome of the composition can be written as follows:

REL 1y(c,a) ] REL2x(c,a) IREL3x(c,a)] 0
REL 1y(c,a) ]| REL2x(c,a) JREL3x(c,a)
DREL6x(c,a) JREL13%(c,a)]
= REL1y(c,a) [ REL2x(c,a) JREL3x(c,a)]

The outcome of the compositionis
NTPPy(c,WeakNorth(a))O

[ TPPx(c,WeakEast(a)) LECy(c,Hori zontal (a)) ]

TPPx(c,Vertical (a))IECy(c, Horizontal (a))]

Example 2:
This example is smilar to the fourth example in the
previous section of this paper.
Find the composition of
[Po(b,,a) OP\(b,,8)] O[Py(c,b) OP,(c,b) OP(c,b)]

Establish the direction relation between c¢ and each
individual part of b. Use Equation 2.b, with 1 <k < 2 and
l<m<4,andl<m,<7.

The composition in expressive form will be asfollows:

For part b,

[[REL2y(b,2)OREL2X(b,a)] ] O

[ [REL4y(c, b, CDREL4x(c, b,)] O] REL8Y(C, b IREL4X(c, b)) ] O
[ REL4y(c, b,)DREL8X(c,b,)] O REL8y(c, b, DREL8X(c,b)] ]

The regions ¢, ,c,,c,.c, O ¢, the above composition can be
written as follows:

[ REL2y(b, 2)[ REL4y(c.b,) CREL8Y(C,b,)
OREL4y(c,b)OREL8y(c,b,)] | O
[ REL2x(b,,a) [I[ REL4x(c,b,)OREL4x(c,b,)
DREL8X(c,b,) IREL8X(c,b,)] |
= [ REL 2y(c,a)JREL 3y(c,a) IREL6y(c,a) IREL13y(c, a)] O
[ REL 2x(c,a) IREL 3x(c,a) IREL6x(c,a) IREL13x(c, a)] ...(39

For part b,
[[REL3y(b,2)OREL3X(b,a)] ] O
[[REL8y(c, b, DREL 7x(c, b,)] O REL6y(C, b)) IREL8X(C, b)) ] O
[REL2y(c, b, OREL8X(c, b,)] L[ REL2y(c,.b,) DREL6X(c,,b,)] O
[ REL3y(c, b, OREL6X(c,,b,)] O REL3y(c,,b,) IREL2x(c,,b,)] O
[REL2y(c,b)OREL2x(c,b)] ]
= [ REL 2y(c,a)JREL 3y(c,a) IREL5y(c,a) IREL12y(c, a)] O
[ REL 2x(c,a)IREL 3x(c,a) IREL4x(c,a) IREL5x(c,a)(]
REL 7x(c,a)REL8x(c,a) DRELle(c,a)] ...(3b)

The final outcome of the composition is the compostion
of part b, (Equation 3.a) O part b, (Equation 3.b).
Apply Rule 3 from the earlier part of the paper and we
will get the following:
[ REL 2y(c,a) IREL 3y(c,a) IREL6y(c,a) IREL13y(c, a)] O

[ REL 2y(c,a)0REL 3y(c,a) 0 REL12y(c, a)] O
[ REL 2x(c,a) JREL 3x(c,a)IREL4x(c,a)(]

REL8x(c,a) JREL12x(c,a)] O

[RELZx(c, a)OREL3x(c,a) JREL6x(c,8) JREL13x(c,a)] ...(4)
We collapse some of the digunction of relations:
REL6y(c,a)IREL13y(c,a) = REL13y(c,a)
REL4x(c,a)0 REL8X(c,a)IREL12x(c,a) = REL12y(c,a)
REL 6x(c,a)IREL13x(c,a) = REL13x(c,a)
Equation 4 becomes:
[ REL2y(c,a)OREL3y(c,a)0 REL13y(c,a)] O

[ REL 2y(c,a)REL 3y(c,a) 0 REL12y(c, a)] O
[ REL 2x(c,a) JIREL 3x(c,a)IREL 12x(c,a)] O

[ REL2x(c,a) IREL3X(c,a)0 REL13x(c,3)] ...(4.2)
Region c is single-piece. Therefore, Equation 4.a
becomes
[ POy(c,WeakNorth(a)) IPOy(c,Weak South(a))
ONTPPiy(c,Horizontal (a))] O

[ POX(c,WeakEast(a)) POXx(c, WeakWest(a))

ONTPPix(c,Vertical (a))]
This means that the region ¢ [0 U which is the union of
all the 9 tiles of region a. As mentioned earlier, based on
Figure 4, region ¢ 0 SW(a). Thus, the outcome of the
composition for weak relaions (in the previous section)
yields the same result as this composition. However, the
computation for the latter is more tedious and complex
when involving regions with many parts.



Existential Inference
In this paper, we shall demonstrate how the expressive
hybrid cardina direction model could be used to make
several existential inferences which are not possible in
existing models..

Example 1: Find R(b,a) such that ¢ (1 WeakNorth(b)
and c 0 WeakNorth(a)

Skiadopoulos modd (2001) which is not expressive
enough, cannot answer such query because the
composition table computed is not existential. To answer
this query, we mus first specify the expressive relation
between a and c.

There are two possible relations: TPPy(c,WeakNorth(a))
or WeakNorth(c,a). If it is the former then compositionis
is WeakNorth(b,a)[WeakNorth(c,b) which means R(b,a)
is WeakNorth(b,a). If it is the latter, there are severd
combinations:

*  WeakNorth(b,a)CHorizontal (c,b)

*  WeakNorth(b,a)[WeakSouth(c,b)

»  Horizontal(b,a)OWeakNorth(c,b)

*  WeakSouth(b,a)[\WeakNorth(c,b)

The first relation in each composition listed above is
R(b,a).

Example 2: Find R(b,a) and S(c,b) such that T(a,c) is
-[ TPPy(c,Horizontal (a)) O ECy(c,WeakSouth(a))]

Based on Table 1, 9 different compositions will yield the
following outcome:
TPPy(c,Horizontal (a)) JECy(c,WeakSouth(a))]

The set of possible compositions, Q, is
{ REL1y(b,a)JREL7y(c,b), REL2y(b,a) IREL7y(c,b),
REL3y(b,a)IREL7y(c,b), REL3y(b,a) JREL8y(c,b),

REL5y(b,a) [ IREL 7y(c,b), REL5y(b,a) [ IREL8y(c,b),

REL6y(b,a) [ IREL4y(c,b), REL7y(b,a) [ IREL1y(c,b),

REL8y(b,a)[IREL12(c,b)}

If U equals 8 x 8 atomic binary direction relations, then
the set of all possible ordered pairs of R and S which
satisfy the above query will be U — Q.

Example 3: Find R(b,a) and S(c,b) such that T(a,c) is
POy(c,Weak South(a))POy(c,Horizontal (a))]
ECy(c,WeakNorth(a))

Based on Table 1, we have 4 pairs of R and S which
satisfy T. They are: REL1y(b,a)(JREL7y(c,b),REL2y(b,a)[]
REL8y(c,b), REL7y(b,a) IREL1y(c,b), REL7y(b,a) [ IREL2y(c,b).

Conclusion
In this paper, we have shown how topological and
direction relations can be integrated to produce a more
expressive hybrid model for cardinal directions. The
composition table derived from this model could be used
to infer both weak and expressive direction relations
between regions. We have aso introduced and
demonstrated how to use a formula to compute the

composition of weak or expressive relations between
‘whole and part’ regions. We have dso demonstrated
how the composition table with expressive direction
relations could be used to make several difficult
existential inferences.
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