Citation:

Link to Leeds Beckett Repository record:
http://eprints.leedsbeckett.ac.uk/id/eprint/4031/

Document Version:
Article
Systematic review of patient-reported outcome measures in patients with varicose veins

A. Aber¹, E. Poku¹, P. Phillips¹, M. Essat¹, H. Buckley Woods¹, S. Palfreyman³, E. Kaltenthaler¹, G. Jones² and J. Michaels¹

¹School of Health and Related Research, University of Sheffield, Sheffield, and ²Department of Psychology, School of Social Sciences, Leeds Beckett University, Leeds, UK, and ³Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada

Correspondence to: Mr A. Aber, School of Health and Related Research, University of Sheffield, Regent Court, 30 Regent Street, Sheffield S1 4DA, UK (e-mail: a.aber@sheffield.ac.uk)

Preliminary findings presented to the Vascular Society Annual Scientific Meeting, Manchester, UK, November 2016

Background: Varicose veins can affect quality of life. Patient-reported outcome measures (PROMs) provide a direct report from the patient about the impact of the disease without interpretation from clinicians or anyone else. The aim of this study was to examine the quality of the psychometric evidence of PROMs used in patients with varicose veins.

Methods: A systematic review was undertaken to identify studies that reported the psychometric properties of generic and disease-specific PROMs in patients with varicose veins. Literature searches were conducted in databases including MEDLINE, up to July 2016. The psychometric criteria used to assess these studies were adapted from published recommendations in accordance with US Food and Drug Administration guidance.

Results: Nine studies were included which reported on aspects of the development and/or validation of one generic (36-Item Short Form Survey, SF-36®) and three disease-specific (Aberdeen Varicose Vein Questionnaire, AVVQ; Varicose Veins Symptoms Questionnaire, VVSymQ®; Specific Quality-of-life and Outcome Response – Venous, SQOR-V) PROMS. The evidence from included studies provided data to support the construct validity, test–retest reliability and responsiveness of the AVVQ. However, its content validity, including weighting of the AVVQ questions, was biased and based on the opinion of clinicians, and the instrument had poor acceptability. VVSymQ® displayed good
responsiveness and acceptability rates. SF-36® was considered to have satisfactory responsiveness and internal consistency.

Conclusion: There is a scarcity of psychometric evidence for PROMs used in patients with varicose veins. These data suggest that AVVQ and SF-36® are the most rigorously evaluated PROMs in patients with varicose veins.

+A: Introduction

Varicose veins are enlarged lumpy visible veins caused by reflux of blood in the superficial veins of the leg¹. They are extremely common, affecting more than half of the population in Western Europe and North America²-⁴. Varicose veins can cause symptoms such as pain, aching, swelling, throbbing, cramping, itching and bleeding⁵. Complications include superficial thrombophlebitis, external bleeding, lipodermatosclerosis, eczema and ulceration⁶,⁷. Traditionally, treatment comprised surgery with stripping of the great saphenous vein and removal of the varicose veins through small incisions (avulsions or phlebectomies). However, in the past decade new less invasive treatments have been developed⁸. In 2009–2010, 35 659 varicose vein procedures were carried out in the National Health Service (NHS)⁸.

Patient-reported outcome measures (PROMS) provide a means by which the impact of varicose veins or their treatments on quality of life can be measured. The questionnaires are typically developed from qualitative studies involving patients and clinicians. The items in these questionnaires are then tested for their ability to capture the patient’s experience in prospective surveys, using psychometric analyses to explore the relationship of the items with each other and their overall ability to detect change⁹. The NHS PROMS programme has been collecting PROMs data from patients undergoing varicose vein interventions since April 2009 using generic and disease-specific PROMS¹⁰.

The aim of this study was to identify and examine the quality of the psychometric evidence for PROMs used for patients with varicose veins. This study was divided into two parts; initially a systematic review was undertaken to identify the appropriate papers, and then a psychometric assessment was undertaken to assess the quality of the methods used to validate or design these PROMs.
Methods

A systematic review was undertaken and reported in accordance with the general principles recommended in PRISMA statement11. The protocol for the systematic review was developed and registered in the PROSPERO international prospective register of systematic reviews before the start of the data extraction12.

