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Exercise in NN only induced a rise in PNORMET and 
PMET.
Conclusion Biochemical markers that reflect sympa-
thoadrenal, adrenocortical, and myocardial responses to 
physiological stress demonstrate significant differences in 
the response to exercise under conditions of normoxia ver-
sus hypoxia, while NH and HH appear to induce broadly 
similar responses to GHA and may, therefore, be reason-
able surrogates.

Keywords High altitude · Hypobaric hypoxia · 
Normobaric hypoxia · NT-proBNP · Adrenal · Cardiac · 
Exercise

Abbreviations
ANOVA  Analysis of variance
BNP  Brain natriuretic peptide
CV  Coefficient of variation
CLIA  Chemiluminescence immunoassay
ECG  Electrocardiograph
ECLIA  Electro-chemiluminescence immunoassay

Abstract 
Purpose To investigate whether there is a differential 
response at rest and following exercise to conditions of 
genuine high altitude (GHA), normobaric hypoxia (NH), 
hypobaric hypoxia (HH), and normobaric normoxia (NN).
Method Markers of sympathoadrenal and adrenocor-
tical function [plasma normetanephrine (PNORMET), 
metanephrine (PMET), cortisol], myocardial injury [highly 
sensitive cardiac troponin T (hscTnT)], and function 
[N-terminal brain natriuretic peptide (NT-proBNP)] were 
evaluated at rest and with exercise under NN, at 3375 m in 
the Alps (GHA) and at equivalent simulated altitude under 
NH and HH. Participants cycled for 2 h [15-min warm-up, 
105 min at 55% Wmax (maximal workload)] with venous 
blood samples taken prior (T0), immediately following 
(T120) and 2-h post-exercise (T240).
Results Exercise in the three hypoxic environments pro-
duced a similar pattern of response with the only difference 
between environments being in relation to PNORMET. 
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FiO2  Fraction of inspired oxygen
GHA  Genuine high altitude
HA  High altitude
HH  Hypobaric hypoxia
hscTnT  Highly sensitive cardiac troponin T
LC–MSMS  Liquid chromatography mass spectrometry
NH  Normobaric hypoxia
NN  Normobaric normoxia
NT-proBNP  N-terminal pro-brain natriuretic peptide
PASP  Pulmonary artery systolic pressure
PiO2  Partial pressure of inspired oxygen
PMET  Plasma metanephrine
PNORMET  Plasma normetanephrine
RVSP  Right ventricular systolic pressure
SpO2  Peripheral oxygen saturation
QC  Quality control
Wmax  Maximal workload

Introduction

Performing field research at high altitude (HA) is challeng-
ing and is often compounded by an austere environment 
and confounders such as variable environmental tempera-
ture, sleep, and exercise intensity. To mitigate these factors, 
the hypoxia of HA may be simulated. This may be done 
by reducing barometric pressure while maintaining the 
inspired fraction of oxygen at 20.9% (hypobaric hypoxia, 
HH) or by maintaining barometric pressure at 760 mmHg 
and reducing the inspired fraction of oxygen (normobaric 
hypoxia, NH). The modality employed will, pragmatically, 
often be determined by institutional history and availability.

Whether NH and HH are interchangeable means of simu-
lating HA is not clearly understood, and yet, the literature is 
populated by studies examining the response to NH and HH 
with little consideration for whether there is any differential 
effect (Lundby et al. 2005; Woods et al. 2011b; Wille et al. 
2012; Li et al. 2016). However, as illness at HA is relatively 
common and the pathophysiology of acute mountain sick-
ness poorly understood (Schmerbach and Patzak 2013), there 
remains a need for both field and simulation studies. In 2012 
(Millet et al. 2012a, b; Mounier and Brugniaux 2012), it was 
suggested that HH represented a more severe environmental 
condition that induces different physiological responses to 
NH (Millet et al. 2012a, b). This perspective was vigorously 
contested (Mounier and Brugniaux 2012) and stimulated 
significant debate within the field (Girard et al. 2012; Millet 
et al. 2012b). This debate highlighted a significant knowledge 
gap and the limited evidence-base on which any firm conclu-
sions could be based. Among the very few studies comparing 
NH and HH, this journal has reported that HH may elicit a 
lower arterial carbon dioxide, lower oxygen saturation, and 
greater alkalosis than NH during an acute (30 and 40 min) 

