
Citation:
Altahhan, A (2011) "A robot visual homing model that traverses conjugate gradient TD to a variable
TD and uses radial basis features." In: Mellouk, A, (ed.) Advances in Reinforcement Learning.
INTECH, pp. 225-254. ISBN 978-953-307-369-9 DOI: https://doi.org/10.5772/13817

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/4506/

Document Version:
Book Section (Published Version)

Creative Commons: Attribution-Noncommercial-Share Alike 3.0

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/4506/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

Advances in Reinforcement Learning

1

26

A Robot Visual Homing Model that
Traverses Conjugate Gradient TD

TD λVariable ato
and uses Radial Basis Features.

Abdulrahman Altahhan
Yarmouk Private University

Syria

1. Introduction

The term ‘homing’ refers to the ability of an agent – either animal or robot - to find a known goal location.
It is often used in the context of animal behaviour, for example when a bird or mammal returns ‘home’
after foraging for food, or when a bee returns to its hive. Visual homing, as the expression suggests, is the
act of finding a home location using vision. Generally it is performed by comparing the image currently in
view with ‘snapshot’ images of the home stored in the memory of the agent. A movement decision is then
taken to try and match the current and snapshot images (Nehmzow 2000).
A skill that plays a critical role in achieving robot autonomy is the ability to learn to operate in previously
unknown environments (Arkin 1998; Murphy 2000; Nehmzow 2000). Furthermore, learning to home in
unknown environments is a particularly desirable capability. If the process was automated and
straightforward to apply, it could be used to enable a robot to reach any location in any environment, and
potentially replace many existing computationally intensive navigation and localisation algorithms.
Numerous models have been proposed in the literature to allow mobile robots to navigate and home in a
wide range of environments. Some focus on learning (Kaelbling, Littman et al. 1998; Nehmzow 2000;
Asadpour and Siegwart 2004; Szenher 2005; Vardy and Moller 2005), whilst others focus on the successful
application of a model or algorithm for a specific environment and ignore the learning problem (Simmons
and Koenig 1995; Thrun 2000.; Tomatis, Nourbakhsh et al. 2001).
Some robotic approaches borrow conceptual mechanisms from animal homing and navigation strategies
described in neuroscience or cognition literature (Anderson 1977; Cartwright and Collett 1987). Algorithms
based on the snapshot model use various strategies for finding features within images and establishing
correspondence between them in order to determine home direction (Cartwright and Collett 1987; Weber,
Venkatesh et al. 1999; Vardy and Moller 2005). Block matching, for example, takes a block of pixels from
the current view image and searches for the best matching block in stored images within a fixed search
radius (Vardy and Oppacher 2005).
Most robot homing models proposed in the literature have the limitations of either depending upon
landmarks (Argyros, Bekris et al. 2001; Weber, Wermter et al. 2004; Muse, Weber et al. 2006), which makes
them environment-specific, or requiring pre-processing stages, in order for them to learn or perform the
task (Szenher 2005; Vardy 2006). These assumptions restrict the employability of such models in a useful
and practical way. Moreover, new findings in cognition suggest that humans are able to home in the
absence of feature-based landmark information (Gillner, Weiß et al. 2008). This biological evidence
suggests that in principle at least the limitations described are unnecessarily imposed on existing models.
This chapter describes a new visual homing model that does not require either landmarks or pre-
processing stages. To eliminate the landmark requirement whole image measures of current views and
stored snapshots are used in the model (Ulrich and Nourbakhsh 2000); object recognition is not necessary
to identify a location, or to perform navigation, homing or localization tasks. To eliminate the pre-
processing requirement it was necessary to employ a general learning process capable of capturing the
specific characteristics of any environment, without the need to customise the model architecture.

Advances in Reinforcement Learning 2

Reinforcement learning (RL) provides such a capability and this coupled with visual homing based on a
whole image measure forms the first novelty of the work.
RL has been used previously in robot navigation and control, including several models inspired by
biological findings (Weber, Wermter et al. 2004; Sheynikhovich, Chavarriaga et al. 2005). However some of
those models lack the generality and/or practicality, and some are restricted to their environment; the
model proposed by (Weber, Wermter et al. 2004; Muse, Weber et al. 2006; Weber, Muse et al. 2006), for
example, depends on object recognition of a landmark in the environment to achieve the task. Therefore,
the aim of the work described in this chapter was to exploit the capability of RL as much as possible by
general model design, as well as by using a whole image measure. RL advocates a general learning
approach that avoids human intervention of supervised learning and, unlike unsupervised learning, has a
specific problem-related target that should be met. Furthermore, since RL deals with reward and
punishment it has strong ties with biological systems, making it suitable for the homing problem. Whilst
environment-dynamics or map-building may be necessary for more complex or interactive forms of
navigation or localization, visual homing based on model-free learning can offer an adaptive form of local
homing. In addition, although the immediate execution of model-based navigation can be successful
(Thrun, Liu et al. 2004; Thrun, Burgard et al. 2005), RL techniques have the advantage of being model-free
i.e. no knowledge needed about the environment. The agent learns the task by learning the best policy that
allows it to collect the largest sum of rewards from its environment according to the environment
dynamics.
The second novelty of this work is related to enhancing the performance of the an existing RL method.
Reinforcement learning with function approximation has been shown in some cases to learn slowly
(Bhatnagar, Sutton et al. 2007). Bootstrapping methods like temporal difference (TD) (Sutton 1988)
although was proved to be faster than other RL methods, such as residual gradient established by Baird
(Baird 1995), it can still be slow (Schoknecht and Merke 2003). Slowness in TD methods can occur due to
different reasons. The frequent cause is when the state space is big, high-dimensional or continuous. In this
case, it is hard to maintain the value of each state in a tabular form. Even when the state space is
approximated in some way, using artificial neural networks (ANN) for example, the learning process can
become slow because it is still difficult to generalize in such huge spaces. In order for TD to converge when
used for prediction, all states should be visited frequently enough. For large state spaces this means that
convergence may involve many steps and will become slow.
Numerical techniques have been used with RL methods to speed up its performance. For example, (Ziv
and Shimkin 2005) used a multi-grid framework which is originated in numerical analysis to enhance the
iterative solution of linear equations. Whilst, other attempt to speed up RL method performance in multi-
agent scenario, (Zhang, Abdallah et al. 2008), by using a supervised approach combined with RL to
enhance the model performance. TD can be speed up by using it with other gradient types. In (Bhatnagar,
Sutton et al. 2007), for example, TD along with the natural gradient has been used to boost learning.
(Falas and Stafylopatis 2001; Falas and Stafylopatis 2002) have used conjugate gradient with TD. Their
early experiments confirmed that using such a combination can enhance the performance of TD.
Nevertheless, no formal theoretical study has been conducted which disclose the intrinsic properties of
such a combination. The present work is an attempt to fill this gap. It uncover an interseting property of
combining TD method with the conjugate gradient which simplifies the implementation of the conjugate
TD.
The chapter is structured as follows. Firstly an overview of TD and function approximation is presented,
followed by the induction of the TD-conj learning and its novel equivalency property. Then a detail
describtion of the novel visual homing model and its components is presneted. The results of extensive
simulations and experimental comparisons are shown, followed by conclusions and recommendations for
further work.

