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Neutrophils and monocytes are key components of the innate immune system that undergo age-associated declines in function.
This study compared the impact of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT)
on immune function in sedentary adults. Twenty-seven (43 ± 11 years) healthy sedentary adults were randomized into ten weeks
of either a HIIT (>90% maximum heart rate) or MICT (70% maximum heart rate) group training program. Aerobic capacity
(VO2peak), neutrophil and monocyte bacterial phagocytosis and oxidative burst, cell surface receptor expression, and systemic
inflammation were measured before and after the training. Total exercise time commitment was 57% less for HIIT compared to
that for MICT while both significantly improved VO2peak similarly. Neutrophil phagocytosis and oxidative burst and monocyte
phagocytosis and percentage of monocytes producing an oxidative burst were improved by training similarly in both groups.
Expression of monocyte but not neutrophil CD16, TLR2, and TLR4 was reduced by training similarly in both groups. No
differences in systemic inflammation were observed for training; however, leptin was reduced in the MICT group only. With
similar immune-enhancing effects for HIIT compared to those for MICT at 50% of the time commitment, our results support
HIIT as a time efficient exercise option to improve neutrophil and monocyte function.

1. Introduction

Neutrophils and monocytes are key components of the
innate immune system and comprise the first line of defence
against foreign pathogens [1, 2]. With falling birth rates and
increasing longevity, we are an aging society with current
demographic trends suggesting that 1 in 4 adults will be aged
over 65 by 2050. Importantly, risk of infection is increased by
an age-associated decline in neutrophil and monocyte func-
tion, which occurs as early as middle age [3, 4]. Key aspects

of functional decline in neutrophils include reduced chemo-
taxis, phagocytosis, reactive oxygen species (ROS), and
neutrophil extracellular trap (NET) production [3, 5, 6].
Similarly, dysfunctional monocytes are characterized by an
altered phenotype including increased surface CD16 and
impaired toll-like receptor (TLR) expression and function
[7–9]. Furthermore, monocyte differentiation into macro-
phages is altered with a skewing towards a proinflammatory
phenotype (M1) and reduced phagocytic capacity and
antigen presentation [4]. Critically, dysfunctional immune
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responses are also associated with an elevated proinflamma-
tory phenotype and likely contribute to age-related systemic
inflammation, termed inflammaging, which increases the
risk of several age-related chronic diseases [10, 11]. Identify-
ing mechanisms to prevent or reverse neutrophil and mono-
cyte dysfunction and reduce inflammaging is critical to
improving immunity and reducing risk of infection and
chronic disease as our population ages.

A growing body of evidence now suggests that exercise
has systemic effects on immune function and inflammation.
Although some of the anti-inflammatory effects of exercise
can be attributed to the changes in adipose tissue, cellular
immune function appears to be directly impacted also
[12–14]. Our recent work suggests that neutrophil chemo-
taxis is better preserved in older adults who performed twice
as many steps daily as age-matched controls [15]. Others
have shown enhanced neutrophil phagocytosis and
improved total numbers in relation to exercise training
[16–18]. Exercise training has also been reported to influence
monocyte function: CD16 expression and TLR expression
were reduced; proinflammatory cytokine production was
reduced; expression of the costimulatory molecule CD80
was increased [19–21]. Despite the evidence of an immune-
modifying effect of exercise training, involvement in physical
activity is low in the general population and is known to
decline dramatically with age [22]; therefore, there is an
urgent need to determine the optimal exercise exposure to
benefit immune function.

As time constraints are considered a major barrier to
exercise participation, novel exercise approaches in nonath-
letic sedentary populations have gained increasing attention
[23]. High-intensity interval training (HIIT) offers an attrac-
tive approach by reducing the time commitment for exercise
while providing cardiorespiratory fitness benefits similar to
or greater than those of traditional moderate-intensity con-
tinuous training (MICT). Our group and others have shown
significant improvements, comparable to MICT, in physio-
logical, cardiometabolic, and psychological health with HIIT
[24–27]. Although there is growing evidence that HIIT
improves cardiometabolic health, there is less evidence to
suggest that longitudinal HIIT has an effect on systemic
inflammation and cellular immune function. Recently, Rob-
inson and colleagues provided the first direct evidence that
HIIT alters cellular immunity [20]. In this seminal paper,
the authors demonstrated that 10 days of HIIT reduces
monocyte, but not neutrophil, expression of TLR4, and lym-
phocyte expression of TLR2. The relevance of these changes
to primary cellular functions is unclear. Furthermore, no
studies have investigated the impact of a longer duration
HIIT intervention on primary cellular immune function.

The purpose of our study was to determine the impact of
ten weeks of group-based HIIT and MICT on neutrophil and
monocyte function and systemic inflammation in sedentary
healthy individuals. Specifically, we aimed to determine
whether a shorter amount of exercise training time (HIIT)
was comparable to a longer amount of exercise training
(MICT). We examined neutrophil and monocyte phagocyto-
sis and oxidative killing of E. coli; expression of CD16, TLR2,
and TLR4; serum cytokine and specific hormone levels at

baseline and following each intervention. We hypothesized
that HIIT would be comparable to MICT in improving cellu-
lar immune function.