Systematic searches were undertaken in MEDLINE and MEDLINE In-Process, Embase, the Cochrane Library, CINAHL, PROQOLID, PsycINFO and Web of Science. A two-stage search approach was used. The first stage used general terms for PROMs (known generic and condition-specific PROMs) and terms for the condition (varicose veins) to identify studies. These were retrieved, and the title and abstract examined for additional PROM terms used in patients with varicose veins. The second stage incorporated these terms with the preliminary search strategy and a methodological search filter for finding studies on measurement properties. Databases were searched from inception up to July 2016 for search 1 and up to July 2016 for search 2. Searches were supplemented by hand-searching reference lists of relevant reviews and included studies, citation search of included studies and contact with experts in the field. Search strategies are shown in (Appendix S1, supporting information).

Study selection

The titles were reviewed, and the abstracts and full text of the included articles were assessed by at least two reviewers independently. Any disagreements in the selection process were resolved by discussion, with involvement of a third reviewer. Eligible studies included articles published in English of any study design that reported the validation or development of PROMs capturing quality of life, health status or functional limitation in patients with varicose veins in an English-speaking population (Table 1).

Data abstraction

Data relating to study design, patient characteristics, type of treatment, PROM used, methods and outcomes were extracted by one reviewer on to a standardized data extraction form, and independently checked for accuracy by a second. Any discrepancies were resolved by discussion, with involvement of a third reviewer. Where necessary, study authors were contacted for missing information or additional data.

Methodological quality assessment (psychometric evaluation)

The methodological quality assessment in developing the PROMs was based on specific psychometric criteria. Owing to lack of consensus on how to appraise PROMs, the study-specific criteria were adapted from published recommendations13–16,18 in accordance with the US Food and Drug Administration (FDA) guidance 200917. They were mainly based on the Oxford University PROMs Group guidelines and the COnsensus-based Standards for the selection of health status Measurement.
INstruments (COSMIN). These criteria can be divided into four areas: reliability, validity, responsiveness and acceptability (Table 2). Two independent researchers appraised these psychometric properties for each PROM independently using the following methods of assessment. A rating scale was designed to allocate a mark for each domain: 0, not reported; –, evidence not in favour; +/-, conflicting evidence; and +, evidence in favour. Any disagreements were resolved through discussion or with involvement of a psychometrics expert.

+C: Assessment of reliability
The reliability of a PROM is its ability to produce the same results when measurements are repeated in populations with similar characteristics. The reliability of each identified PROM was assessed by examining the reported data on reproducibility and internal consistency. The reproducibility of an instrument is commonly examined by performing test–retest at different time points. The degree of correlation is examined between the scores at baseline and those at different time points. PROMs should report test–retest using the intraclass correlation or weighted κ score; this should be at least 0.70 for group comparisons.

PROMs commonly use more than one item to measure a single dimension that is important to the patient; this is because several related observations can produce a better estimate than one. These items need to be homogeneous; this means that they all measure aspects of a single attribute rather than different ones and are therefore internally consistent. Internal consistency is usually measured using Cronbach’s α, which should have a value of more than 0.70 and below 0.90 for the proposed PROM to be psychometrically sound.

+C: Assessment of validity
Validity is the measure of how well a PROM measures what it is intended to measure. Validity was assessed for each identified PROM by assessing content validity, construct validity and criterion validity. Content validity was measured by examining the relevance of the items in the PROM to their intended use. This was assessed on the basis of whether these items were developed through qualitative studies with patient groups involving clinicians and incorporating published evidence. Criterion validity is concerned with assessing the PROM in question against a standard PROM that provides a benchmark of the true values. The new PROM should demonstrate correlation coefficient scores of more than 0.70. However, in reality this is often very difficult to assess in the absence of such a standard.