exposure to an equivalent of 4500 m (Savourey et al. 2003, 
2007), an effect thought to be due to increased dead space 
ventilation. However, there remains little direct comparison 
between the effects of NH, HH, and a “real-world” equiva-
lent altitude, particularly in relation to the physiological stress 
induced. This was emphasized again when a recent review of 
studies utilizing NH and HH reiterated the limitations of the 
existing literature (Coppel et al. 2015).

We, therefore, chose an array of biochemical markers 
that would reflect a breadth of physiological responses to the 
environment at rest and with exercise allowing comparison 
between those environments. We, and others, have previously 
shown that highly sensitive cardiac troponin T (hscTnT), 
N-terminal pro-brain natriuretic peptide (NT-proBNP), and 
cortisol are influenced by hypoxia and exercise (Rostrup 
1998; Banfi et  al. 2010; Richalet et  al. 2010; Woods et  al. 
2011a, 2012a, b; Mellor et  al. 2014; Heinonen et  al. 2014; 
Pagé et al. 2015; Li et al. 2016). An increased sympathoad-
renal response has been reported with both acute and more 
prolonged HA exposure (Mazzeo et al. 1995) that is further 
stimulated by exercise (Mazzeo et al. 1991, 1995, 2000; Ros-
trup 1998). While assay of the traditional catecholamines 
dominates the literature, they have a very short half-life of 
1–2 min (Peaston and Weinkove 2004) and are highly unsta-
ble and so labile they alter in response to a change in posture 
(Raber et  al. 2000). Plasma normetanephrine (PNORMET, 
also known as normetadrenaline) and plasma metanephrine 
(PMET, also known as metadrenaline) are the more stable 
O-methylated extraneuronal metabolites of noradrenaline 
and adrenaline respectively. PNORMET and PMET, while 
being non-functional in themselves, both correlate with their 
respective catecholamines (Roden et al. 2001) and have the 
added advantage that they are not significantly influenced by 
the time of day, the phase of the menstrual cycle, or the act of 
venepuncture, and are stable, once separated, at 4 °C for 72 h 
(Deutschbein et al. 2010). Although they do not reflect global 
sympathoadrenal activity, they are sufficiently sensitive to 
increase in response to brief (2 min) high intensity exercise 
in normoxia (Bracken and Brooks 2010) and in view of their 
advantages for field work were chosen for assay rather than 
catecholamines.

These markers were then studied to investigate whether 
there was a differential response following exercise under 
conditions of normobaric normoxia (NN), NH, HH, and 
genuine high altitude (GHA).

Materials and methods

Ethical information

The study was approved by the Ministry of Defence 
Research Ethics Committee and was conducted according 
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to the standards of the declaration of Helsinki. All partici-
pants gave written informed consent.

Participants

Participants were 14 healthy British military servicemen 
and women aged 22–35 years. Participant health status was 
confirmed by clinical history, examination, ECG, and tran-
sthoracic echocardiography.

Study protocol

All participants underwent a standard incremental cycle 
test to volitional exhaustion at sea level (absolute altitude 
~113 m) under NN conditions to determine maximal oxy-
gen uptake and maximal workload (Wmax [watts]) on 
a bicycle affixed to a bicycle trainer (Compu Trainer Pro 
Lab, Racer Mate, USA). The bicycle trainer was calibrated 
following the manufacturer’s instructions. At least 7 days 
later, this was repeated under NH {FiO2 considering water 
vapour partial pressure and daily fluctuations of baromet-
ric pressure equivalent to 3375  m  (PiO2 ~95  mmHg)} in 
an environmental chamber (TISS, Alton, UK and Sporting 
Edge, Sherfield on Loddon, UK) at Leeds Beckett Univer-
sity. This established and ensured that equivalent work-
loads were used for the hypoxic experimental trials.