2. Methods

2.1. Participants and Experimental Procedures. Twenty-seven
(43± 11 years) healthy (free of any known metabolic or
cardiovascular disease and not taking any medication),
inactive individuals were recruited for this substudy of a
larger investigation examining the effects of HIIT on a range
of cardiovascular, metabolic, psychological, and physical
activity outcomes [24]. For experimental procedures includ-
ing fitness testing, training procedures, body composition,
and randomization, please refer to our previous publication
[24]. Ethical approval was given by the University of
Birmingham Research Ethics Committee, and all participants
gave their written informed consent.

Briefly, aerobic capacity (VO2peak) was determined by a
progressive exercise test to volitional exhaustion on an elec-
tronically braked cycle ergometer (Lode BV, Groningen,
The Netherlands). Body composition was assessed using a
single frequency bioimpedance device (Tanita BC 418 MA
Segmental Body Composition Analyzer, Tanita, Japan). Par-
ticipants were stratified into subgroups by age, gender, and
body mass index (BMI) and randomly assigned to either
HIIT or MICT.

All exercise sessions were conducted in a dedicated cycle
suite at the University of Birmingham sports centre in groups
of 10–15 participants. Training was carried out on commer-
cial spinning bikes (Star Trac UK Ltd., Buckinghamshire,
UK) and was led by a spin class instructor. Both groups were
asked to attend three supervised sessions per week, with the
MICT group prescribed two additional self-administered ses-
sions for 10 weeks and participants instructed to achieve
heart rate targets determined from the VO2peak assessment.
For both groups, each session was designed to be a group
exercise-class design, which would differ slightly in duration
or style depending on the day or week. As such, each person
within groups completed similar programs and none were
prescribed only one exercise duration per intervention.
High-intensity interval training (HIIT) began with a 5-
minute warm-up of low-intensity cycling before repeated
high intensity sprints of between 15 and 60 seconds, inter-
spersed with periods of active rest (45–120 seconds). Partici-
pants self-adjusted the resistance of the bikes to elicit a heart
rate of >90% HRmax during the sprint intervals. Each HIIT
session lasted 18–25 minutes. Moderate-intensity continuous
training (MICT) began with a 5-minute warm-up of low
intensity cycling before participants adjusted the resistance
to elicit a heart rate of ~70% HRmax. Each MICT session
lasted 30–45 minutes; during the training period, partici-
pants were instructed to maintain their habitual dietary and
physical activity patterns. As such, cumulative exercise expo-
sure for each group amounted to 55± 10 minutes/week
(HIIT) and 128± 44 minutes/week (MICT).

2.2. Blood Sampling. Participants arrived at the laboratory,
having abstained from exercise in the previous 24 hours
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and at least 48 hours after their final exercise training. These
times gave us confidence that any effects observed were for a
training effect and not for an acute effect of the last session.
Participants were seated for 15 minutes before peripheral
venous blood samples were collected into vacutainers con-
taining either heparin, EDTA, or a clotting agent for serum.
Samples were then processed immediately for plasma and
immune cell isolation while serum was left at room tempera-
ture for 30minutes to clot. Serum and plasma were separated
from blood by centrifugation (3000×g for 10 minutes), snap
frozen in liquid nitrogen, and stored at −80°C until analysed.

2.3. Whole Blood Counts. Complete blood differentials,
including leukocyte counts, were completed using EDTA-
treated whole blood immediately after sampling on a fully
automated Coulter™ ACTdiff haematology analyser (Beck-
man-Coulter, High Wycombe, UK). All samples were ana-
lysed in triplicate.

2.4. Mononuclear Cell Isolation. Peripheral blood mononu-
clear cells (PBMCs) were isolated from heparinised blood
using density centrifugation. Briefly, blood was diluted 1 : 1
with phosphate-buffered saline (PBS) and layered over
Ficoll-Paque™ PLUS (GE Healthcare, Uppsala, Sweden) at
a blood Ficoll ratio of 4 : 3mL. This was centrifuged at
400×g for 30 minutes at room temperature with no brake.
Following centrifugation, mononuclear cells suspended at
the interface of the Ficoll and plasma were removed and
washed twice, 400×g for 10 minutes, in PBS. Cells were
counted and viability assessed by Trypan Blue exclusion
before being resuspended in PBS+ 1% bovine serum albumin
(BSA, Sigma-Aldrich, Poole, UK) at 1× 106 cells·mL−1 and
prepared for immunofluorescence staining.

2.5. Cell Surface Receptor Expression. Freshly isolated
PBMCs were stained with combinations of anti-CD14-PcB
(BD Bioscience, Oxford, UK, clone M5E2), anti-CD16-
FITC (BD Bioscience, clone 3G8), anti-TLR2-APC (BD
Bioscience, clone TL2.1), anti-TLR4-APC (Affymetrix
eBioscience, Hatfield, UK, clone HTA-125), or their relevant
concentration-matched isotype control for 30 minutes on ice
in the dark. Following incubation, cells were washed in PBS/
1% BSA and resuspended in PBS/1% BSA for analysis by flow
cytometry. Mononuclear cells were identified by their typical
forward versus side scatter, and 7000–10,000 CD14+

monocytes were acquired for analysis on a CyAn ADP™
430 flow cytometer (Beckman-Coulter, High Wycombe,
UK) and data were analysed using Summit v4.3 software
(Dako, Cambridgeshire, UK).