+C: Assessment of responsiveness
This is defined as the ability of a PROM to detect clinically important change over time, if a true change exists. The PROM should be able to distinguish between clinically important changes and measurement error. Responsiveness of a measure can be calculated using methods such as use of standardized response means, t test, effect size and Guyatt’s responsiveness ratio.
Assessment of acceptability and floor or ceiling effect

Acceptability is measured by the completeness of the data. For a PROM to show a good level of acceptability, 80 per cent or more of the data should be complete when the PROM is administered to the patients. A floor or ceiling effect is considered if 15 per cent of respondents are achieving the lowest or the highest score on the instrument.

Results

A total of 3787 records were identified; following detailed examination, nine studies reporting on 4 PROMs were included (Fig. 1). PROMs that were not specific for varicose veins and examined chronic venous disease in general were excluded; examples of these are the Chronic Venous Insufficiency quality of life Questionnaire (CIVIQ) 20 and CIVIQ-14, both chronic venous disease PROMs, and the Venous Insufficiency Epidemiologic and Economic Study – Quality of Life/Symptoms (VEINES-QOL/Sym), a PROM validated in patients with deep venous thrombosis and venous leg ulcers.

All the included studies assessed the psychometric properties and suitability of the suggested PROMs in patients with varicose veins (Table 3). The studies were prospective in design, and were undertaken in the UK and USA. They were published between 1993 and 2016. The majority of the studies were of a small to moderate size with the number of patients ranging from 40 - 33 to 1700 - 26. The patients aged between 16 and 86 years were recruited in the included studies, with the proportion of men ranging from 24 per cent to 48 per cent.

Patient-reported outcomes measurement data and psychometric evaluation

Overall, data relating to the development and psychometric evaluation of one generic PROM and three condition-specific PROMs for patients with varicose veins were available. The only generic PROM evaluated was the 36-Item Short Form Health Survey (SF-36®; Optum, Eden Prairie, Minnesota, USA). The condition-specific PROMs were the Aberdeen Varicose Vein Questionnaire (AVVQ), the Varicose Veins Symptoms Questionnaire (VVSymQ®; BTG International, London, UK) and the Specific Quality-of-life and Outcome Response (SQOR-V).

The protocol regarding timing of PROMs differed between the studies. The shortest follow-up was immediately following the intervention and the longest was 12 months after treatment. The rigour of the psychometric assessment of the PROMs was variable. The AVVQ was the only instrument evaluated in detail, with assessment of all the important psychometric domains were assessed (Table 4.)

Short Form Health Survey 36
Garratt and colleagues \(^{25-28}\) assessed aspects of the psychometric validity of this generic instrument in patients with varicose veins. In a study of 1700 patients, including 314 with varicose veins, the SF-36® was examined for its suitability as a PROM for patients treated in the NHS. The internal consistency was assessed using two techniques, item scale correlation and Cronbach’s \(\alpha\). The first method examined the extent to which an item was related to the rest of the scale, whereas Cronbach’s \(\alpha\) measured the overall correlation between items in the scale. The correlation for all items was above the 0.4, providing evidence of internal consistency. The Cronbach’s \(\alpha\) value exceeded 0.8 and satisfied the criteria for internal consistency. The response rate for SF-36® in this study at baseline was 75.5 per cent, showing some evidence of acceptability for this PROM; however, this dropped to 67.5 per cent after 1 year. The construct validity assessment used ordinary least regression to estimate the effect on each scale in the PROM of varicose veins, age, sex and socioeconomic status of the participants. The impact of varicose veins was significant only on the physical functioning scale. The responsiveness of SF-36® was assessed in the same population after 12 months, with results showing good responsiveness for this PROM. The standardized response mean was used to measure this property, and patients with varicose veins had a significantly higher level of improvement across the SF-36® scales at 1 year than those not referred for treatment.

