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Abstract— In this paper we present a new concept of self-

reflection learning to support a deep reinforcement learning 

model. The self-reflective process occurs offline between episodes 

to help the agent to learn to navigate towards a goal location and 

boost its online performance. In particular, a so far optimal 

experience is recalled and compared with other similar but 

suboptimal episodes to reemphasize worthy decisions and 

deemphasize unworthy ones using eligibility and learning traces. 

At the same time, relatively bad experience is forgotten to remove 

its confusing effect. We set up a layer-wise deep actor-critic 

architecture and apply the self-reflection process to help to train 

it. We show that the self-reflective model seems to work well and 

initial experimental result on real robot shows that the agent 

accomplished good success rate in reaching a goal location. 

Keywords— self-reflective deep reinforcement learning; deep 

learning; actor-critic; neural networks; robot navigation; 

I.  INTRODUCTION 

On-line reinforcement learning agents is difficult to train. It 
takes long to train because the agent does not have direct 
answer to the input in hand, it has to rely on own assessment of 
how good or bad the last action was (in the long run) to achieve 
a goal. For real world agent the difficulty is escalated due to 
partial observability and variability of experience as well as 
unfeasibility of deliberate repetition of this experience. 
Experiences vary from state and action perspectives. 
Subsequently, even when the agent starts form the same 
position and takes the same action the outcome is going to vary 
slightly due to the continuum of possible states at any location 
and due to inaccuracy of actions taken. This is especially true 
for agents with loos mechanics which are encountered in 
games and DYI robots. Moreover, it is physically difficult or 
undesirable to let the agent run through many episodes. 
Therefore, the agent needs to maximize the advantage of 
available experience with the least amount of time and 
repetition; hence offline reflection on past experience can play 
an important role to mitigate these difficulties.  

II. THE MODEL  

A. Actor-critic and Neural Networks 

We consider actor-critic architecture to tackle the above 
problem. This architecture is interesting because it allows for 
explicit natural separation of concern between a performer, that 
tries to learn the best set of actions in certain situations, and a 
critic that tries to maximize overall future gain strategically. As 
we shall see later a specific advantage of the proposed 

architecture is that it unifies both the actor and the critic in one 
neural network that can be readily trained using 
backpropagation. For the learner everything can be summed up 
in terms of a reward signal whether it is positive (success in 
reaching the goal) or negative (increased number of steps). Any 
negative rewards (cost) can be thought of as positive and the 
target would be to minimize the sum of future cost. Equally, if 
the agent uses only positive rewards then it would need to 
maximize the sum of the expected accumulated future rewards.  

B. Operating under Positive and Negative Rewards 

Mixing both negative and positive cost and rewards has its 
own perceived advantages such as enriching the agent 
experience, possible shortening of the training phase (instead of 
training through two consequent phases one for reward and one 
for the cost) and adding a more natural touch to the behaviour 
of the agent even during training. However, problems arise due 
to conflict of interest intrinsic in both forms. If we assign one 
reward function that encompasses and mingles cost and reward 
in each step then it would be difficult for the agent to trace 
what went wrong or right and what decision caused a bad or 
good experience in order to self-reflect on own actions.  

C. The Problem Scenario  

We consider an episodic scenario were the agent runs 
through episodes of experiences each starts form a certain 
location and should ends at a target location (goal oriented 
navigation). Each episode could have a different number of 
steps. Similar to a human learning experience, early episodes 
are useful to learn from mistakes, so minimizing punishment 
should be a priority. Whilst, the agent needs to optimize its 
performance in late episodes and master the task at hand, hence 
maximizing the rewards should be the priority in this case. 
Dynamically changing reward function means that the agent 
needs to adapt to different policies. It is critical to balance the 
different learning stages so that previously learned experience 
is not completely forgotten. A plausible proposal is to start with 
a policy that try to maximize negative rewards (i.e. minimizes 
the cost), then altering it towards the positive rewards. This 
approach however has the potential risk of deforming the 
initially learned policy and ending up with a completely 
different policy that takes only the latest form of reward into 
account. Hence, we will consider a mixed reward function that 
penalizes the agent for wasting time during the episode and 
only rewards it at the end for reaching the goal. What is more, 
we will alternate between online and offline learning 
approaches.  