For neutrophil surface phenotype, staining with the
above antibodies, CD16, TLR2, and TLR4, was assessed in
100μL of whole blood. Blood was aliquoted into FACS tubes
and placed on ice. Combinations of antibodies or isotype
controls were added to blood and were incubated for 1 hour
on ice in the dark. Following incubation blood was washed
twice in PBS before adding 2mL of 1x Fix/Lyse Buffer (Affy-
metrix eBioscience). Blood was placed at room temperature
in the dark for 15 minutes to allow complete RBC lysis and
fixation of WBCs. Following this, cells were washed twice

in PBS and resuspended in PBS for analysis by flow cytome-
try. Granulocytes were gated by their typical forward versus
side scatter, and 10,000 CD16+ neutrophils were acquired
for analysis on a CyAn ADP 430 flow cytometer (Beckman-
Coulter, High Wycombe, UK) and data were analysed using
Summit v4.3 software (Dako, Cambridgeshire, UK).

2.6. Neutrophil and Monocyte Phagocytosis and Oxidative
Burst. Phagocytosis and oxidative burst were assessed in
whole blood using commercially available kits and manufac-
turers’ guidelines (Phagotest and Phagoburst, BD Biosci-
ences). Briefly, phagocytosis was assessed in heparin-treated
whole blood and incubated at 4°C (control) or 37°C (test)
with opsonised FITC-labelled E. coli. Phagocytosis was halted
by the addition of cold phosphate-buffered saline (PBS) while
cell surface-bound FITC was quenched by addition of
Trypan Blue solution. Unbound-free bacteria were removed
by washing in PBS and erythrocytes lysed and leukocytes
fixed using 1% Fix/Lyse solution provided in the kit. Cell
DNA was counterstained by an addition of propidium iodide
(PI) before flow cytometry analysis was performed.

Oxidative burst was assessed in heparin-treated blood
that was incubated at 37°C with opsonised E. coli (test) or
PBS (control) for 10 minutes. Solution-containing dihyrdor-
odamine-123, which is converted to fluorescent rodamine-
123 in the presence of reactive oxidants, was included
for 10 minutes at 37°C. Oxidative burst was halted by
the addition of erythrocyte lysis/leukocyte fixation buffer
before leukocyte DNA was stained and flow cytometry
analysis performed.

Phagocytosis and oxidative burst quantitation was per-
formed on a CyAn ADP 430 flow cytometer equipped with
three solid-state lasers. FITC and R-123 were detected in
FL1 while PI was detected in FL2 using the Argon (405 nm)
laser. 10,000 neutrophils and 5000–10,000 monocytes were
acquired for analysis. Following compensation of FL1 versus
FL2 phagocytic and oxidative burst was determined by the
relative increase in median fluorescence intensity (MFI) in
FL1 compared to negative controls. Data were analysed using
Summit v4.3.

2.7. Serological Analyses. All measurements were made in
duplicate using commercially available kits and manufac-
turer’s guidelines. Serum interleukin- (IL-) 1β, IL-4, IL-6,
IL-8, IL-10, IL-13, IL-17, granulocyte/macrophage colony-
stimulating factor (GM-CSF), and tumor necrosis factor
(TNF)αwere simultaneously measured by multiplex lumino-
metry (Bio-Rad, Hemel Hempstead, UK). Samples we0re
analysed using a Bio-Plex Luminex200 platform equipped
with a 635nm red and 532 nm green laser using Bio-Plex
Manager™ software. Detection of C-reactive protein (CRP)
was by high-sensitivity enzyme-linked immunosorbent
assay (ELISA) using a commercial kit (IBL International,
Hamburg, Germany). Plasma cortisol and DHEAs were
assessed separately by ELISA (IBL International, Hamburg,
Germany) and plasma adiponectin and leptin were assessed
separately by solid phase sandwich ELISA (R&D Systems,
Abingdon, UK).
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2.8. Statistical Analysis. Statistical analysis was conducted
using PASW version 18.0 (Chicago, IL, USA), and data are
presented as mean± SD unless otherwise stated. Normality
was assessed using Kolmogrov-Smirnov analysis; natural
log transformation of distributed variables violating normal-
ity was completed. Data were analysed using repeated mea-
sures ANOVA to assess the effect of training on immune
function and interactions with training × exercise group.
Age and body fat percentage were included as covariates
due to the influence of age on immune function and inflam-
mation, and the small changes in body fat were observed in
the MICT group. Statistical significance was accepted at
p < 0 05.

3. Results

3.1. Participant Characteristics, Exercise Capacity, and Body
Composition. Body composition and aerobic capacity mea-
sures are presented in Table 1. No differences were detected
between the groups at baseline (p > 0 05). As with the larger
study, the HIIT group completed on average 57% less
total training time commitment compared to the MICT
group (p < 0 001). There were significant main effects of
training for VO2peak [F(1,25) = 49.6; p < 0 001; ηp

2 = .67]
with increases postexercise of 9% for both HIIT and
MICT (both p < 0 001). Neither body mass nor BMI (both

p > 0 05) was reduced by training in this cohort. However,
there were significant main effects of training for body fat
percentage [F(1,25) = 7.9; p = 0 01; ηp2 = .27], with reductions
observed for MICT (p = 0 04) but not HIIT (p = 0 08).
No differences between groups for effects of training
were observed.