+C: Aberdeen Varicose Vein Questionnaire

This disease-specific PROM was developed by Garratt et al.\(^ {25}\), and the items were generated based on questions commonly used to assess patients with varicose veins. The items generated were confirmed by two clinicians and then pretested in patients for relevance and validity\(^ {25}\). The AVVQ was tested for internal consistency, construct and criterion validity, and acceptability. The result of internal consistency evaluation after removing five questions that did not fulfil the criteria was a Cronbach’s \(\alpha\) value of 0.72, satisfying the psychometric criterion for this PROM\(^ {34}\). The construct validity of the instrument was tested using stepwise multiple regression and comparison with the Varicose Vein Severity Score. The regression model confirmed that AVVQ explains a substantial proportion of the non-random variation in the patients’ perceived health. The AVVQ showed high acceptability among patients with 76 per cent complete data when the PROM was administered\(^ {25}\). The criterion validity of the AVVQ was assessed by comparing it with eight scales of the SF-36® in patients with varicose veins; the AVVQ achieved highly negative correlations with all eight scales of the SF-36®\(^ {28}\). Four of these correlations exceeded 0.4, including physical functioning, pain, social functioning and role limitations. These correlations suggest that AVVQ can pick up adverse effects of varicose veins better than the generic PROM SF-36®. The test–retest reliability assessment of this PROM showed an intraclass correlation coefficient of above 0.7 in all domains except one, in which patients reported no change in symptoms after 1 year. The responsiveness of the AVVQ to changes in health over time was assessed by administering the questionnaire to the same respondents after 1 year\(^ {28}\). In an analysis
of standardized response means over 1 year, all items showed improvement, especially for patients who received treatment; patients not referred to a specialist had lower perceived health compared with the general population28.

Lattimer and colleagues30 attempted to examine the responsiveness of the AVVQ in patients receiving endogenous laser ablation or foam sclerotherapy for varicose veins as part of an RCT. The patients included in the study all had primary disease with no previous intervention. The Wilcoxon signed-rank test was used to compare differences within the same group before and after intervention. Spearman’s \(\rho \) was used to assessed the correlation between the severity of symptoms and AVVQ outcomes. The study reported improved AVVQ score after 3 weeks and 3 months of follow-up29,30.

Varicose Veins Symptoms Questionnaire

This electronic PROM was developed in accordance with the FDA guidance17. This included qualitative studies that involved patients to generate the five items in the PROM, all related to symptoms alone. The psychometric properties were examined as part of two RCTs (VANISH-1 and VANISH-2) evaluating microfoam ablation with varying doses of polidocanol endovenous microfoam in patients with varicose veins31,33. The test–retest reliability was examined using intraclass correlation coefficients to assess whether VVSymQ® yielded a reproducible score in patients exhibiting no change in health status. The reported intraclass correlation coefficient was 0.75, demonstrating acceptable test–retest reliability. Cronbach’s \(\alpha \) value was 0.76 showing good internal consistency of the items included in the PROM. The construct validity was evaluated through Pearson correlation analyses; the score from the PROM showed correlations with reported clinical outcomes31. The VVSymQ® score captured meaningful clinical change and treatment impact, with an effect size of 1.6 when the scores were compared between baseline and 6 weeks after intervention. This electronic PROM had between 86.1 and 97 per cent data completion, reflecting good acceptability among the patients31,33.

\textbf{+C: Specific Quality-of-Life and Outcome Response – Venous}

This instrument consists of 46 items divided into five domains: physical discomfort, appearance, restriction in movement, emotional problems and threat to health. All patients in the study32 underwent radiofrequency ablation. The performance of the PROM was tested against the AVVQ and other clinical outcomes. The scores from the AVVQ and SQOR-V showed strong positive correlation with a Spearman coefficient of 0.702 \((P < 0.001)\). Responsiveness was tested at 6 weeks, with poor results for SQOR-V in some patient groups compared with the AVVQ. The acceptability, as measured by the completeness of the data, was weak (67 per cent complete data)32.