D. Self-reflective Learning 

When pure cost (negative) function is considered, then 
early bad decisions have more effect on generating bad 
experience. Conventional eligibility traces help recognize this 
effect exactly; they put more emphasis on the early decisions 
so that those decisions get what they deserve of blame. 
Equally, when using a pure reward (positive) function, late 
decisions has more effect on finalizing the task and one might 
want to increase their effect to receive the praise they deserve 
to finalize the task. Conventional eligibility traces do not stress 
this effect except when the reward they gain is very big in 
comparison with other rewards of other steps. Therefore, we 
will apply relatively high rewards for the end of the episode. 
More importantly we will follow online learning approach, 
(that is happening during the episode) by an offline learning 
phase (that occur between episodes) to further emphasize the 
effect of good actions that lead to finalizing the task. 

 At the same time, when the experience is not good (agent 
took very long to reach the target or did not reach it in the 
maximum allowed number of steps) at the end of the episode 
the model rewinds the learning that took place by reverting the 
weights to their original values at the start of the episode. This 
is because such episodes are not fit for the agent to learn from, 
they will be discarded. We register the parameter changes 
(learning) that took place and we simply undo them and repeat 
the episode. We argue that the above is more like how human 
and animal learn from their experience. Overall we do not 
consider every single attempt (episode) that we do. Our brain 
only stimulates learning when a novel and exciting thing 
happen such as when the problem is solved in a shorter than 
usual path (relative to past experience).  

So self-reflective learning occurs after each episode. If the 
episode is particularly good the agent reflects back to 
emphasize the learned lesson (either by coincidence or by some 
action that had a greater effect than expected). The self-
excitement comes from these outcomes which stimulate 
remembering what has been done. We do exactly the same in 
our model. When a particular episode is good it provokes the 
agent to ponder what it has done well. So it needs either to 
remember the whole path and analyze it to know what has led 
to the success/failure as if the agent is rewinding the video of 
past experience and learn from it. We do this by registering the 
whole experience in a two conjugate gradient eligibility traces 
one for the actor and one for the critic, as well as by registering 
the exact accumulated changes done on the neural network 
parameter on two learning traces one for the actor and one for 
the critic. The four traces condense the past experience and 
allow us to apply the learning experience again at the end of 
the episode when the episode has proved to be optimal in 
relation to past experience. It should be noted that in the case of 
off-line updates and if one is using a toolbox with ready neural 
network structure then one can simply store the chain of vector 
features and estimated target value functions pairs (Fyt, VTt): 
VTt =rt+1 + γVt+1 where Vt+1 is the estimated value function for 
Fyt+1. And once these has been combined with conjugate 
gradient updates then it has been proven in [14] that this is 
indeed equivalent to a conjugate gradient eligibility traces. 

Eligibility traces places more emphasis on the early actions 
which makes sense for online learning. For the offline case we 
would like to put more emphasis on the latest actions that 
helped the agent to reach the goal. We would like to do that 
before amalgamating the experience with further chain, hence 
online is ideal. However, for our case we want a stronger 
mechanism.  

E. Deep Feature Represntation 

Deep learning has been shown to overcome the bottleneck 
representation problem that has long set back the success of 
machine learning applications [9, 10]. This is especially 
important for RL since RL normally takes a long time to 
converge (although speeding approaches have been developed 
for the problem under consideration [17]). Deep learning 
showed very good results when combined with supervised 
learning [11, 12]. When combined with RL it is also believed 
to have a good potential [18, 19].  

Our model starts by learning a concise and reduced feature 
representation. The model obtains a reduced representation in 
the first episode by deep convolutional neural network that is 
translation invariant as in [13, 21]. First, a set of random 
patches are extracted from the set of images collected in the 
explorative episode, then a set of weights are trained using 
those patches as an input and output for an autoencoder in 
order to extract the most resilient and important features in the 
environment (those images are representative for the 
environment since the agent is let to run around in this 
explorative episode to cover as much of the environment as 
practical). Then a set of filters are built using the strapped 
weights of the first autoencoder layer. The number of filters = 
patch_pixles

2 
× 3 (patch_size × channels). Each image received 

by the agent then will be convoluted by the filters of the 
autoencoder to build a set of features maps, which are then 
pooled (features neighborhood averaged) to reach the final set 
of features. The model is then shrinks the whole architecture to 
fit the new reduced number of features, and this concludes the 
deep learning phase for the feature representation layer. The 
explorative episode aligns with how animals normally explore 
a place by looking around. 