3.2. Immune Responses. A primary mechanism of bacterial
clearance by neutrophils and monocytes is an ingestion
of microbes through phagocytosis and subsequent killing
in the phagolysosome as a result of exposure to reactive
oxygen species. Table 2 shows the neutrophil and monocyte
bactericidal capacity following HIIT or MICT.

All neutrophils (100%) from subjects in both groups
ingested opsonized E. coli and produced an oxidative burst.
There were significant main effects of training for the amount
(MFI) of E. coli ingested by neutrophils [F(1,25) = 7.5;
p = 0 011; ηp

2 = .24], with increases observed for HIIT
(p = 0 023) and MICT (p = 0 049). There were also signifi-
cant main effects of training for the amount (MFI) of ROS
produced against E. coli by neutrophils [F(1,25) = 12.2;
p = 0 002; ηp

2 = .36], with increases observed for HIIT
(p = 0 03) and MICT (p = 0 004).

Similarly, there were significant main effects of training
for the amount (MFI) of E. coli ingested by monocytes
[F(1,25) = 18.7; p < 0 001; ηp2 = .46], with increases observed

Table 1: Group baseline and final values for participant body composition and fitness measures.

HIIT MICT
Baseline Final Baseline Final

n (males/females) 14 (4/10) 13 (5/8)

Age (years) 42 (12) 45 (10)

Body composition

Height (cm) 167 (7) 166 (9)

Body mass (kg) 78.1 (19.9) 77.7 (19.4) 79.0 (15.2) 78.4 (16.2)

BMI (kg/m2) 28.1 (6.1) 27.9 (6.0) 28.1 (4.7) 27.9 (5.0)

Fat mass (%) 32.9 (8.2) 31.8 (8.2) 32.2 (8.6) 30.9 (8.7)∗

Physical fitness

VO2max (Lmin−1) 2.4 (0.6) 2.7 (0.7)∗∗∗ 2.6 (0.6) 2.9 (0.7)∗∗∗

VO2max (mL/kgmin−1) 31.5 (6.4) 35.0 (8.4)∗∗∗ 32.6 (5.8) 35.8 (7.1)∗∗∗

BMI: body mass index. Data are mean (SD) unless otherwise stated. ∗p < 0 05, ∗∗∗p < 0 001 are significant within group change scores.

Table 2: Group baseline and final values for neutrophil and monocyte phagocytosis of E. coli and oxidative burst towards E. coli.

HIT MICT
Baseline Final Baseline Final

Neutrophil

Phagocytosis (MFI) 130.6 (16.6) 152 (17.2)∗ 126.2 (12.5) 145.5 (14.1)∗

Oxidative burst (MFI) 69.0 (24.5) 74.6 (22.1)∗ 77.6 (18.2) 104.8 (16.5)∗∗

Monocyte

Phagocytosis (MFI) 99.3 (10.4) 113.3 (11.6)∗∗ 92.9 (12.2) 110.4 (13.8)∗∗

Oxidative burst (MFI) 27.5 (8.4) 22.7 (9.1) 30.9 (11.7) 27.8 (13.5)

Oxidative burst (%) 74.4 (10.0) 81.6 (11.1)∗ 74.4 (13.7) 85.6 (12.1)∗∗

MFI: median fluorescence intensity. Data are mean (SD). ∗p < 0 05 and ∗∗p < 0 01 are significant within group change scores.
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for HIIT (p = 0 005) and MICT (p = 0 002). Although there
were no increases in monocyte oxidative burst (p > 0 05),
there were significant main effects of training for the
percentage of monocytes producing an oxidative burst
[F(1,25) = 11.1; p = 0 003; ηp2 = .33], with increases observed
for HIIT (p = 0 03) and MICT (p = 0 006).

There were no differences between groups for any of the
functional measures assessed suggesting both routines are
equally effective (Figure 1), though there was a trend for
MICT to have greater improvements in neutrophil superox-
ide production (Figure 1(b), p = 0 094).

In order to determine whether changes in cell function
reflect changes in total cell numbers, Table 3 shows complete
blood differentials before and after training. There were no
effects of training on total white blood cell (WBC), lympho-
cyte, neutrophil, or monocyte counts (all p > 0 05). To better
understand the changes in cellular function observed, we
assessed expression of CD16, TLR2, and TLR4 on monocytes
and neutrophils. No effect of exercise was observed for TLR2,
TLR4, or CD16 on neutrophils (data not shown; p > 0 05 for
all). There were significant main effects of training on the
percentages of monocyte subsets. Training increased the
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Figure 1: Final minus baseline change scores for group immune function. HIIT was comparable to MICT for changes in neutrophil
phagocytosis (a), neutrophil superoxide (b), monocyte phagocytosis (c), monocyte superoxide (d), and percentage of monocytes-
producing superoxide (e). N.S.—nonsignificant differences between groups.
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percentage of CD14+/CD16− [F(1,25) = 11.3; p = 0 004;
ηp

2 = .31] with increases observed for HIIT (p = 0 008) and
MICT (p = 0 024). Reductions were observed for the percent-
age of CD14+/CD16int monocytes in both groups (p < 0 05).
Reductions in the percentage of CD14+/CD16bright mono-
cytes were observed in the HIIT (p = 0 031) group but not
in the MICT (p = 0 071). There were significant main effects
of training for expression of TLR4 on CD14+/CD16bright

monocytes [F(1,25) = 16.54; p < 0 001, ηp2 = .26] with reduced
expression observed for HIIT (p = 0 001) and MICT
(p = 0 001). TLR2 expression was higher at all times on
CD14+/CD16− and CD14+/CD16int compared to CD14+/
CD16bright populations (p < 0 05). There were significant
main effects of training for expression of TLR2 on CD14+/
CD16int monocytes [F(1,25) = 19.42; p < 0 001, ηp

2 = .20]
with reduced expression observed for HIIT (p < 0 001) and
MICT (p = 0 001). No differences for training between
groups were observed. There were no differences within or
between groups for surface expression of TLR2 or TLR4 on
CD16+ neutrophils (data not shown).