\textbf{+A: Discussion}
This study identified PROMs that have undergone validation in patients with varicose veins, and assessed the methodology of psychometric validation in accordance with FDA guidance, Oxford PROMS group guidelines and COSMIN13-19. Patient-reported outcome is an important core outcome recommended to be collected as part of service analysis and clinical studies35-37. Clinicians and researchers are faced with a dilemma when deciding on the instrument that measures this outcome. In the UK NHS, the measures used to collect data on PROMs for patients undergoing surgical management for varicose veins are the AVVQ and EuroQoL Five Dimensions (EQ-5DTM; EuroQol Group, Rotterdam, The Netherlands38).

This review identified only one generic measure (SF-36®) and three disease-specific instruments (AVVQ, VVSymQ®, SQOPR-V) that have undergone psychometric assessment in patients with varicose veins. The evidence suggests that the SF-36® exhibits good internal consistency and acceptability among patients with varicose veins, with some evidence of construct validity and responsiveness. The AVVQ had good test–retest reliability, construct and criterion validity, and responsiveness. However, the evidence for the content validity was weak, and clinicians and researchers generated the items with limited input from patients; the weighting of the items was based on the judgement of two clinicians. VVSymQ® had good internal consistency, test–retest reliability, construct, content and criterion validity, and responsiveness. The acceptability of the VVSymQ® was better than that of the AVVQ and SF-36®; this is in part because it is an electronic questionnaire; however, the only domain in this instrument is symptoms.

The main strength of this study was the use of comprehensive search strategies to identify all relevant papers that reported on psychometric validation of PROMs for patients with varicose veins. The psychometric assessment domains in this study were based on different but overlapping psychometric evaluation criteria16,17,19,38. The main limitation of the analysis was the heterogeneity of the patients included in the studies as well as the different protocols for administering the PROMs. Furthermore, the content validity of the disease-specific measures was based on information limited to either that gathered by consulting a small number of patients about items generated by researchers and clinicians, or data from small qualitative research studies, with no systematic review of the qualitative evidence25,27-31,33. None of the studies included in the review provided any information on how they dealt with missing data.

The only generic PROM with psychometric evidence to support its use in patients with varicose veins was the SF-36®; no data on the EQ-5DTM were found. The AVVQ was the most evaluated disease-specific PROM, with five studies examining its psychometric validity. Further work is needed to improve the content validity and acceptability of PROMs used in patients with varicose veins. The authors also recommend further research on the use of electronic PROMs based on the acceptability data for the VVSymQ®.

+A: Acknowledgements
This research and publication were funded through a National Institute for Health Research Programme Grant (RP-PG-1210-12009).

Disclosure: The authors declare no conflict of interest.

+A: References

26 Garratt AM, Ruta DA, Abdalla MI, Buckingham JK, Russell IT. The SF36 health survey questionnaire: an outcome measure suitable for routine use within the NHS? *BMJ* 1993; **306**: 1440–1444.

27 Garratt AM, Ruta DA, Abdalla MI, Russell IT. SF 36 health survey questionnaire: II. Responsiveness to changes in health status in four common clinical conditions. *Qual Health Care* 1994; **3**: 186–192.

29 Lattimer CR, Kalodiki E, Azzam M, Geroulakos G. The Aberdeen varicose vein questionnaire may be the preferred method of rationing patients for varicose vein surgery. *Angiology* 2014; **65**: 205–209.

McKenna SP. Measuring patient-reported outcomes: moving beyond misplaced common sense to hard science. *BMC Med* 2011; **9**: 86.