Participants were then assessed under four different 
environmental conditions. They were first assessed at GHA 
in order that conditions experienced there could then be 
replicated under NH and HH. GHA was at 3375 m (baro-
metric pressure 506.4 ± 1.4  mmHg) at the Torino Hut in 
Northern Italy. Access to the hut required rapid ascent by 
cable car to 3375  m. Participants slept in the valley floor 
the night before, only ascending to 3375 m on the morn-
ing of their testing. Participants then remained at the hut 
for 24 h, descending the following day after testing. At least 
7 weeks later, participants underwent the same protocol 
under conditions of NN. Eight weeks after being at GHA, 
the participants underwent the same protocol under condi-
tions of NH in an environmental chamber. Finally, at least 3 
weeks following NH exposure, participants completed the 
protocol under conditions of HH at the Centre of Aviation 
Medicine, RAF Henlow, UK. This sequence ensured that 
the  PiO2 experienced breathing ambient air during GHA 
 (PiO2 = 96.3 ± 0.4  mmHg) could be replicated for each 
individual during subsequent NH and HH exposures.

During each exposure participants had 30  min of alti-
tude acclimatization. This was followed by a standardized 
warm-up which included the calibration of the bicycle 
trainer (Compu Trainer Pro Lab, Racer Mate, USA) to the 
manufacturer’s instructions. Participants then completed 
120  min of cycling: 5  min at 40% Wmax, 5  min at 45% 
Wmax, 5 min at 50% Wmax, and 105 min at 55% Wmax. 

The protocol was always performed following an overnight 
12-h fast and energy intake was kept uniform by the inges-
tion of a fixed carbohydrate solution (glucose–fructose) 
throughout. Participants repeated their trials at the same 
time of day in each environmental condition to avoid any 
influence of circadian variance. The temperature range 
across the exposures was 18–23 °C.

Blood samples

Venous blood samples were drawn from an indwell-
ing venous catheter in the arm following the acclimatiza-
tion process, immediately prior to cycling (T0), immedi-
ately at the end of the 120  min cycling (T120), and then 
2-h post-exercise (T240). At GHA, a further sample was 
taken 22 h later. Samples were drawn into EDTA (plasma 
metanephrine and normetanephrine, NT-proBNP) and SST 
(hscTnT, cortisol) tubes. Samples were then centrifuged 
and plasma and serum separated before being stored briefly 
at −20 °C and then at −80 °C before analysis.

Biochemical assays

Highly sensitive cardiac troponin T (hscTnT) and N-ter-
minal pro-brain natriuretic peptide (NT-proBNP) were 
assayed by the biochemistry department at Poole Hospi-
tal, Poole, UK. Cortisol and plasma metanephrines were 
assayed in the Department of Blood Sciences, Royal Victo-
ria Infirmary, Newcastle upon Tyne.

NT-proBNP was measured using the Roche NT-proBNP 
assay (Roche Diagnostics, Mannheim, Germany) with a 
range from 5 to 35,000 pg/ml and a coefficient of variation 
(CV) at a mean NT-proBNP of 474 pg/ml of 5.8%.

HscTNT was measured using an electro-chemilumines-
cence immunoassay (ECLIA) on a Cobas Analyser (Roche 
Diagnostics). The upper reference limit (99th percentile) 
for this assay in healthy volunteers is 14 ng/l (pg/ml). This 
assay has a range from 3 to 10,000 ng/l. The CV at a mean 
hscTnT level of 13.5 ng/l is 5.2, 8.5% at 5.3 ng/l, and 1.8% 
at 28.5 ng/l.