3.3. Serological Analysis. Exposure to systemic inflammation,
neuroendocrine hormones, and metabolic hormones can
influence immune cell function. However, no differences
were observed for any inflammatory cytokines or acute phase
proteins or endocrine hormones at baseline or in response to
exercise training, Table 4 (all p > 0 05). There were significant
main effects of training for the metabolic hormone lep-
tin [F(1,25) = 6.9; p = 0 014; ηp2 = .22] with reductions in
the MICT group (p = 0 043) but not in the HIIT group
(p = 0 127).

4. Discussion

This study shows that, in sedentary men and women, ten
weeks of low-volume high-intensity interval training was

comparable to moderate-intensity continuous training at
improving neutrophil and monocyte bactericidal capacity
while reducing CD16, TLR2, and TLR4 on CD14+ monocytes
but not neutrophils. Systemic inflammation and endocrine
responses were unaffected by either of the training interven-
tions, although leptin was lower following MICT which was
associated with a reduced body fat percentage. As previously
reported in our primary study, VO2peak was significantly
improved and body fat percentage was marginally reduced
in MICT with no difference observed between groups [24].
Critically, no differences between groups were observed for
our immunological analyses suggesting that for half the pre-
scribed exercise time, HIIT can improve immune function to
a similar extent as MICT. Therefore, we suggest that HIIT
might be an effective means to improve fitness and immune
function in populations who find typically prescribed contin-
uous exercise difficult.

4.1. Changes in Immune Cell Function. Although changes in
primary immune cell function are associated with risk of
infectious episodes, surprisingly, little is known about
exercise training and neutrophil and monocyte bactericidal
functions. Both cells are central to the early resolution of
infection, primarily by phagocytosis of the pathogen and
oxidative killing of the pathogen.

When compared to sedentary healthy matched controls,
physically active individuals aged between 20 and 60 years
have increased neutrophil phagocytosis and ROS production
[16, 18]. Neutrophil phagocytosis was also improved follow-
ing 2 months of moderate-intensity exercise training in
middle-aged healthy men [28]. Our data adds to this litera-
ture in suggesting that HIIT and MICT are equally capable
of improving neutrophil bactericidal capacity and likely
reducing risk of infectious episodes.

It is still unclear how these functional improvements
occur. We found no effect of training on neutrophil

Table 3: Group baseline and final values for total numbers of white blood cells, percentages of monocyte subsets, and expression of
TLR4 and TLR2.

HIIT MICT
Baseline Final Baseline Final

Total WBC (×109 L−1) 7.4 (2.7) 8.2 (2.1) 8.2 (1.1) 7.7 (2.4)

Lymphocytes (×109 L−1) 2.4 (0.9) 2.5 (0.7) 2.5 (0.4) 2.7 (0.5)

Neutrophils (×109 L−1) 4.6 (1.8) 5.2 (1.7) 5.2 (1.2) 4.4 (2.0)

Monocytes (×109 L−1) 0.3 (0.2) 0.4 (0.2) 0.4 (0.2) 0.5 (1.1)

CD14+/CD16− (%) 87.2 (4.7) 91.1 (4.5)∗∗ 86.9 (5.8) 89.8 (6.1)∗

TLR4 (MFI) 3.9 (1.2) 3.8 (1.4) 3.9 (1.2) 3.8 (1.3)

TLR2 (MFI) 119 (11.2) 120 (10.1) 121 (13.4) 123 (14.1)

CD14+/CD16int (%) 4.4 (2.8) 3.1 (2.2)∗ 4.7 (2.4) 3.6 (2.2)∗

TLR4 (MFI) 5.0 (2.1) 4.9 (2.8) 5.1 (2.0) 4.9 (2.1)

TLR2 (MFI) 123 (15.3) 116 (16.5)∗ 124 (18.9) 119 (19.9)∗

CD14+/CD16bright (%) 8.1 (4.4) 5.8 (3.9)∗ 8.4 (3.1) 6.9 (4.2)

TLR4 (MFI) 4.6 (3.2) 4.0 (2.7)∗∗ 4.5 (3.0) 3.9 (2.7)∗∗

TLR2 (MFI) 86 (10.9) 85 (12.6) 91 (13.2) 93 (14.0)

WBC: white blood cell; CD: cluster of differentiation; TLR: toll-like receptor; MFI: median fluorescence intensity. Data are mean (SD). ∗p < 0 05 and ∗∗p < 0 01
are significant within group change scores.
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expression of TLR4, the primary TLR responsible for recog-
nition of the lipopolysaccharide (LPS) membrane compo-
nent of E. coli. Although Robinson and colleagues did not
assess neutrophil bactericidal capacity, expression of TLR4
was reduced following 10 days of MICT but not HIIT [20].
It is unclear why we did not observe a similar effect or
whether reduced TLR4 would in fact reduce bactericidal
function. Our study and theirs assessed immune function
greater than 48 hours after the last exercise session, and so,
we are confident it is not due to blood draw timing. One
potential explanation is that acute bouts of exercise are capa-
ble of selective clearance of dysfunctional immune cells [29].
If exercise clears dysfunctional neutrophils from the system
acutely, improving the functionality of the remaining pool
in the longer term, then the 10-week intervention used here
could benefit from this change and explain why we saw
improved neutrophil function.