Supporting information
Additional supporting information may be found online in the supporting information tab for this article.
Appendix S1 Search strategy (Word document)

Typesetter: please refer to marked-up figures
Fig. 1 PRISMA diagram showing selection of studies for review of patient-reported outcome measures (PROMs) in patients with varicose veins
<table>
<thead>
<tr>
<th></th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>A defined population of English-speaking participants with a diagnosis of varicose veins</td>
<td>Undefined population of patients with chronic venous disease or Non-English-speaking patients with varicose veins</td>
</tr>
<tr>
<td>Interventions</td>
<td>No intervention or any intervention indicated for varicose veins</td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td>PROMS covering any of the following: generic or preference-based measures e.g. EQ-5D™, SF-6D®, SF-36®, directly elicited preference-based measures, e.g. time-trade-off, standard gamble utility values; condition-specific outcome measures; functional outcome measures English version of PROMS</td>
<td>Outcome measures of patient satisfaction or experience, or outcome measures obtained from proxies, carers or health providers Non-English versions of PROMS</td>
</tr>
<tr>
<td>Study type</td>
<td>Published validation studies, other than linguistic validation of English versions of relevant PROMS Publication in English</td>
<td>Unpublished studies Studies of linguistic validation of PROMS Review articles, letters, commentaries, abstracts Non-English publications</td>
</tr>
</tbody>
</table>

PROM, patient-reported outcome measure; EQ, EuroQol; SF, Short Form.
Table 2 Psychometric criteria used to assess the quality of the patient-reported outcome measures included in this study

<table>
<thead>
<tr>
<th>Domain</th>
<th>Criteria</th>
</tr>
</thead>
</table>
| Test–retest reliability | Test–retest: the intraclass correlation/weighted κ score should be ≥ 0.70 for group comparisons and ≥ 0.90 if scores are going to be used for decisions about an individual based on their score.
The mean difference (paired t test or Wilcoxon signed-rank test) between time points 1 and 2, and the 95% c.i. should also be reported.12,13 |
| Internal consistency | A Cronbach’s α score of ≥ 0.70 is considered good, and it should not exceed ≥ 0.92 for group comparisons as this is taken to indicate that items in the scale could be redundant. Item total correlations should be ≥ 0.20. 14,20 |
| Content validity | This is assessed qualitatively during the development of an instrument. To achieve good content validity, there must be evidence that the instrument has been developed by consulting patients and experts as well as undertaking a literature review.20
Patients should be involved in the development stage and item generation. The opinion of patient representatives should be sought on the constructed scale.$^{12–14}$ |
| Construct validity | A correlation coefficient of ≥ 0.60 is taken as strong evidence of construct validity. Authors should make specific directional hypotheses and estimate the strength of correlation before testing.$^{12–14}$ |
| Criterion validity | A good argument should be made as to why an instrument is standard and correlation with the standard should be ≥ 0.70. 15,16,18,19 |
| Responsiveness | There are a number of methods to measure responsiveness, including t tests, effect size, standardized response means or Guyatt’s responsiveness index. There should be statistically significant changes in score of an expected magnitude.21,22 |
| Floor and ceiling effects | A floor or ceiling effect is considered if 15% of respondents are achieving the lowest or the highest score on the instrument.12,13 |
| Acceptability | Acceptability is measured by the completeness of the data supplied; $\geq 80\%$ of the data should be complete.12 |
Table 3: Studies reporting validation of patient-reported outcome measures in patients with varicose veins