Cortisol was measured using the Roche Elecsys Cortisol 
I assay which is a competitive chemiluminescence immu-
noassay (CLIA) that is fully automated and run on the 
Roche modular E unit (Roche Diagnostics, Burgess Hill, 
UK). The analytical range of the assay is 0.5–1750 nmol/l 
with an intra-assay CV of 9.3–11.7%.

Plasma metanephrine assay was performed by 
LC–MSMS. Following off-line solid phase using weak 
ion exchange extraction in a 96-well plate format, plasma 
metanephrines are separated using rapid, hydrophilic inter-
action liquid chromatography. Mass spectrometry detec-
tion is performed in multiple-reaction monitoring mode 
using a tandem quadrupole mass spectrometer (Waters UK, 
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Hertfordshire, UK) with positive electrospray ionization. 
As well as the sample, a quality control (QC) and inter-
nal standard are used. The lower limit of quantification is 
between 40 and 50 pmol/l with a CV of 13–16%.

Physiological measurements

Peripheral oxygen saturation  (SpO2) in the finger was 
recorded using a Nellcor N-20P pulse oximeter (Nellcor 
Puritan Bennett, Coventry, UK) and heart rate was meas-
ured form a polar heart rate monitor. Measurements were 
taken at rest, 15 min into the acclimatization process, and 
then 15- and 120-min post-exercise.

Statistical methods

Data were analysed using GraphPad Prism version 6.00 for 
Windows, GraphPad Software, La Jolla California USA, 
http://www.graphpad.com. The Shapiro–Wilk normality 
test and inspection of the data were undertaken to assess 
normality of all continuous data. All data are presented 
as mean ± standard deviations. Time-dependent changes 
within each group were assessed using repeated-measures 
ANOVA with Bonferroni post-test for parametric data and 
Friedman Test with Dunn Post-test for non-parametric data. 
To compare the hypoxic environments, a two-way ANOVA 
was performed using data only from the three hypoxic 
environments. A two tailed p value <0.05 was considered 
statistically significant for all comparisons.

Results

Of the original 14 participants (age: 25.9 ± 3.8 years, 
height: 174 ± 10  cm, weight: 71.5 ± 10  kg, BMI: 
23.4 ± 1.8  kg/m2, 8  M, 6  F) who completed the proto-
col at GHA, 13 completed the protocol under NN and 
NH conditions. Eight completed the protocol under HH 
conditions. There were no significant differences in base-
line demographics between the groups. The HH exposure 
took place during the autumn/early winter and several par-
ticipants were unable to take part due to upper respiratory 
tract infections and an inability to clear their ears which are 
exclusions to entering the hypobaric chamber.

Heart rate (beats per minute) increased from T0 to T120 
in all environments with no difference between environ-
ments: NN from 67 ± 11 to 163 ± 12; GHA from 74 ± 13 to 
164 ± 11; NH from 73 ± 11 to 161 ± 9; and HH from 71 ± 9 
to 142 ± 24.  SpO2 (%) dropped significantly (p < 0.01) with 
exercise: NN from 99 ± 1 to 96 ± 1; GHA from 89 ± 3 to 
82 ± 4; NH from 93 ± 2 to 87 ± 4; and HH from 90 ± 2 to 
83 ± 5, before returning to baseline at T240.

Data for PNORMET, PMET, cortisol, hscTnT, and NT-
proBNP under conditions of NN, GHA, NH, and HH are 
shown in Table  1. The only significant difference in rest-
ing values (T0) was for PNORMET between NN and GHA 
(p < 0.01). NN differed from the three hypoxic environ-
ments in that only PNORMET and PMET showed a signifi-
cant rise with exercise. Only at GHA was a sample taken 
22-h post-exercise. PNORMET, PMET, hscTnT, and cor-
tisol had returned to baseline 22-h post-exercise, but NT-
proBNP was significantly elevated compared to baseline 
(36.75 ± 39 vs. 48.2 ± 61, pg/ml, p < 0.01).