We have previously shown that habitual physical activity
(~10,000 versus ~5000 steps/day) is associated with
enhanced neutrophil functions in the absence of surface
receptor differences [15]. Our results in this cohort also sug-
gest that neutrophil CD16 expression is not influenced by
exercise training. Our lack of change in TLR and CD16
expression suggests that there are instead intrinsic cell signal-
ling alterations associated with improved neutrophil func-
tion. Neutrophil bactericidal functions are regulated by
several signalling pathways, downregulation of which can
compromise mechanism such as phagocytosis and oxidative
burst. Such effects are seen with aging, with reduced MAP

kinase amongst the differences seen in neutrophils from
older donors [30]. To our knowledge, there are no reports
of the effects of exercise onMAP kinase signalling in immune
cells, though this has been reported in skeletal muscle [31].
Future research should aim to determine neutrophil signal-
ling pathways influenced by exercise training in order to
understand exercise-mediated mechanisms.

With a progressive age-associated decline in neutrophil
function, there is an enhanced risk of infection. As neutro-
phils are the first line of defence against pathogenic invasion,
they are integral to the effective resolution of infection.
Although our participants were aged on average 43 years
old (23–60 years), our results indicate a potential route to
improving neutrophil function in at risk groups. To date,
no study has assessed the impact of HIIT on neutrophil func-
tion in over 60-year olds. Future studies should aim to assess
immune functional responses to HIIT in populations show-
ing clear signs of immunosenescence in order to determine
whether it is possible to reverse or delay immunosenescence.
Critically, our data highlights that neutrophil bactericidal
capacity can be improved by higher intensity exercise with
significantly less time commitment.

Monocytes make up a relatively small proportion of cir-
culating leukocytes (2–12%). However, due to their diverse
role in immune function and inflammation, they have
received more interest than neutrophils in the exercise litera-
ture. The majority of literature is focused on monocyte phe-
notype and proinflammatory cytokine production and less
on bactericidal activity [32–34]. We show for the first time

Table 4: Group baseline and final values for inflammatory cytokines and acute phase proteins, endocrine, and metabolic hormones.

HIIT MICT
Baseline Final Baseline Final

Proinflammatory

IL-1β (pgmL−1)a 0.1 (0.08) 0.1 (0.1) 0.5 (1.2) 0.4 (0.9)

IL-6 (pgmL−1)a 1.4 (1.6) 1.0 (1.0) 1.2 (1.0) 0.8 (0.8)

IL-8 (pgmL−1) 5.7 (2.1) 4.4 (1.5) 5.7 (2.5) 5.4 (2.3)

IL-17 (pgmL−1)a 5.5 (17.9) 5.2 (15.7) 13.8 (23.4) 5.5 (14.7)

TNFα (pgmL−1)a 0.8 (2.1) 0.1 (0.4) ND 0.2 (0.5)

CRP (mg L−1)a 3.0 (4.3) 2.1 (2.2) 1.2 (1.4) 1.6 (1.8)

GM-CSF (pgmL −1)a 0.02 (0.06) ND 0.02 (0.07) 0.02 (0.07)

Anti-inflammatory

IL-4 (pgmL−1)a 0.04 (0.1) 0.06 (0.1) 0.02 (0.05) 0.05 (0.07)

IL-10 (pgmL−1)a 0.3 (1.1) ND ND ND

IL-13 (pgmL−1)a 0.7 (1.2) 0.6 (0.9) 1.1 (1.8) 0.7 (1.1)

Endocrine

Cortisol (nmol L−1)a 200 (61.3) 190 (62.1) 197 (98.6) 183 (56.0)

DHEAs (nmol L−1) 3563 (1965) 3841 (2087) 4464 (2335) 4144 (1739)

Cortisol: DHEAs 0.07 (0.03) 0.06 (0.04) 0.05 (0.03) 0.05 (0.02)

Metabolic

Adiponectin (μgmL−1) 3.8 (1.9) 3.6 (1.8) 3.3 (1.2) 3.1 (1.3)

Leptin (ngmL−1) 19.3 (11.3) 18.0 (10.8) 16.4 (9.6) 14.6 (10.2)∗

Leptin: adiponectin 6.0 (4.4) 6.1 (4.3) 6.0 (4.6) 5.8 (5.3)