F. Deep Reinforcemnet Learning Model 

As it has been mentioned, the model adopts a special type 
of Combined Deep-Actor-Critic architecture that seamlessly 
unifies and integrates the policy learning process which is 
suitable for deep action learning [16]. In each step, after the 
actor layer takes its input form the deep convoluted and pooled 
layer, it then decides to do a certain action, accordingly the 
critic layer punishes or rewards the actor depending on the 
reward it receives form the environment. 

The initial features used are Differential Radial Basis 
features [14] that make the goal image its referential point and 
represent all the views relative to that goal. This is consistent 
with home-aware localization and allows the agent to view the 
world from the perspective of its current homing task and 
hence its home views (taken before learning) are hard wired in 
its behaviour. This Differential Radial Basis representation 
will be applied on the deeply extracted features to calculate a 
similarity index for the current scene and the goal location. 



Formally, the presented model uses the following 
components/stages shown in Fig. 1: 

Goal representation: We said earlier that that the brain hard 
wires the scenes to itself and compare it with the look of the 
home. To do so we need to run into an initial identification 
stage that identifies the home and embeds its views in the 
agents’ goal-identification behaviour. To do so the agent takes 
n snapshot for the home in different orientation and distances. 
The feature vector is calculated in two stages; preliminary and 
primary: 

In the preliminary stage the agent learns a set of useful 
filters using the method mentioned in previous section. The 
deduced filters will be convoluted over each coming image in 
each time step. The filters are calculated at the end of the first 
explorative episode.  This stage can be extended to span more 
than one episode to give a denser environment sampling. Then 
the model shrinks the whole architecture to fit the new reduced 
number of features. This concludes the deep learning stage for 
the feature representation layer. This stage is done once and 
will not be repeated.  

 

Fig. 1. The Blended Deep-Actor-Critic Neural Network Components and 

Model’s Stages.  

Each image was normalized and the number of patches 
were chosen to be 1000 and were selected randomly form the 
exploratory episode environment dataset. The size of the patch 
was chosen to be 6 hence input size for the auto-encoder is 
6×6×3 (RGB channels) =108. The number of filters (i.e. 
number of neurons in the hidden layer) were chosen be 9. The 
convolution procedure was set to go iteratively as a 2D 
patch_size

2
 matrix that has all the weights for a specific neuron 

(related to a specific channel).  

The dimension of the features f  is d1×d2×f where d1 and 

d2 are the dimensions of the stride and f= is the number of 

filters. The dimension of the reduced features f  is n. The 

features f are then used to calculate a similarity index deep-

NRB:  

 

 is a deep representation of the stored image j 

with filter f. is a channel c view of stored image j, and 

 is deep representation of channel c of current image 

st, while σ is a variance. The similarity measure that specifies 
the termination of the episode and is given by to be normalized 

radial basis function   nssDeepNRB
n

f tft  


1
)(   . This 

measure has been used along with two thresholds to set the 
stopping and approaching conditions for the agent. Using deep 
DeepNRB The reward function is given as a combination of 
step cost in addition to a reward for going towards 
(approaching) the goal as well as a reward for reaching the goal 
[14].  

Two important aspects related to the actions: when the 
agent turns, it will acquire higher costs than when it goes 
straight. This has the desired consequence of suppressing 
unnecessary turns and emphasizing going straight. Also a 
punishment for taking any action that leads to a reactive 
behavior has been set. This reduces the costal behavior and 
encourages going directly towards the goal. 

G. Deep Blended Actor-critic Layered Architecture 

The input feature layer is followed by an actor layer. The 
actor outputs three distinctive estimations of action-value 
function; each stands for one action. The three output of the 
actions-value function are followed by a value function layer 
that calculates the value function for the policy of the actor. 
This last layer represents the critic. At the same time the three 
action-values are passed through a winner takes all function 
were the max value will be taken as the winner action at as 
shown in Fig. 1. The learning occurs on the form of a reward 
signal that is fed first to the value function then back 
propagated to the previous actor layer. Fig. 1 shows the layers, 
stages and component of the system. 

By constructing the actor-critic architecture as two 
consequent layers and by allowing the second layer to act as a 
critic that contemplates the consequences of the actions of the 
actor layer and sends a conjugate gradient signal to it to 
indicate how well its current policy is, we created a deep 
blended actor-critic architecture in one sound system that 
depends on two eligibility traces. The value function layer 
itself is taking its feedback form the reward function. The 
action layer can learn independently of the critic layer by 
utilizing an action-value function approach (for example 
learning can occur on the wining action only). Whereas, the 
critic layer cannot process independently since it needs the 
actor layer to calculate the value function. However, the critic 
layer can be trained independently by not back propagating to 
the actor layer. In that sense the learning process can be 
thought of as a layer by layer learning or deep learning 
enabled. In the future we will explore training each layer 
independently by freezing learning in each layer and then fine-
tune by utilizing the presented approach. So this model is deep 
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in terms of its feature representation and has the potential to be 
deep in terms of its action representation. 