Comparing the three hypoxic environments by two-way 
ANOVA (Table 2) revealed a significant (p < 0.0001) main 
effect of time on PNORMET, PMET, hscTnT, and cortisol 
but not NT-proBNP. The only significant effect for mode of 
hypoxia was with PNORMET (p = 0.0017) with no interac-
tion between time and mode of hypoxia.

Discussion

To our knowledge, this is the first study to compare the 
effect of NN, NH, HH, and GHA in the same participants 
at rest and following exercise on a range of biochemical 
markers that might broadly reflect physiological stress. As 
might be expected, the hypoxic conditions induced a dif-
ferent response to NN with significant rises in all studied 
biomarkers, whereas only PNORMET and PMET rose with 
exercise in NN.

Plasma metanephrines are stable markers of catechola-
mine secretion and have previously been reported to reflect 
physiological stress and the sympathoadrenal response to 
cycling exercise (Raber et al. 2003). The fact that PNOR-
MET increased under all experimental conditions with 
exercise suggests that the protocol was sufficiently provoca-
tive to induce the required physiological stress. When com-
paring hypoxic environments, the only significantly differ-
ent response was in that of PNORMET, suggesting that 
there may be subtle differences between environments in 
the sympathoadrenal response.

While PNORMET and PMET reflect the sympathoadre-
nal response, cortisol is an adrenal marker of physiological 
stress. We found no difference in resting cortisol between 
the altitude environments and NN. This is consistent with 
our previous data showing no change in resting cortisol at 
moderate altitude (Woods et al. 2012b) and others at both 
3000 m (Bouissou et  al. 1988) and 4300 m (Maher et  al. 
1975), although it is in contrast with others that have shown 
an increase with rapid ascent to higher altitudes at 4760 m 
(Sutton et al. 1977) and 6000 m (Okazaki et al. 1984). We 
found no rise in cortisol with exercise in NN, and while 
some report a rise in cortisol with exercise at SL (Bouis-
sou et  al. 1988; Wahl et  al. 2014), this is not a universal 

http://www.graphpad.com
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finding (Hough et  al. 2011; Ros et  al. 2011). We did find 
cortisol increased significantly immediately following exer-
cise under all hypoxic conditions.

The fact hscTnT rose 2  h following exercise under all 
hypoxic conditions but not in NN indicates that the hypoxic 
protocols were also provocative enough to induce signifi-
cant myocardial TnT release. We have previously reported 
a rise in cTnT with exercise at HA (Boos et al. 2014; Mel-
lor et al. 2014), as have others (Li et al. 2016). cTnT is a 
highly specific marker of myocardial cell damage which is 
released in a biphasic fashion following myocardial ischae-
mia with an initial small rise about 2 h after the event, 
thought to reflect release from the cytosolic pool, and a 
subsequent larger rise 12–24  h later, thought to reflect 
release of bound cTnT and myocardial damage (Wu et al. 
1998). The fact that hscTnT had returned to baseline 22 h 
after exercise at GHA suggests that no myocardial necrosis 
had occurred and that the rise at T240 most likely reflects 
cytosolic release. This would be consistent with the data 
from our previous studies at HA that showed that while 
cTnT elevation was associated with higher pulmonary 
artery systolic pressure, there was no overt deleterious car-
diac function detected by cardiac echo (Boos et  al. 2014; 
Mellor et al. 2014).

NT-proBNP rose immediately following exercise and 
stayed significantly elevated 2  h later under conditions of 
GHA and NH, but it did not change significantly in NN. 
While a rise in NT-proBNP with exercise at SL has been 
reported, this has generally been following prolonged 
endurance exercise (such as running an ultramarathon) 
(Scharhag et al. 2005; Hew-Butler et al. 2008) rather than 
after moderate or short duration exercise (Nishikimi et al. 
1997; Hew-Butler et al. 2008; Woods et al. 2011a) such as 
employed here.