2. TD and function approximation

When function approximation techniques are used to learn a parametric estimate of the value function
)(sV π ,)(tt sV should be expressed in terms of some parameters tθ


. The mean squared error performance

function can be used to drive the learning process:

[]∑
∈

−==
Ss

ttt sVsVsprMSEF 2)()()()(pθ
 (1)

Robot Visual Homing using Conjugate Gradient Temporal Difference Learning, Radial Basis Features and A Whole
Image Measure

3

pr is a probability distribution weighting the errors)(2 sErt
 of each state, and expresses the fact that better

estimates should be obtained for more frequent states where:
[]22)()()(sVsVsEr tt −= π (2)

The function tF needs to be minimized in order to find an optimal solution *θ


that best approximates the
value function. For on-policy learning if the sample trajectories are being drawn according to pr through
real or simulated experience, then the update rule can be written as:

tttt d


αθθ
2
1

1 +=+
 (3)

td


 is a vector that drives the search for *θ


in the direction that minimizes the error function)(2 sErt , and

10 ≤< tα is a step size. Normally going opposite to the gradient of a function leads the way to its local

minimum. The gradient tg of the error)(2 sErt can be written as:

[])()()(2)(2
tttttttt sVsVsVsErg

tt θ
π

θ



∇⋅−=∇= (4)

Therefore, when
td


 is directed opposite to tg , i.e.
tt gd 

−= , we get the gradient descent update rule:

[])()()(1 tttttttt sVsVsV
tθ

παθθ 


∇⋅−+=+
 (5)

It should be noted that this rule allows us to obtain an estimate of the value function through simulated or
real experience in a supervised learning (SL) fashion. However, even for such samples the value function

πV can be hard to be known in a priori. If the target value function πV of policy π is not available, and
instead some other approximation of it is, then an approximated form of rule (5) can be realized. For
example, replacing tR by πV produces the Monte Carlo update [])()(1 tttttttt sVsVR

tθ
αθθ 


∇⋅−+=+

. By its

definition tR is an unbiased estimate for)(tsV π , hence this rule is guaranteed to converge to a local
minima. However, this rule requires waiting until the end of the task to obtain the quantity tR to perform
the update. This demand can be highly restrictive for the practical application of such rule. On the other

hand, if the n-step return)(
1

1)(
ntt

n
n

i
it

in
t sVrR +

=
+

− += ∑ γγ is used to approximate)(tsV π , then from (5) we

obtain the rule [])()()(
1 tttt

n
tttt sVsVR

tθ
αθθ 


∇⋅−+=+

which is less restrictive and of more practical interest

than rule (5) since it requires only to wait n steps to obtain)(n
tR . Likewise, any averaged mixture of)(n

tR

(such as)3(
2

1)1(
2

1
tt RR +) can be used, as long as the coefficients sum up to 1. An important example of such

averages is the sum ∑
∞

=

−−=
1

)(1)1(
n

n
t

n
t RR λλλ which also can be used to get the update rule:

[])()(1 tttttttt sVsVR
tθ

λαθθ 


∇⋅−+=+
 (6)

Unfortunately, however,)(n
tR (and any of its averages including λ

tR) is a biased approximation of)(tsV π
for the very reason that makes it practical (which is not waiting until the end of the task to obtain)(tsV π) .

Hence rule (6) does not necessary converge to a local optimum solution *θ


of the error function tF . The
resultant update rule (6) is in fact the forward view of the TD(λ) method where no guarantee of reaching

*θ


 immediately follows. Instead, under some conditions, and when linear function approximation are
used, then the former rule is guaranteed to converge to a solution

∞θ


 that satisfies (Tsitsiklis and Van Roy

1997))(
1
1)(*2

1
2
1

θ
γ
γλθ


MSEMSE

−
−

≤∞
.

The theoretical forward view of the TD updates involves the quantity λ
tR which is, in practice, still hard to

be available because it needs to look many steps ahead in the future. Therefore, it can be replaced by the
mechanistic backward view involving eligibility traces. It can be proved that both updates are equivalent
for the off-line learning case (Sutton and Barto 1998) even when λ varies from one step to the other as long
as]1,0[∈λ . The update rules of TD with eligibility traces, denoted as TD(λ) are:

ttttt e


⋅+=+ δαθθ 1
 (7)

)(1 tttt sVee
tθ

γλ 


∇+= −
 (8)

Advances in Reinforcement Learning 4

)()(11 tttttt sVsVr −+= ++ γδ (9)
It can be realized that the forward and backward rules become identical for TD(0). In addition, the gradient
can be approximated as:

)(2 tttt sVg
tθ

δ 


∇⋅= (10)

If linear neural network is used to approximate)(tt sV , then it can be written as
t

T
tt

T
ttt sV φθθφ


==)(. In this

case, we obtain the update rule:

ttt ee φγλ


+= −1
 (11)

It should be noted that all of the former rules starting from (4) depend on the gradient decent update.
When the quantity)(tsV π was replaced by some approximation the rules became impure gradient decent
rules. Nevertheless, such rules can still called gradient decent update rules since they are derived according
to it. Rules that uses its own approximation of)(tsV π are called bootstrapping rules. In particular, TD(0)
update is a bootstrapping method since it uses the term)(11 ++ + ttt sVr γ which involves its own
approximation of the value of the next state to approximate)(tsV π . In addition, the gradient tg can be
approximated in different ways. For example, if we approximate)(tsV π by)(11 ++ + ttt sVr γ first then
calculate the gradient we get the residual gradient temporal difference, which in turn can be combined
with TD update in a weight averaged fashion to get the residual TD (Baird 1995).

3. TD and conjugate gradient function approximation

3.1 Conjugate gradient extension of TD
We turn our attention now for an extension of TD(λ) learning using function approximation. We will direct
the search for the optimal points of the error function)(2 sErt

 along the conjugate direction instead of the
gradient direction. By doing so an increase in the performance is expected. In fact, more precisely a
decrease of the number of steps to reach optimality is expected. This is especially true for cases where the
number of distinctive eigenvalues of the matrix H (matrix of second derivatives of the performance
function) is less than n the number of parameters θ


. To direct the search along the conjugate gradient

direction, p should be constructed as follows:

1−+−= tttt pgp  β (12)

0p is initiated to the gradient of the error (Hagan, Demuth et al. 1996; Nocedal and Wright 2006); 00 gp 
−= .

Rule (12) ensures that all tpt ∀
 are orthogonal to 11 −− −=∆ ttt ggg  . This can be realized by choosing the

scalar
tβ to satisfy the orthogonality condition:

11

1
1111 0)(00

−−

−
−−−− ∆

∆
=⇒=+−∆⇒=∆⇒=⋅∆

t
T
t

t
T
t

tttt
T
tt

T
ttt pg

ggpggpgpg 


 ββ (13)

In fact, the scalar
tβ can be chosen in different ways that should produce equivalent results for the

quadratic error functions (Hagan, Demuth et al. 1996), the most common choices are:

11

1)(

−−

−

∆
∆

=
t

T
t

t
T
tHS

t pg
gg




β (14),
11

)(

−−

=
t

T
t

t
T
tFR

t gg
gg




β (15),
11

1)(

−−

−∆
=

t
T
t

t
T
tPR

t gg
gg




β (16)

due to Hestenes and Steifel, Fletcher and Reeves, and Polak and Ribiere respectively.
From equation (4) the conjugate gradient rule (12) can be rewritten as follows:

[] 1)()()(2 −+∇⋅−= tttttttt psVsVsVp
t


 βθ

p (17)

By substituting in (3) we obtain the pure conjugate gradient general update rule:

[][]11)()()(2
2
1

−+ +∇−+= tttttttttt psVsVsV
t


 βαθθ θ

p (18)

3.2 Forward view of conjugate gradient TD
Similar to TD(λ) update rule (6), we can approximate the quantity)(tsV π by λ

tR , which does not
guarantee convergence, because it is not unbiased (for λ < 1), nevertheless it is more practical. Hence, we
get the theoretical forward view of TD-conj(λ); the TD(λ) conjugate gradient update rules:

Robot Visual Homing using Conjugate Gradient Temporal Difference Learning, Radial Basis Features and A Whole
Image Measure

5

[] 1)()(2 −+∇⋅−= tttttttt psVsVRp
t


 βθ

λ (19)

[] 



 +∇−+= −+ 11 2

1)()(tttttttttt psVsVR
t


 βαθθ θ

λ (20)

If the estimate)(11 ++ + ttt sVr γ is used to estimate)(tsV π (as in TD(0)), then we can obtain the TD-conj(0)
update rules; where rules (19) and (20) are estimated as:

1)(2 −+∇⋅= tttttt psVp
t


 βδ θ

 (21)





 +∇+= −+ 11 2

1)(tttttttt psV
t


 βδαθθ θ

 (22)

It should be noted again that those rules are not pure conjugate gradient but nevertheless we call them as
such since they are derived according to the conjugate gradient rules.