IL: interleukin; TNF: tumour necrosis factor;ND: nondetectable; CRP: high sensitivityC-reactive protein; GM-CSF: granulocyte/macrophage colony-stimulating
factor; DHEAs: dehydroepiandrosterone sulphate. Data are mean (SD). aNot normally distributed and were log transformed. ∗p < 0 05 significant within group
change scores.
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that monocyte bactericidal function is improved by 10 weeks
of HIIT. We observed a significant improvement in phago-
cytic capacity in both exercise groups. Although we did not
see more ROS production on a per cell basis, the percentage
of ROS-producing monocytes was significantly increased. It
is unclear how these improvements were achieved. The per-
centage of cells producing ROS suggests that not all mono-
cytes were equally phagocytically active, and our results
may be influenced by the training-induced increase in
CD16-negative monocytes (see below) which could influence
ROS production. Schaun and colleagues observed no differ-
ence in monocyte phagocytosis following 12 weeks of aerobic
exercise training [35], though they used a TLR2 agonist
(zymosan) rather than bacteria. Of interest is that basal and
stimulated monocyte ROS production and phagocytosis is
suggested to be higher in obese individuals [36]. However,
we saw no association with weight and ROS production or
phagocytosis and as there was minimal weight loss, we can
assume that increased phagocytosis was not influenced by
changes in body fat.

Research on monocyte function and phenotype has
focused on acute single session or short-term (days) bouts of
exercise. The Nieman group have pioneered monocyte func-
tion research over the last twenty-years and have shown inter-
esting acute effects of exercise [37–39]. Acute exercise is
associated with an intensity-dependent increase in numbers
of circulating monocytes that are predominated by a proin-
flammatory phenotype [40–42]. Monocyte phagocytosis is
transiently increased by acute exercise and is associated with
the degree of inflammatory response to exercise [43].
However, Nieman and colleagues also recently showed that
monocyte bactericidal capacity is diminished in response to
overtraining, muscle damage and elevated inflammation
[37]. Although we did not assess acute exercise-mediated
immune responses, it is likely that each exercise session
resulted in transient changes in function. We can only assume
that each exercise bout has a small but significant impact on
basal function, progressively improving it over time.

We observed significant changes in monocyte phenotype
following exercise training, suggesting an altered inflamma-
tory potential. Specifically, there were reductions in the cell
surface expression of CD16. CD16 is typically associated with
a proinflammatory subtype with higher basal and stimulated
production of cytokines such as TNFα [44]. Furthermore, we
observed significant reductions of TLR4 expression on inter-
mediate and TLR2 on nonclassical CD16+ proinflammatory
monocytes. Our work is in agreement with Robinson and
colleagues who showed that 2 weeks of HIIT was sufficient
to reduce monocyte expression of TLR4. Although their
study did not show reduced TLR2 on monocytes, they did
find an effect on lymphocytes suggesting that TLR2 is influ-
enced by training and monocyte expression may require
more or less training time [20].

As with our neutrophil data, we did not observe func-
tional monocyte improvements associated with relevant
changes in cell surface receptor expression (i.e., more phago-
cytosis with more TLR4). Therefore, functional improve-
ments are likely associated with intrinsic cell signalling
changes similar to what we suggest in neutrophils. Recent

gene expression analysis of acute interval exercise bouts sug-
gests that monocytes may be directed towards an anti-
inflammatory profile with downregulation of TNF, TLR4,
and CD36 genes [41]. Additionally, metabolic disorders such
as type 2 diabetes and obesity are associated with increased
TLR expression and activation [45]. Although our partici-
pants were metabolically healthy, glucose tolerance and insu-
lin sensitivity were improved following training suggesting a
link with metabolic control and TLR expression [24]. Taken
together, HIIT has the potential to modify monocyte proin-
flammatory phenotype and contributes to improved bacteri-
cidal capacity. Future research should attempt to determine
the acute and chronic mechanisms by which exercise influ-
ences inflammatory monocyte functions.

4.2. Impact of HIIT on Serological Measures. Although we
observed altered cellular responses to training which can be
associated with an anti-inflammatory effect, there were no
reductions in serological markers of inflammation. The
anti-inflammatory effects of exercise have been extensively
researched and reviewed [12, 46]. However, it remains
unclear what the inflammatory response is in the absence
of weight loss and what the consequences of this might
be [47]. Acute exercise is associated with both an immune
cell redistribution and an inflammatory response which fol-
lowing exercise cessation returns to normal levels between
0.5 and 24 hours [48–50].

These effects have led many to conclude that exercise
training has a role in controlling chronic low-grade inflam-
mation. However, it is becoming clear that low-grade inflam-
mation may be influenced less by exercise training and more
by weight loss [20, 32]. When accounting for weight change
in the analysis of exercise-mediated effects on inflammation
markers such as CRP, effects of exercise are often lost
[32, 51]. In agreement with these reports, we observed no
changes in concentrations of a number of basal inflammatory
cytokines or acute phase proteins. Similarly, Robinson and
colleagues also found no significant effects of HIIT or MICT
on systemic inflammation [20]. A number of recent studies
have highlighted the acute inflammatory response to HIIT
and its similarity to MICT; however, these snapshots do not
inform of longitudinal responses [50, 52]. As inflammatory
biomarkers are used more in prediction of disease outcomes,
future research should aim to determine the discrete and
analogous effects of intervention-specific weight and fitness
responses on inflammation.

We did find that MICT but not HIIT was associated with a
small but significant 1.4% reduction in body fat. This was
aligned with a significant 10% reduction in the adipose
tissue-derived adipokine leptin. Although leptin inhibits hun-
ger, it can have proinflammatory effects on immune cells [53].
Whether the reduction in leptin was directly associated with
immune function remains unclear; however, it is unlikely to
be influential on systemic inflammatory responses.