We have previously reported a rise in BNP following 
exercise at GHA (Woods et al. 2011a, 2012a; Mellor et al. 
2014). Myocardial hypoxia, intracellular acidosis, and car-
diomyocyte stretch all contribute to increase NT-proBNP 
(Nishikimi et al. 2011). When NT-proBNP is elevated due 
to myocardial ischaemia and necrosis, the peak (similar 
to hscTnT) occurs 12–24  h later (Nishikimi et  al. 2011). 
Interestingly, while hscTnT fell back to baseline at 22-h 
post-exercise, NT-proBNP remained elevated, though did 
not rise further. Pressure overload in the right atrium and 
ventricle stimulates NT-proBNP regardless of aetiology 
(Nishikimi et al. 2011) and we have also shown an associa-
tion between NT-proBNP and high pulmonary artery sys-
tolic pressure (PASP) at HA (Banfi et al. 2010; Woods et al. 
2013). The lack of a rise under conditions of HH warrants 
further comment. We have previously examined the BNP 
response to acute HH on two occasions: first, at a simu-
lated altitude of 5334 m for 40 min involving a brief 1-min 
step-test (Woods et al. 2011b) and, second, at a simulated Ta
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4800 m over 3 h with a brief 5-min step-test (Boos et  al. 
2013). On neither occasion did we find a significant rise in 
BNP despite significant rises in PASP which we consider 
to be due to the brevity of the exercise stimulus. We have 
recently published the echocardiographic arm of this study 
(Boos et al. 2016) which reported that the right ventricular 
systolic pressure (RVSP) and pulmonary vascular resist-
ance were higher in HH compared to NH. It would, there-
fore, be reasonable to expect that this would be associated 
with an elevation in NT-proBNP that we were unable to 
detect in HH. It is with great regret that we failed to get all 
the participants from the GHA through the HH exposure 
and we suspect that the lack of a rise in NT-proBNP under 
these conditions may simply reflect a type II error.

Although there appears, on the initial inspection of the 
data, to be some baseline variability in the parameters stud-
ied on statistical analysis, the only significant difference 
in resting values between environments was for PNOR-
MET between NN and GHA. We suspect the higher resting 
PNORMET at GHA compared to NN relates to a degree 
of sympathoadrenal activation as a result of the cable car 
ascent to 3375 m on the morning of testing. As PMET and 
cortisol did not show any difference at baseline between 
NN and GHA and the fact there was still a significant incre-
ment in PNORMET with exercise at GHA, we suspect this 
was a minor confounder only. In support of this is the fact 
that all parameters at baseline in all environments were 
within the normal range expected for a healthy adult.

In summary, our exercise protocol produced signifi-
cantly different results under conditions of NN versus the 
hypoxic environments. Exercise in the hypoxic environ-
ments successfully induced a measureable rise in several 
markers of physiological stress. From two-way ANOVA 
analysis, the changes seen between hypoxic environments 
were very similar with the only difference being for PNOR-
MET. The previous comparisons between NH and HH have 
often focussed on respiratory or cardiovascular variables 
(Coppel et al. 2015), and while our data cannot be defini-
tive, they have at least begun to evaluate equivalence of the 
environments from a perspective of biochemical and physi-
ological stress.

Strengths of our study include the use of the same 
cohort of participants for each exposure with an adequate 

wash-out period between stimuli, with accurate reporting 
of barometric pressure to ensure homogeneity across envi-
ronments. The major limitation was our inability, despite 
multiple attempts, to get all participants through the final 
HH exposure.

Conclusion

To our knowledge, this is the first study to compare the 
effect of NN, NH, HH, and GHA in the same participants 
at rest and following exercise on a range of biochemical 
markers that reflect physiological stress. Responses under 
hypoxic conditions were different to NN, but the similari-
ties between HH and NH suggest that they may be valid 
surrogates for GHA.
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