3.3 Equivalency of TD(λt≠0) and TD-conj(λ=0)
Theorem 1:
TD-conj(0) is equivalent to a special class of TD(tλ) that is denoted as TD()(conj

tλ), under the condition:

t
t

ttconj
t ∀≤=≤ − ;10 1)(

δ
δ

γ
βλ , regardless of the approximation used. The equivalency is denoted as TD-conj(0)

≡ TD()(conj
tλ), and the bound condition is called the equivalency condition.

Proof:
We will proof that TD-conj(0) is equivalent to a backward view of a certain class of TD(λt), denoted as
TD()(conj

tλ). Hence, by the virtue of the equivalency of the backward and forward views of all TD(λt) for the
off-line case, the theorem follows. For the on-line case the equivalency is restricted to the backward view of
TD()(conj

tλ).
The update rule (22) can be rewritten in the following form:









+∇+= −+ 11 2

)(t
t

t
tttttt psV

t




δ
βδαθθ θ

 (23)

where it is assumed that 0≠tδ because otherwise it means that we reached an equilibrium point for)(tt sV ,
meaning the rule has converged and there is no need to apply any learning rule any more. Now we
introduce the conjugate eligibility traces vector)(conj

te that is defined as follows:

t
t

conj
t pe 

δ2
1)(= (24)

By substituting (21) in (24) we have that

1
)(

2
)(−+∇= t

t

t
tt

conj
t psVe

t




δ
β

θ
 (25)

From (25) we proceed in two directions. First, by substituting (25) in (23) we obtain an update rule identical
to rule (11):

)(
1

conj
ttttt e


δαθθ +=+

 (26)
Second, from (24) we have that:

)(
111 2 conj

ttt ep −−− =
 δ (27)

Hence, by substituting (27) in (25) we obtain:
)(

1
1)()(conj

tt
t

t
tt

conj
t esVe

t −
−+∇=


 β

δ
δ

θ
 (28)

By conveniently defining:

t

t
t

conj
t δ

δβγλ 1)(−= (29)

we acquire an update rule for the conjugate eligibility traces)(conj
te that is similar to rule (8):

)()(
1

)()(
tt

conj
t

conj
t

conj
t sVee

tθ
γλ 


∇+= −

 (30)

Advances in Reinforcement Learning 6

Rules (26) and (30) are almost identical to rules (8) and (9) except that λ is variable in (29). Hence, they
show that TD-conj(0) method can be equivalent to a backward update of TD(λ) method with a variable λ.
In addition, rule (29) establishes a canonical way of varying λ; where we have:

t

ttconj
t δ

δ
γ
βλ 1)(−= (31)

The only restriction we have is that there is no immediate guarantee that]1,0[)(∈conj
tλ . Hence, the condition

for full equivalency is that)(conj
tλ satisfies:

10 1)(≤=≤ −

t

ttconj
t δ

δ
γ
βλ (32)

According to (31) and by substituting (14),(15) and(16) we obtain the following different ways of
calculating)(conj

tλ :

()
())(

1111

111)(1

)()(

)()()(

1

1

conj
t

T
tttttt

tt
T

ttttttconj
t esVsV

sVsVsV

tt

ttt

−−−−

−−−

−

−

∇⋅−∇⋅

∇∇⋅−∇⋅
= 





θθ

θθθ

δδγ

δδ
λ (33)

2

111

2

)(2

)(

)(

1 −−− −
∇

∇
=

ttt

ttttconj
t

sV

sV

t

t

θ

θ

γδ

δ
λ



 (34)

()
2

111

111)(3

)(

)()()(

1

1

−−−

−−−

−

−

∇

∇∇⋅−∇⋅
=

ttt

tt
T

ttttttconj
t

sV

sVsVsV

t

ttt

θ

θθθ

γδ

δδ
λ



 (35)

which proves our theorem .
There are few things to be realized from Theorem 1:

)(conj
tλ should be viewed as a more general form of λ which can magnify or shrink the trace according to

how much it has confidence in its estimation. TD with variable λ has not been studied before (Sutton and
Barto 1998), and)(conj

tλ gives for the first time a canonical way to vary λ depending on conjugate gradient
directions.
From (31) it can be realized that both

tδ and 1−tδ are involved in the calculations of the eligibility traces.
This means that the division cancels the direct effect of an error δ and leaves the relative rate-of-changes
between consequent steps of this error to play the big role in changing)(conj

tλ according to (31).

Since γ satisfies]1,0[∈γ and)(conj
tλ should satisfy that]1,0[)(∈conj

tλ , so as the term)(conj
tγλ should satisfy

10)(≤≤ conj
tγλ . Therefore, the (32) condition can be made more succinct:

10 1 ≤≤≤ − γ
δ
δβ

t

t
t

 (36)

The initial eligibility trace is:
)(2

2
1

2
1

000
0

0
0

)(
0 sVpe

t

conj
θδ

δδ



∇==)(00

)(
0 sVe

t

conj
θ



∇=⇒ (37)

From an application point of view, it suffices for)(conj
tλ value to be forced to this condition whenever its

value goes beyond 1 or less than 0:
0)0(,1)1()()()()(←⇒<←⇒> conj

t
conj

t
conj

t
conj

t ifif λλλλ (38)
If we approximated)(tt sV by a linear approximation

t
T

ttt sV φθ


=)(then:
ttt sV

t
φθ


 =∇)(,in this case we have

from (30) that:

t
conj

t
conj

t
conj

t ee φγλ


+= −
)(

1
)()((39)

λ can be defined by substituting
ttt sV

t
φθ


 =∇)(in (33), (34) and (35) respectively as follows:

()
()

()
2

11

11)(3
2

11

2

)(2

111

11)(1 ,,
−−

−−

−−−−−

−− −
==

−

−
=

tt

t
T

ttttconj
t

tt

ttconj
t

t
T

tttt

t
T

ttttconj
t

e φδ

φφδφδλ
φδ

φδ
λ

φδφδ

φφδφδλ 










 (40)

Robot Visual Homing using Conjugate Gradient Temporal Difference Learning, Radial Basis Features and A Whole
Image Measure

7

Any method that depends on TD updates such as Sarsa or Q-learning can take advantage of these new
findings and use the new update rules of TD-conj(0).This concludes our study of the properties of TD-
conj(0) method and we move next to the model.