With a growing body of evidence suggesting links
between the endocrine system, systemic inflammation,
and physical activity, we measured cortisol and DHEAs
[11, 54–56]. Although others have shown exercise effects
for cortisol and DHEAs with reductions in cortisol [57],
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we saw no effect in the present study. These findings are
not surprising in light of the lack of changes observed
for inflammatory cytokine measures. Taken together, our
results are in agreement with other exercise studies show-
ing that exercise training with minimal weight change is
not associated with reduced systemic inflammation.

4.3. Limitations. Our study is not without limitations. We
have previously described the major study limitations and,
here, will describe the substudy-specific limitations [24].
The high proportion of women may have influenced our
findings. We were unable to control for menstrual cycle dur-
ing our measurements and as such, women were likely at dif-
ferent stages of menses during the study measurements. It is
unclear the interactions of the menstrual cycle, exercise train-
ing, and immune function in our study. Others have sug-
gested that the menstrual cycle during acute exercise may
be associated with altered mucosal immunity and may tran-
siently alter subsets of lymphocytes [58, 59]. Although we
are unaware of previous studies assessing menstrual cycle
interactions with exercise training and neutrophil or mono-
cyte bactericidal function, we cannot discount a possible
influence. Future studies should aim to assess the role of
the menstrual cycle in relation to exercise and immune func-
tion. Although previous studies have shown gender differ-
ences in response to HIIT, these are often focused on
metabolic control including glycogen breakdown and insulin
sensitivity [60]. Although we did not have statistical power to
analyse gender differences, the results of female participants
were the same as when combined with men.

Our study was designed to determine whether a shorter
amount of exercise training time, at a higher intensity, was
comparable to a longer amount of exercise time, at a lower
intensity for key outcome measures. The groups differed
on total exercise time per session, with HIIT performing
18–25 minutes/session while MICT performed 30–45
minutes/session. HIIT participants performed on average
2.6 sessions/week, while MICT participants performed on
average 3.4 sessions/week. Cumulative exercise time per
week was 55± 10 minutes (HIIT) versus 128± 44 minutes
(MICT). As such, these differences for time present a tech-
nical limitation, which prevents us from determining a
mechanistic role for exercise intensity. Although this was
not our aim, had we controlled for exercise time, the results
such as VO2 would likely have been different. Given that
HIIT was 57% less time-consuming than MICT and pro-
vided similar benefits, it could be surmised that longer dura-
tions of HIIT would provide greater benefits than MICT.
However, the feasibility of these remains unknown and it
might be that adherence would drop from 82%.

In addition to time limitations, we also did not control for
and were unable to assess energy expenditure between the
groups. Although HIIT might have had higher energy expen-
diture per session, it is likely that the MICT group had greater
overall energy expenditure as evident by the small but signif-
icant reduction in body fat percentage in the MICT group.
The HIIT group, although not significant, had a trend
towards reduced body fat percent. Both groups were advised
not to alter their diet or current physical activity levels. We

did not specifically control for diet and as such, we are uncer-
tain whether participants changed their diet that resulted in a
reduced body fat percentage in the MICT group. Because of
this small change, we cannot discount that the effects seen
in MICT were driven by changes in body fat. However if this
is the case, then the effects of HIIT and MICT are through
different pathways, one adipose and the other fitness medi-
ated. It is likely that small changes in fitness and small
changes in adipose tissue synergize to result in larger changes
in other organs. Until exercise studies can discriminate
between fat and fitness, we will be unable to give specific
cause and effects. However, HIIT might be a useful model
to start teasing out these differences in at risk populations.

5. Conclusion

In summary, this study is the first to demonstrate in seden-
tary adults an immune bactericidal enhancing effect of HIIT.
As these adaptations were comparable to those following
MICT despite less than 57% of the total exercise time, these
results support HIIT as a time-efficient exercise option to
improve neutrophil and monocyte function. Furthermore,
as previously reported, HIIT had better adherence than
MICT (82± 14% versus 62± 13%, resp.) [24]. Although time
commitment was reduced, it is unclear what total workload
performed was for each group. Because both groups
improved physiological fitness and immunological parame-
ters similarly, it is likely that total work performed was simi-
lar between the groups. As such, for those considering HIIT
as an exercise program, reduced time does not equate to less
work. The same amount of work must be performed, just in
less amount of time. Therefore, reduced time commitment
and higher adherence combined with the social aspect of
group HIIT training could provide an effective means to
engaging older adults, most in need of immune function
improvements, in exercise training.

Our findings support the proposal that improved function
of innate immune cells is a potential anti-immunosenescence
response to exercise training of high- or moderate-intensity
exercise training. Both HIIT and MICT altered monocyte,
but not neutrophil, expression of key surface receptors sug-
gesting that functional improvements are related to intrinsic
cellular signalling pathway changes. Neutrophils and mono-
cytes are key intermediaries in the resolution of infection, tis-
sue repair, and control of chronic systemic inflammation.
Their age-associated functional decline is central to the devel-
opment ofmany age-related diseases including cardiovascular
disease and metabolic disease. Future research should aim to
determine if the cellular immune responses to exercise train-
ing are associated with altered intrinsic cellular signalling
and whether this translates directly to improved cardiometa-
bolic health, reduced disease risk, and reduced risk of infec-
tion in at risk populations.
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