<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Treatment Type</th>
<th>Type of study</th>
<th>Sample Size</th>
<th>Age (years)*</th>
<th>Men (%)</th>
<th>Reported PROM(s)</th>
<th>Timing of PROM(S) assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garratt et al.</td>
<td>UK</td>
<td>Usual care</td>
<td>PDVS</td>
<td>373</td>
<td>45.8</td>
<td>24</td>
<td>AVVQ/SF-36®</td>
<td>Administered once</td>
</tr>
<tr>
<td>Garratt et al.</td>
<td>UK</td>
<td>Usual care</td>
<td>PDVS</td>
<td>1700</td>
<td>42.7</td>
<td>33.5</td>
<td>SF-36®</td>
<td>2 weeks after baseline</td>
</tr>
<tr>
<td>Garratt et al.</td>
<td>UK</td>
<td>Usual care</td>
<td>PDVS</td>
<td>1700</td>
<td>47.9</td>
<td>39.8</td>
<td>SF-36®</td>
<td>After 1 year</td>
</tr>
<tr>
<td>Garratt et al.</td>
<td>UK</td>
<td>Usual care</td>
<td>PDVS</td>
<td>373</td>
<td>45.8</td>
<td>46.1</td>
<td>AVVQ/SF-36®</td>
<td>2 weeks and 12 months after baseline</td>
</tr>
<tr>
<td>Lattimer et al.</td>
<td>UK</td>
<td>EVLA versus UGFS</td>
<td>RCT</td>
<td>100</td>
<td>n.r.</td>
<td>42</td>
<td>AVVQ</td>
<td>Baseline and 3 weeks and 3 months</td>
</tr>
<tr>
<td>Lattimer et al.</td>
<td>UK</td>
<td>EVLA versus UGFS</td>
<td>RCT</td>
<td>84</td>
<td>47.5†</td>
<td>48</td>
<td>AVVQ</td>
<td>Baseline and 3 weeks and 3 months</td>
</tr>
<tr>
<td>Paty et al.</td>
<td>USA</td>
<td>EMA and PEM</td>
<td>RCT</td>
<td>395</td>
<td>49.6</td>
<td>26.8</td>
<td>VVSymQ®</td>
<td>Baseline and 8 weeks (daily)</td>
</tr>
<tr>
<td>Shepherd et al.</td>
<td>UK</td>
<td>RFA only</td>
<td>PDVS</td>
<td>317</td>
<td>48.9</td>
<td>28.4</td>
<td>AVVQ, SQOR-V</td>
<td>Baseline and 6 weeks</td>
</tr>
<tr>
<td>Wright et al.</td>
<td>USA</td>
<td>EMA and PEM</td>
<td>RCT</td>
<td>40</td>
<td>49.7</td>
<td>38</td>
<td>VVSymQ®</td>
<td>Baseline and 8 weeks (daily)</td>
</tr>
</tbody>
</table>

*Mean values except †median. PROM, patient-reported outcome measure; PDVS, PROM development and validation study; AVVQ, Aberdeen Varicose Vein Questionnaire; SF-36®, 36-Item Short Form Survey; EVLA, endovenous laser ablation; UGFS, ultrasound-guided foam sclerotherapy; n.r., not reported; EMA, endovenous microfoam ablation; PEM, polidocanol endovenous microfoam; VVSymQ®, Varicose Veins Symptoms Questionnaire; RFA, radiofrequency ablation; SQOR-V, Specific Quality-of-life and Outcome Response – Venous.
Table 4 Summary of the psychometric properties of patient-reported outcome measures in patients with varicose veins

<table>
<thead>
<tr>
<th>Reference</th>
<th>Psychometric and operational criteria</th>
<th>Floor/ceiling effect</th>
<th>Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic PROMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF-36®</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garratt et al.26</td>
<td>+</td>
<td>0</td>
<td>+/-</td>
</tr>
<tr>
<td>Garratt et al.27</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease-specific PROMs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVVQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garratt et al.25</td>
<td>+</td>
<td>0</td>
<td>+/-</td>
</tr>
<tr>
<td>Garratt et al.28</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Shepherd et al.32</td>
<td>0</td>
<td>0</td>
<td>+/-</td>
</tr>
<tr>
<td>Lattimer et al.29</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lattimer et al.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VVSymQ®</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paty et al.31</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Wright et al.33</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SQOR-V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shepherd et al.32</td>
<td>0</td>
<td>–</td>
<td>+/-</td>
</tr>
</tbody>
</table>

0, Not reported (no evaluation completed); –, evidence not in favour; +/-, weak evidence; +, evidence in favour; ?, methodology questionable. PROM, patient-reported outcome measure; SF-36®, 36-Item Short Form Survey; AVVQ, Aberdeen Varicose Vein Questionnaire; VVSymQ®, Varicose Veins Symptoms Questionnaire; SQOR-V, Specific Quality-of-life and Outcome Response – Venous.