4 The visual homing Sarsa-conj(0) model

For visual homing it is assumed that the image at each time step represents the current state, and the state
space S is the set of all images, or views, that can be taken for any location (with specific orientation) in the
environment. This complex state space has two problems. Firstly, each state is of high dimensionality, i.e. it
is represented by a large number of pixels. Secondly, the state space is huge, and a policy cannot be learned
directly for each state. Instead, a feature representation of the states is used to reduce the high-
dimensionality of the state space and to gain the advantages of coding that allows a parameterized
representation to be used for the value function (Stone, Sutton et al. 2005). In turn, parameterization
permits learning a general value function representation that can easily accommodate for new unvisited
states by generalization. Eventually, this helps to solve the second problem of having to deal with a huge
state space.
The feature representation can reduce the high-dimensionality problem simply by reducing the number of
components needed to represent the views. Hence, reducing dimensionality is normally carried out at the
cost of less distinctiveness for states belonging to a huge space. Therefore, the features representation of the
state space, when successful, strikes a good balance between distinctiveness of states and reduced
dimensionality. This assumption is of importance towards the realization of any RL model with a high-
dimensional states problem.

4.1 State representation and home information
One representation that maintains an acceptable level of distinctiveness and reduces the high-
dimensionality of images is the histogram. A histogram of an image is a vector of components, each of
which contains the number of pixels that belong to a certain range of intensity values. The significance of
histograms is that they map a large two-dimensional matrix to a smaller one-dimensional vector. This
effectively encodes the input state space into a coarser feature space. Therefore, if the RGB (Red, Green, and
Blue) representation of colour is used for an image the histogram of each colour channel is a vector of
components, each of which is the number of pixels that lie in the component's interval. The interval each
component represents is called the bin, and according to a pre-specified bin size of the range of the pixel
values, a pre-specified number of bins will be obtained.
A histogram does not preserve the distinctiveness of the image, i.e. two different images can have the same
histogram, especially when low granularity bin intervals are chosen. Nevertheless, histograms have been
found to be widely acceptable and useful in image processing and image retrieval applications (Rubner
and et al. 2000). Other representations exist, such as the one given by the Earth Mover's Distance (Rubner
and et al. 2000). However, such mapping is not necessary for the problem here since the model will be
dealing with a unified image dimension throughout its working life, because its images are captured by the
same robot camera.

Advances in Reinforcement Learning 8

Fig. 1. Sample of a three-view representation taken from three different angles for a goal location with their
associated histograms in a simulated environment.
The feature representation approach does not give a direct indication of the distance to the goal location.
Although the assumption that the goal location is always in the robot's field of view will not be made, by
comparing the current view with the goal view(s) the properties of distinctiveness, distance and orientation
can be embodied to an extent in the RL model. Since the home location can be approached from different
directions, the way it is represented should accommodate for those directions. Therefore, a home (or goal)
location is defined by m snapshots called the stored views. A few snapshots (normally 3≥m) of the home
location are taken at the start of the learning stage, each from the same fixed distance but from a different
angle. These snapshots define the home location and are the only information required to allow the agent
to learn to reach its home location starting from any arbitrary position in the environment (including those
from which it cannot see the home, i.e. the agent should be able to reach a hidden goal location). Fig. 1
shows a sample of a three-view representation of a goal location taken in a simulated environment.

4.2 Features vectors and radial basis representation
A histogram of each channel of the current view is taken and compared with those of the stored views
through a radial basis function (RBF) component. This provides the features space

nS ℜ→Φ : representation (41) which is used with the Sarsa-conj algorithm, described later:

() () ()()









 −
−= 2

2

ˆ2
),()(exp),(

i

jcvhcshjcs iti
ti s

φ (41)

Index t stands for the time step j for the jth stored view, and c is the index of the channel, where the RGB
representation of images is used. Accordingly,),(jcv is the channel c image of the jth stored view,

()),(jcvhi is histogram bin i of image),(jcv , and ())(csh ti is histogram bin i of channel c of the current
(t) view. The number of bins will have an effect on the structure and richness of this representation and
hence on the model. It should be noted that the radial basis feature extraction used here differs from the
radial basis feature extraction used in (Tsitsiklis and Van Roy 1996). The difference is in the extraction
process and not in the form. In their feature extraction, certain points is are normally chosen from the

input space nℜ to construct a linear combination of radial basis functions. Those points in that
representation are replaced in this work by the bins themselves.
Further, the variance of each bin will be substituted by a global average of the variances of those bins:

right

straight

left

Robot Visual Homing using Conjugate Gradient Temporal Difference Learning, Radial Basis Features and A Whole
Image Measure

9

∑
=

∆−=
T

t
i thTi

1

22)()11(σ̂ (42)

 () ()()22),()()(jcvhcshth itii −=∆ (43)

where T is the total number of time steps. To normalize the feature representation the scaled histogram
bins () Hcsh ti /)(are used, assuming that n is the number of features we have:

() () Hcshjcvh n

i ti
n

i i ==∑∑)(),((44)

where it can be realized that H is a constant and is equal to the number of all pixels taken for a view.
Hence, the final form of the feature calculation is:

() () ()()







 −
−= 22

2

ˆ2
),()(exp),(

σ
φ

H
jcvhcσhjcσ iti

ti (45)

It should be noted that this feature representation has the advantage of being in the interval [0 1], which
will be beneficial for the reasons discussed in the next section.
The feature vector of the current view (state) is a union of all of the features for each channel and each
stored view, as follows:

()),,,,(),()(1
1

3

11
niti

B

ic

m

j
t jcss φφφφ ==Φ ⊕⊕⊕

===

 (46)

where m is the number of stored views for the goal location, 3 channels are used, and B is the number of
bins to be considered. Since an RGB image with values in the range of [0 255] for each pixel will be used,
the dimension of the feature space is given by:

m
b

roundCmBCn ×+×=××=)1)256(((47)

where b is the bin’s size and 3=C is the number of channels. Different bin sizes give different

dimensions, which in turn give different numbers of parametersθ


that will be used to approximate the
value function.

4.3 NRB similarity measure and the termination condition
To measure the similarity between two images, the sum of all the Normalized Radial Basis (NRB) features
defined above can be taken and then divided by the feature dimension. The resultant quantity is scaled to 1
and it expresses the overall belief that the two images are identical:

() nssNRB n

i tit ∑=
=

1
)(φ (48)

For simplicity the notation)(tsNRB and tNRB will be used interchangeably. Other measures can be used
(Rubner and et al. 2000). In previous work the Jeffery divergence measure was used (Altahhan, Burn et al.
2008). However the above simpler measure was adopted because it is computationally more efficient for
the proposed model since it only requires an extra sum and a division operations. JDM has its own
logarithmic calculation which cost additional computations.

a

b

steps

NRB
values

Advances in Reinforcement Learning 10

Fig. 2. (a): Current view of agent camera. (b) the plotted values of the normalized radial bases similarity
measure of a sample π rotation.

Another benefit of NRB is that it is scaled to 1 – a uniform measure can be interpreted more intuitively. On
the other hand, it is impractical to scale Jeffery Divergence Measure because although the maximum is
known to be 0 there is no direct indication of the minimum. Figure 2 demonstrates the behaviour of NRB;
the robot was placed in front of a goal location and the view was stored. The robot then has been let to
rotate in its place from -90 ̊ (left) to +90 ̊ (right); in each time step the current view has been taken and
compared with the stored view and their NRB value was plotted. As expected the normal distribution
shape of those NRB values provide evidence for its suitability.
An episode describes the collective steps of an agent starting from any location and navigating in the
environment until it reaches the home location. The agent is assumed to finish an episode and be in the
home location (final state) if its similarity measure indicates with high certainty upperψ that its current

view is similar to one of the stored views. This specifies the episode termination condition of the model.
⇒≥ uppertsNRBIf ψ)(Terminate Episode

 Similarly, the agent is assumed to be in the neighbourhood of the home location with the desired
orientation

lowertsNRBIf ψ≥)(where lowerupper ψψ ≥ this situation is called home-at-perspective and the

interval],[lowerupper ψψ is called the home-at-perspective confidence interval.home-at-perspectivehome-at-

perspective

4.5 The action space
In order to avoid the complexity of dealing with a set of actions each with infinite resolution speed values
(which in effect turns into an infinite number of actions), the two differential wheel speeds of the agent are
assumed to be set to particular values, so that a set of three actions with fixed values is obtained. The set of
actions is A = [Left_Forward, Right_Forward, Go_Forward]. The acceleration of continuous action space
cannot be obtained using this limited set of actions. Nevertheless, by using actions with a small differential
speed (i.e. small thrust rotation angle) the model can still get the effect of continuous rotation by repeating
the same action as needed. This is done at the cost of more action steps.
A different set of actions than the limited one used here could be used to enhance the performance. For
example, another three actions [Left_Forward, Right_Forward, Go_Forward] with double the speed could
be added, although more training would be a normal requirement in this case. One can also add a layer to
generalize towards other actions by enforcing a Gaussian activation around the selected action and fade it
for other actions, as in (Lazaric, Restelli et al. 2007). In this work, however, the action set was kept to a
minimum to concentrate on the effect of other components of the model.