H. Actor-critic Combined Network with Double Eligibility 

Traces 

In this section we show the derivation of the learning 
formulae for the layered actor-critic architecture. When 
function approximation techniques are used to learn a 
parametric estimate of the value function )(sV  , )( tt sV  is 

expressed in terms of a set of parameters
t . The mean 

squared error performance function [4] can be used to drive the 
learning process: 

  



Ss

ttt sVsVsprMSEError
2

)()()()(   

)(spr  is a probability distribution weighting the errors 

 22 )()()( sVsVsErr tt    of each state s, and expresses 

the fact that better estimates should be obtained for more 
frequent states. The function 

tError  needs to be minimized in 

order to find an optimal solution *

t that best approximates the 

value function.  For on-policy learning if the sample 
trajectories are being drawn according to pr through real or 
simulated experience, then one can concentrate on minimizing 

the error function )(2 sErrt
. By using two layered neural 

network (one hidden layer and an output layer) and two 
sigmoid activations the reinforcement learning problem of 
learning an approximation of the value function and the action-
value function can be written as:  
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The update rule can be written as
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
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 , 

td
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 is a 

vector that drives the search for *

t  in the direction that 

minimizes the error function )(2 sErrt
, and 10  t  is a step 

size. This direction can be chosen in several ways. For 
example, the update rules for weights that go opposite to the 
gradient direction are: 
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It should be noted that these rules are approximate gradient 
descend. 

I. Conjugate Gradient Updates 

In this section we extend the actor-critic setting to allow for 
two conjugate gradient eligibility traces. We will follow the 
same analogy of [14 and 16]. We update the error in (6) 
opposite to the direction of the conjugate gradient of the output 
and the action layers hence: 
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Where β and β` factor can be specified in several ways, for 
example for β we have: 
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Similar set of formulae can be defined for the actor. 
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We can evaluate this in several ways; for example: 
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The updates can be rewritten as: 
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The above shows that eligibility traces are in fact 
independent of the error that we use whether it is 
approximation or exact. In fact, it distinctively shows that for 
any error there is an eligibility trace that coincides with the 
conjugate gradient; it varies with the reverse of the error. 

tt  ,  can be chosen in several ways other than the presented. 

In general )(PR

t  has been shown to perform better due to its 

stability for nonlinear error functions [20].  

This is in alignment with recent findings of [21] which is 
based on complex definition for the reward function. Our 
results show that we can find canonical eligibility traces that 



varies with the error no matter what type of error we are using, 
and that the reward discount should be varied according to the 
direction of the conjugate.  

For example, if we approximate the error using two layers 
with bootstrapping and using the )( 11   ttt sVr  as an 

approximation for )( tsV  we have: 
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Were δ being the temporal difference error. Eligibility 
traces in reinforcement learning framework is similar to the 
momentum for supervised learning. It establishes a way to 
accommodate previous updates into current updates to guide 
the search for the local optima. In RL it traces blame of current 
decision back to older decisions that lead to the current 
situation. Finally, a regularizer   has been multiplied by the 

two parameter sets to discount the old values of the parameters 
(hence prevent overfitting).  

When an episode has been signaled as an optimal (based on 
its number of steps being minimal), the learned experience was 
emphasized after the episode has finished in an offline learning 
fashion as follows: 
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Also when an episode has been signaled as bad (its number of 
steps is worst), the model rewinds the learning done through 
this experience: This was allowed after j initial non-reversing 
episodes. 
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III. EXPERIMENTAL RESULTS 

Fig. 2 shows the used robot and its environment. It is 
basically an updated version of Lego Mindstorms that has been 
used with additional camera module and processing unit that 
was mounted and attached on top of it. This robot has a 
relatively low level of sophistication in terms of the motor 
commands, balance, senor reading as well as its shape. RWTH- 
Mindstorms NXT Toolbox has been used to provide the 
sensory reading and the actuator commands for the NXT robot. 

 

Fig. 2. Left: A snapshot of the built robot with its sensors, actuators, and 
camera module. Right: The training environment.  