5.6 The reward function
The reward function r depends on which similarity or dissimilarity function was used, and it consists of
three parts:

ttNRB NRBNRBr +∆+= −1cost (49)
The main part is the cost, which is set to -1 for each step taken by the robot without reaching the home
location. The other two parts are to augment the reward signal to provide better performance. They are:
Approaching the goal reward. This is the maximum increase in similarity between the current step and the
previous step. This signal is called the differential similarity signal and it is defined as:

)(11 −− −=∆ ttt NRBNRBNRB (50)
The Position signal, which is simply expressed by the current similarity tNRB . Thus, as the current
location differs less from the home location, this reward will increase. Hence, the reward can be rewritten
in the following form:

12cost −−+= ttNRB NRBNRBr (51)

Robot Visual Homing using Conjugate Gradient Temporal Difference Learning, Radial Basis Features and A Whole
Image Measure

11

The two additional reward components above will be considered only if the similarity of t and t-1 steps are
both beyond the threshold lowerψ to ensure that home-at-perspective is satisfied in both steps. This
threshold is empirically determined, and is introduced merely to enhance the performance.

5.7 Variable eligibility traces and update rule for TD-conj(0)
An eligibility trace constitutes a mechanism for temporal credit assignment. It marks the memory
parameters associated with the action as being eligible for undergoing learning changes (Sutton and Barto
1998). For the visual homing application, the eligibility trace for the current action a is constructed from the
feature vectors encountered so far. More specifically, it is the discounted sum of the feature vectors of the
images that the robot has seen each time the same action a had been taken. The eligibility trace for other
actions which have not been taken while in the current state is simply its previous trace but discounted, i.e.
those actions are now less accredited, as demonstrated in the following equation.



 =+

←
−

−

otherwisea
aaifsa

a
t

ttt
t)(

)()(
)(

1

1

e
φe

e 




γλ
γλ

 (52)
λ is the discount rate for eligibility traces te and γ is the rewards discount rate . The eligibility trace
components do not comply with the unit interval i.e. each component can be more than 1. The reward
function also does not comply with the unit interval. The update rule that uses the eligibility trace and the
episodically changed learning rate epα is as follows:

ttteptt aaa δa ⋅⋅+←)()()(eθθ 
 (53)

As it was shown above and in (Altahhan 2008) the conjugate gradient TD-conj(0) method is translated

through an equivalency theorem into a TD(λ) method with variable λ denoted as TD()(conj
tλ) with the

condition that 10)(≤≤ conj
tλ . Therefore, to employ conjugate gradient TD, equation (52) can be applied

to obtain the eligibility traces for TD-conj. The only difference is that λ is varying according to one of the
following possible forms:

()
()

()
2

11

11)(3
2

11

2

)(2

)(
111

11)(1 or ,,
−−

−−

−−−−−

−− −
==

−

−
=

tt

t
T

ttttconj
t

tt

ttconj
tconj

t
T

tttt

t
T

ttttconj
t

e φγδ

φφδφδ
λ

φγδ

φδ
λ

φδφδγ

φφδφδ
λ 











 (54)

TD-conj(0) (and any algorithm that depends on it such as Sarsa-conj(0) (Altahhan 2008)) is a family of
algorithms, not because its λ is changed automatically from one step to the other, but because λ can be
varied using different types of formulae. Some of those formulae are outlined in (25) for linear function
approximation.

In addition, those values of)(conj
tλ that do not satisfy 10)(≤≤ conj

tλ , can be forced according to the
following:

 0)0(,1)1()()()()(←⇒<←⇒> conj
t

conj
t

conj
t

conj
t ifif λλλλ .

The eligibility traces can be written as:





 =+

←
−

−

otherwisea
aaifsa

a
conj

t
conj

t

tt
conj

t
conj

tconj
t)(

)()(
)(

)(
1

)(

)(
1

)(
)(

e
φe

e 




γλ

γλ (55)

For episodic tasks γ can be set to 1 (absence). Finally the update rule is identical to (52), where the
conjugate eligibility trace is used instead of the fixed λ eligibility trace:

tt
conj

teptt aaa δa ⋅⋅+←)()()()(eθθ 
 (56)

4.7 The policy used to generate actions
A combination of the ε-greedy policy and Gibbs soft-max (Sutton and Barto 1998) policy is used to pick up
an action and to strike a balance between exploration and exploitation.

))(,Pr())(,())(,(tititiGibbs sasaGibbssa ϕϕϕπε


+=+ (57)
Using ε-greedy probability allows exploration to be increased as needed by initially setting ε to a high
value then decreasing it through episodes.

Advances in Reinforcement Learning 12

[]









 ⋅=+−

=
otherwise

A

asφaif
A

sφa
i

T
t

i

t e

θee)()(maxarg1
))(,Pr(

)(




 (58)
The Gibbs soft-max probability given by equation (59) enforces the chances of picking the action with the
highest value when the differences between the values of it and the remaining actions are large, i.e. it helps
in increasing the chances of picking the action with the highest action-value function when the robot is sure
that this value is the right one.

[]
[]∑

=

⋅

⋅
= A

j
j

T
t

i
T

t
ti

asφ

asφsφaGibbs

1
)(

)(
)(

)()(exp

)()(exp))(,(
θ

θ





(59)

4.8 The learning method
The last model component to be discussed is the learning algorithm. The basis of the model learning
algorithm is the Sarsa(λ) control algorithm with linear function approximation (Sutton and Barto 1998).
However, this algorithm was adapted to use the TD-conj(0) instead of the TD(λ) update rules. Hence, it was
denoted as Sarsa-conj(0). From a theoretical point of view, TD-conj(0)– and any algorithm depending on its
update such as Sarsa-conj(0) – uses the conjugate gradient direction in conjunction with TD(0) update.
While, from an algorithm implementation point of view, according to the equivalency theorem, TD-conj(0)
and Sarsa-conj(0) have the same skeleton of TD(λ) and Sarsa(λ) (Sutton and Barto 1998) with the difference
that TD-conj(0) and Sarsa-conj(0) use the variable eligibility traces)(conj

tλ (Altahhan 2008). The benefit of
using TD-conj(0) update is to optimize the learning process (in terms of speed and performance) by
optimizing the depth of the credit assignment process according to the conjugate directions, purely
through automatically varying λ in each time step instead of assigning a fixed value to λ manually for the
duration of the learning process.
Sarsa is an on-policy bootstrapping algorithm that has the properties of (a) being suitable for control, (b)
providing function approximation capabilities to deal with huge state space, and (c) applying on-line
learning. These three properties are considered ideal for the visual robot homing (VRH) problem. The
ultimate goal for VRH is to control the robot to achieve the homing task, the state space is huge because of
the visual input, and on-line learning was chosen because of its higher practicality and usability in real
world situations than off-line learning.

Robot Visual Homing using Conjugate Gradient Temporal Difference Learning, Radial Basis Features and A Whole
Image Measure

13

Fig. 3. Linear dynamic-policy conjugate gradient Sarsa-conj(0) control, with RBF features extraction, linear
action-value function approximation and Policy Improvement. The approximate Q is implicitly a function
of θ


.)(conj

tλ can be assigned to any of the three forms calculated in the preceding step.

The action-value function was used to express the policy, i.e. this model uses a critic to induce the policy.
Actor-critic algorithms could be used, which have the advantage of simplicity, but the disadvantage of high
variance in the TD error (Konda and Tsitsiklis 2000). This can cause both high fluctuation in the values of
the TD error and divergence. This limitation was addressed in this model by carefully designing a suitable
scheme to balance exploration and exploitation according to a combination of Gibbs distribution and ε-
greedy policy. The Gibbs exponential distribution has some important properties which helped in realizing
the convergence. According to (Peters, Vijayakumar et al. 2005) it helps the TD error to lie in accordance
with the natural gradient.
In that sense this model is a hybrid model. Like any action-value model it uses the action-value function to
induce the policy, but not in a fixed way. It also changes the policy preferences (in each step or episode)
towards a more greedy policy like any actor-critic model. So it combines with and varies between action-
value and actor-critic models. It is felt that this hybrid structure has its own advantages and disadvantages,
and the convergence properties of such algorithms need to be studied further in the future.
TD-conj(0) learns on-line through interaction with software modules that feed it with the robot visual
sensors (whether from simulation or from a real robot). The algorithm coded as a controller returns the
chosen action to be taken by the robot, and updates its policy through updating its set of parameters used
to approximate the action-value function Q. Three linear networks are used to approximate the action-
value function for the three actions.

[]
()
()

()

odefinal_episepisode

s
n

aa
ssss

aaa

otherwisea
aaifsa

a

asasr

asπa
s,ra

asπa
ts

Aia

a
Aia

m
b

n

odefinal_episandmbinitialize
tionInitializa

upper

n

i
ti

tttt

tttt

tt
conj

teptt

conj
t

conj
t

tt
conj

t
conj

tconj
t

tt

t
T

ttttconj
t

tt

ttconj
t

t
T

tttt

t
T

ttttconj
t

t
T

tt
T

ttt

tt

ttt

i

i

==

<

←←
←←

⋅⋅+←





 =+

←

−
←←

−
−

←

⋅−⋅+←

←←

=←

←

=←

××←≈

∑
=

+−

−+

−

−

−−

−−

−−−−−

−−

+++

++

++

 until

)(1until

,
)()(),()(

)()()(

)(

)()(
)(

or ,,

)()()()(

).),((y probabilit of sampling using Generate
),(Observe,actionTake

episode)ofstepeach(forRepeat
)),((y probabilit of sampling using Generate

1 ,robot view Initial
:1)(

episodeeach for Repeat
2

:11)(

2563

,,

1

11

11

)(

)(
1

)(

)(
1

)(
)(

2
11

11)(3
2

11

2
)(2

111

11)(1

111

11

11

00

0

0

0

0

yf

dd

da

gl

gl

gd
ddl

gd

d
l

ddg
ddl

gd

φφφφ
eθθ

e
φe

e

φ
φφφ

φ
φ

eφφ
φφφ

θφθφ

φ
φ

φ

0e

θ


































Advances in Reinforcement Learning 14

Aia ia
n

ia
i

ia
i ,..1),,,,()()()()(

1)(== θθθ 

θ

.
The current image was passed through an RBF layer, which provides the feature vector

),,,,()(1 nits φφφ 


=φ . The robot was left to run through several episodes. After each episode the
learning rate was decreased, and the policy was improved further through general policy improvement
theorem (GPI). The overall algorithm is shown in Fig. 3.
The learning rate was the same used by (Boyan 1999)

episoden
n

ep +
+

⋅=
0

0
0

1αα

(60)

This rate starts with the same value as 0α then is reduced exponentially from episode to episode until the

final episode. 0n is a constant that specifies how quickly epα is reduced. It should be noted that the policy

is changing during the learning phase. The Sarsa algorithm evaluates the same policy that it generates the
samples from, i.e. it is an on-policy algorithm. It uses the same assumption of the general policy
improvement principle to anticipate that even when the policy is being changed (improved towards a more
greedy policy) the process should lead to convergence to optimal policy. It moves all the way from being
arbitrarily stochastic to becoming only ε-greedy stochastic.

5 Experimental results

The model was applied using a simulated Khepera (Floreano and Mondada 1998) robot in Webots™
(Michel 2004) simulation software. The real Khepera is a miniature robot, 70 mm in diameter and 30 mm in
height, and is provided with 8 infra-red sensors for reactive behaviour, as well as a colour camera
extension.

Fig. 4. A snapshot of the realistic simulated environment.
A (1.15 m x 1 m) simulated environment has been used as a test bed for our model. The task is to learn to
navigate from any location in the environment to a home location (without using any specific object or
landmark). For training, the robot always starts from the same location, where it cannot see the target
location, and the end state is the target location. After learning the robot can be placed in any part of the
environment and can find the home location.
Fig. 4 shows the environment used. The home is assumed to be in front of the television set. A cone and
ball of different colours are included to enrich and add more texture to the home location. It should be re-
emphasized that no object recognition techniques were used, only the whole image measure. This allows

Target locations Khepera robot in its starting location

Robot Visual Homing using Conjugate Gradient Temporal Difference Learning, Radial Basis Features and A Whole
Image Measure

15

the model to be applied to any environment with no constraints and with minimal prior information about
the home. The controller was developed using a combination of C++ code and Matlab Engine code.
The robot starts by taking three (m=3) snapshots for the goal location. It then undergoes a specific number
(EP) of episodes that are collectively called a run-set or simply a run. In each episode the robot starts from a
specific location and is left to navigate until it reaches the home location. The robot starts with a random
policy, and should finish a run set with an optimised learned policy.

5.1 Practical settings of the model parameters
Table 1 summarises the various constants and parameters used in the Sarsa-conj(0) algorithm and their
values/initial values and updates. Each run lasts for 500 episodes (EP=500), and the findings are averaged
over 10 runs to insure validity of the results. The feature space parameters were chosen to be b=3, m=3.
Hence, 7743)1)3/256((3 =×+×= roundn . This middle value for b, which gives a medium feature
size (and hence medium learning parameters dimension), together with the relatively small number of
stored views (m=3), were chosen mainly to demonstrate and compare the different algorithms on average
model settings. However, different setting could have been chosen.
The initial learning rate was set to () () () () 6

0 10210001500111 −×=×≈×= nEPα in accordance with the
features size and the number of episodes. This is to divide the learning between all features and all
episodes to allow for good generalization and stochastic variations. The learning rate was decreased further
from one episode to another, equation (60), to facilitate learning and to prevent divergence of the policy
parameters θ


(Tsitsiklis and Van Roy 1997) (especially due to the fact that the policy itself is changing).