The robot was let to train for 30 episodes and to cool down for 
5 episodes. Each episode starts by going from behind the 
barrier location in the environment to the goal/home location. It 
was allowed to run for a 500 steps before the episode is 
considered a failure. Images with resolution of 160×120 were 
sent form a Raspberry PI module wirelessly to an off-board 
computer for processing. Learning took place in the off-board 
computer then the action decision is sent to the actuators of the 
robot via its Bluetooth.  Threshold that specifies reaching the 
goal was set to 0.97%.  

A. Agent Learning Behavior and Convergence 

Fig. 3 shows the number of steps in each episode. Three 
distinguished stages can be identified; each marks a certain 
behavioral learning. Each stage is distinguished through its 
average number of steps (red bar). Although the number of 
steps needed to reach the goal is inevitably varying, however 
each stage can be recognized by a different average. In the first 
9 episodes the agent did not apply any self-reflection and the 
average number of steps (recognized by the red doted bar) were 
the highest (51.5). The second stage started from episode 10 
onwards where agent did apply self-reflection on episodes 10, 
14, 30 (recognized by green). Those were relatively minimal 
comparing to past experience, the condition was set to apply 
self-reflection if the finished episode has steps ≤ second 
minimal past episode. The average in this stage is 25.05 steps. 
The third stage is form 31 onwards where the agent just 
enjoyed following its learned policy with no online learning, 
average was 13.4 steps only. Agent applied self-reflection on 
episode 31. Episode 22 was suitable for rewinding but it was 
not applied due to a high number of steps in the first stage. This 
proposes a future change of comparing only within the self-
reflection window rather than all previous episodes.  

An important thing to realize is that after the agent learns a 
suitable policy in the first 30 episodes, its performance 
stabilizes on an optimal policy with minimum number of steps 
the agent needed to reach the goal. This is a distinguished trait 
of this model. Bearing in mind that no experience can be 
reproduced by the agent, even when the agent finalizes the 
learning stage, a developmental behaviour can be realized. 
First, the agent developed a primitive behavior of moving 
forward and occasionally turning to minimize its cost. Then the 
agent started to develop inclination of going forwards and turn 
with some costal behaviour. In fact, turning in one direction 
was preferred and enforced over the other actions. This is 
particularly evident when we look at the overall size of the 
actor parameters in Fig 4. 

 

Fig. 3. The convergence to a stable number of steps is shown to develop; the 

red bar shows the avergae number of steps needed for each stage to reach the 
goal. 
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The number of episodes is envisaged (as was evident in the 
simulation in [14, 15 and 16]) to show a pattern of convergence 
towards minimal number of steps if the robot where left to run 
for a very long time. This was not needed in this realistic 
robotics scenario since the agent reached a good policy in 30 
episodes only.  However, due to time and physical constraints, 
this was difficult to do and a powerful and fast model was 
developed to reach a suitable strategy. The experiments were 
conducted by starting always form roughly the same position. 
The variation is due to the different learning stages as well as 
due to the continuum of possible states at any location and due 
to inherited inaccuracy of actions taken (due to the mechanics 
of the used robot). Our results show that out of 35(30 training + 
5 testing) times, the agent reached the goal location in all of 
them but 7 with not a desired orientation; the goal was not 
directly inside the visual field of the robot. Hence, it can be 
concluded that the success rate is 35/35 ≈ 100% while goal 
orientation recognition is 80%.  

 
Fig. 4. The model learned parameters for the actor and the critic; three 

actions is shown where gradient eligibility trace is used; a tendency towards 

going forward then turning left is developed by the agent. 

B. Summary and future work 

In this paper an initial self-reflective learning model that 

depends of deep combined actor-critic layered architecture has 

been introduced. Self-reflection entails that the agent should 

further ponder on negative and positive experience and should 

take advantage of negative and positive costs and rewards by 

either duplicating the learning process for successful 

experience or forgetting it for bad ones. Relatively optimal 

past experience is recalled, offline between episodes, and 

compared with other similar but suboptimal episodes to single 

out which decision was particularly good and positively be 

reemphasized, hence suboptimal decision is singled out and 

deemphasized. Equally, relatively bad experience is forgotten, 

offline between episodes, to remove its confusing effect. In the 

future we will be looking at different ways to formalize the 

approach further and conduct more experiments to verify its 

suitability for different scenarios. Also it is intended to show 

some other interesting properties of the model such as 

convergence and the relationship between deep feature 

learning and deep action learning. 
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