Although factor)(conj
tλ in TD-conj(0) is a counterpart of fixed λ in conventional TD(λ), in contrast with λ it

varies from one step to another to achieve better results. The discount constant was set to 1=γ , i.e. the
rewards sum does not need to be discounted through time because it is bounded, given that the task ends
after reaching the final state at time T.

lowerupper ψψ , are determined empirically and were set to 0.96 and 0.94 respectively when using the NRB

measure and b=m=3. These setting simply indicate that to terminate the episode the agent should be ≥
96% sure (using the NRB similarity measure) that its current view corresponds with one (or more) of the
stored views to assume that it has reached the home location. Furthermore, they indicate that the agent
should be ≥ 94% sure that its current view is similar to the stored views to assume that it is in the home-at-
perspective region.

Symbol Value Description
EP 500 Number of episodes in each run
α0)1()1(102 6

0 nEP ×≈×= −α Initial learning rate

αep () ()()epEPnEPnep +×+×= 000 1αα Episode learning rate

n0 EP%75 Start episode for decreasing αep

0ε 0.5 Initial exploration rate

epe () ()()epEPnEPnep +×+×= 000 1ee Episodic exploration rate

n0ε EP%50 Start episode for decreasing εep
γ 1 The reward discount factor
m 3 Number of snapshots of the home
b 3 Features histograms bin size

Table 1. The Model different parameters, their values and their description.

5.2 Convergence results
Fig 5. shows the learning plots for the TD-conj(0)≡ TD(conj

tλ) where the conj
tλ

1 was used. Convergence is
evident by the exponential shape of all of the plots. In particular the cumulative rewards converged to an
acceptable value. The steps plot resonates with the rewards plot, i.e. the agent attains gradually good
performance in terms of cumulative rewards and steps-per-episode. The cumulative changes made to the
policy parameters have also a regular exponential shape, which suggests the minimization of required
learning from one episode to another. It should be noted that although the learning rate is decreased

Advances in Reinforcement Learning 16

through episodes, if the model were not converging then more learning could have occurred in later
episodes, which would deform the shape of the changes in the policy parameters plot.
λ can take any value in the [0 , 1] interval. It has been shown by (Sutton and Barto 1998) that the best
performance for TD(λ) is expected to be when λ has a high value close to 1, such as 0.8 or 0.9 depending on
the problem. λ=1 is not a good candidate as it approximates Monte Carlo methods and has noticeably
inferior performance than smaller values (Sutton and Barto 1998). It should also be noted that the whole
point of the suggested TD-conj(0) method is to optimize and automate the selection of λ in each step to
allow TD to perform better and avoid trying different values for λ.

Fig. 5. TD()(1 conj

tλ) algorithm’s performance (a) The cumulative rewards. (b) The number of steps. (c): The
cumulative changes of the learning parameters.
Fig. 6. shows that the learning rate decreased per episode. The exploration factor rate was decreased using
a similar method. The overall actual exploration versus exploitation percentage is shown in Fig. 6(c). The
Temporal error for a sample episode is shown in Fig. 6(d). Fig. 6(e) shows the trace decay factor)(1 conj

tλ for

the same sample episode. It can be seen that for)(1 conj
tλ , most of the values are above 0.5. As has been

stated in the Equivalency Theorem, there is no guarantee that)(conj
tλ satisfies the condition 10)(≤≤ conj

tλ .

Nevertheless, for most of the values this form of)(conj
tλ does satisfy this condition. For those values that

did not, it is sufficient to apply the following rule on them:
0)0(,1)1()()()()(←⇒<←⇒> conj

t
conj

t
conj

t
conj

t ifif λλλλ (61)
It should be noted that better performance could have been achieved by the following rule:

0)0(,1)1()()()()(←⇒<−←⇒> conj
t

conj
t

conj
t

conj
t ifif λλξλλ (62)

However, using this rule would mean that the results shown for TD()(conj
tλ) might have been affected by

the higher performance expected for TD update when)(conj
tλ is close (but not equal) to 1. This is because

for one single update at some time step t TD(λ) and TD()(conj
tλ) are identical for the same)(conj

tλ value. It

b

a

c

Robot Visual Homing using Conjugate Gradient Temporal Difference Learning, Radial Basis Features and A Whole
Image Measure

17

is the collective variation from one TD(λ) update to another at each time step that makes TD()(conj
tλ)

different from TD(λ). Therefore, better performance could have been achieved by following rule (62).

Hence the performance of TD()(conj
tλ) could be questionable and shaken when this rule is used. Few values

did not satisfy the Equivalency Theorem condition - the percentage was 0.0058% for TD()(1 conj
tλ). To show

the path taken by the robot in each episode the Global Positioning System (GPS) was used to register the
robot positions but not to aid the homing process whatsoever. Fig. 7. shows the evident improvements that
took place during the different learning
stages.

Fig. 6. TD()(1 conj

tλ)internal variables (a): The learning rate. (b): the exploration factor rate. (c): the overall
exploration versus exploitation. (d)): the temporal error for a sample episode. (e): the trace decay factor

)(conj
tλ

5.3 Action space and setting exploitation versus exploration
Since action space is finite, and to avoid fluctuation and overshoot in the robot behaviour, low wheel
speeds were adopted for these actions. This in turn required setting the exploration to a relatively high rate
(almost 50%) during the early episodes. It was then dropped gradually through episodes, in order to make
sure that most of the potential paths were sufficiently visited. Setting exploration high also helps to
decrease the number of episodes needed before reaching an acceptable performance. This explains the
exponential appearance of the different learning curves.

The features variance also played a role in the exploration/exploitation rates. This was because 0
2σ̂ was

initialized in the first episode with)(2 imσ , the variance of the goal location snapshots, then it was updated
in subsequent episodes until it was stable. This encourages the agent to explore the environment more in
the first episode than any other, which results in big differences between the first and the rest of the
episodes. Therefore, it should be noted that all of the episodic figures have been plotted excluding the first
episode, to prevent the graphs from being unnecessarily mis-scaled.

b

a

c

e

d

Advances in Reinforcement Learning 18

Fig. 7. TD()(1 conj

tλ) algorithm performance for the homing problem (a, b, c): GPS plots for early, middle and
last episodes, they show the trajectory improvement that took place during learning. (d): the timing plot of
the 10 run sets (trials).

6 TD()(conj

tλ) and TD(λ) comparisons study

6.1 Rewards comparison
Fig. 8. shows the fitted curves for the rewards plots of the different TD(λ) and TD()(conj

tλ) algorithms. It
summarizes the experiments conducted on the model and its various algorithms in terms of the gained
rewards. The model uses Sarsa(λ), and Sarsa()(conj

tλ), algorithms with a dynamic-policy. It should be
recalled that the only difference between the two algorithms is that one uses TD(λ) update and the other
uses TD()(conj

tλ) update. Therefore, the comparisons highlight the differences between TD(λ) and TD-conj(0)
updates, and the collective study highlights the dynamic-policy algorithm behaviour.
Several interesting points can be realized in this figure: The three TD()(conj

tλ) algorithms climb quicker and

earlier (50-150 episodes) than the five TD(λ) algorithms then: TD()(1 conj
tλ) and TD()(2 conj

tλ) keeps a steady
performance to finally dominate the rest of the algorithms.
While, although the fastest (during the first 150 episodes), TD()(3 conj

tλ) deteriorates after that. TD(λ)
algorithms performances varied but they were slower and in general performed worse than TD-conj(0)
algorithms: TD(0.4) climbed quickly and its performances declined slightly at the late episodes (after 350
episodes). TD(0) did the same but was slower. TD(0.95, 0.8) climbed slowly but kept a steady improvement

until they came exactly under TD()(1 conj
tλ) and TD()(2 conj

tλ). TD(0.9) performed slightly better than TD-

conj(0) at a middle stage (150-350), then it declined after that. TD(0.9) was similar to TD()(3 conj
tλ) although

it was slower at the rise and the fall.

b

a

c

d

Robot Visual Homing using Conjugate Gradient Temporal Difference Learning, Radial Basis Features and A Whole
Image Measure

19

Fig. 8. Overall comparisons of different TD(λ) methods for λ = 0, 0.4, 0.8 and TD()(conj

tλ) for)(1 conj
tλ)(2 conj

tλ

and)(3 conj
tλ using the fitted returns curves for 10 runs each with 500 episodes.

Therefore, for the fastest but short term performance TD()(3 conj
tλ) is a good candidate. For a slower and

good performance on the middle run TD(0.9) might still be a good choice. For a slower and long term
performance TD(0.8) and TD(0.95) is a good choice.

For both the fastest and best overall performance in the long term TD()(1 conj
tλ) and TD()(2 conj

tλ) are the
best choices. Nevertheless, those findings are guidelines and even for the tackled problem they do not tell
the whole story. As will be shown in the following section, other performance measure can further give a
better picture about those algorithms.
6.2 Comparisons beyond the rewards
¶(6pt)

Fig. 9. summarizes different comparisons between the different algorithms using averages of different
performance measures for the same run sets mentioned in the previous section.

¶(14pt)
6.2.1 The figure structure
The set of algorithms that uses TD(λ) updates is shown in blue dots (connected), while the set of the new
proposed TD-conj(0) is shown in red squares (not connected). Each measure has been demonstrated in an
independent plot.
The horizontal axes were chosen to be the λ value for TD(λ), while for TD-conj(0) there is no specific value
for λ as it is varying from one step to another (therefore disconnected). However, for the purpose of

comparing TD()(1 conj
tλ) , TD()(2 conj

tλ) and TD()(3 conj
tλ) algorithms, their measures were chosen to be

located above (correlate with) TD(0.8), TD(0.9) and TD(0.95) respectively. The arrow to the left of each plot
refers to the direction of good performance.
The figure is divided horizontally into two collections; one that is concerned with the during-learning
measures and contains six plots distributed along two rows and three columns. The other collection is
concerned with the after-learning measures and contains three plots that are distributed over one row.
The first row of the during-learning collection contains measures that are RL related such as the rewards
and the parameters changes. The second row of the first collection is associated with the problem under
consideration, i.e. the homing task. For testing purposes, the optimal route of the homing task can be
designated in the studied environment. The difference between the current position and the desired
position can be used to calculate the root mean squared error (RMS) of each time step, which are then
summed to form the RMS for each episode, and those in turn can be summed to form the run set RMS. Two
different performance measures were proposed using the GPS; their results are included in the second row

R
ep

Advances in Reinforcement Learning 20

of the figure. The first depends on the angular difference between the current orientation and the desired
orientation and is called the angular RMS. The second depends on the difference between the current step
movement vector and the desired movement vector, and is called vectorial RMS (Altahhan 2008). All of
these measures was taken during learning (performing 500 episodes) hence the name. All of the during-
learning measures in this figure were averaged over 10 run sets each with 500 episodes.

Robot Visual Homing using Conjugate Gradient Temporal Difference Learning, Radial Basis Features and A Whole Image Measure

21

Fig. 9. Overall comparisons of different TD(λ) methods for λ = 0, 0.4, 0.8, 0.9, 0.95 and TD()(conj

tλ) for)(1 conj
tλ ,)(2 conj

tλ and)(3 conj
tλ based on Table 6.2; each row

is presented as a plot. The arrows refer to the direction of better performance.

a b c

f

i
h

e

d

g

D
ur

in
g

-le
ar

ni
ng

A

fte
r-

le
ar

ni
ng

Advances in Reinforcement Learning

22

The second collection are measures that have been taken after the agent finished the 500 (learning episodes) ×10 (run
sets); where it was left to go through 100 episodes without any learning. In those episodes the two policy
components (Gibbs and ε-greedy) were restricted to an ε-greedy component only and the policy parameters
used are the averaged parameters of all of the previous 10 run sets (performed during-learning). The Gibbs
component was added initially to allow the agent to explore the second best guess more often than the
third guess (action). Nevertheless, keeping this component after learning would increase the arbitrariness
and exploration of the policy which is not desired anymore therefore it was removed.
The three measures in the after-learning collection are related to the number of steps needed to complete
the task. The steps average measures the average number of steps needed by the agent to complete the task.
Another two scales measures the rate of successes of achieving the task within a pre-specified number of
steps (175 and 185 steps1).

¶(14pt)
6.2.2 The algorithms assessment
To assess the performance of the algorithms TD(λ) algorithms will be analyzed first then the focus is moved
to TD-conj(0). Apparently, when the blue dots are examined in the first row, it can be seen that (a and b)
appears to have a theme for TD(λ); the number of steps and the accumulated rewards both have a soft
peak. The best TD(λ) algorithm is TD(0.9). This suggests that the peak of TD(λ) for the particular studied
homing task is near that value. During-learning TD(0.9) could collect the most rewards in the least number
of steps, however it caused more changes than the rest (except for TD(0.95)).

When the red squares are examined in the first row of plots it can be seen that TD()(1 conj
tλ) and

TD()(2 conj
tλ) performed best in terms of the gained rewards (as was already pointed out in the previous

subsection). What is more, they incurred less changes than any other algorithm which is an important
advantage over other algorithms.

6.2.3 Calculations efficiency and depth of the blame
There are some interesting points to note when examining the changes in the policy parameters. Mean Δθ
appears to have a theme for TD(λ); the changes to θ increase with λ. When the Mean Δθ is compared for the

best two algorithms (during learning) TD()(1 conj
tλ) and TD(λ=0.9), it can be seen that TD()(1 conj

tλ) caused

less changes to the learning parameters but still outperformed TD(λ=0.9). TD()(1 conj
tλ) avoids the

unnecessary changes for the policy parameters and hence avoids fluctuations of performance during
learning. It only performed the necessary changes. On the other hand TD(λ=0.9) always ‘blames’ the
previous states trace equally for all steps (because λ is fixed) and maximally (because λ=0.9 has a high

value). TD()(1 conj
tλ) gets the right balance between deep and shallow blame (credit) assignment by varying

the deepness of the trace of states to be blamed and incurs changes according to the conjugate gradient of
the TD error.

6.2.4 Time efficiency
The execution time Mean(Time) provides even more information than Mean Δθ. Both TD()(1 conj

tλ) and

TD(λ=0.9) have almost identical execution times, although the execution time for TD()(1 conj
tλ) was initially

anticipated to be more than any TD(λ) because of the extra time for calculating)(conj
tλ . This means that

with no extra time cost or overhead TD()(1 conj
tλ) achieved the best performance, which are considered to

be important results.

TD()(2 conj
tλ) performed next best, after TD()(1 conj

tλ), according to the Mean(RT) and Mean(T) performance
measures, but not in terms of policy parameters changes or execution time; for those, TD(λ=0.9) still

1 These two numbers were around the least number of steps that could be realized by the agent without highly
restricting its path, they were empirically specified.

Robot Visual Homing using Conjugate Gradient Temporal Difference Learning, Radial Basis Features and A Whole
Image Measure

23

performed better. This means that this form of)(2 conj
tλ achieved better performance than λ=0.9, but at the

cost of extra changes to the policy parameters, and incurred extra time overhead for doing so.

6.2.5 Quickest learner and RMS
When the RMS errors in the second row are examined TD()(3 conj

tλ) comes to the scene as the best TD-
conj(0) algorithm as it has the least errors. Further, when examining the after-learning collection it can be

seen that TD()(3 conj
tλ) also performed best. This comes surprising as it should be TD()(1 conj

tλ) TD()(2 conj
tλ)

who are expected to get all the acclaim. On the other hand when the RMS for TD(λ) are examined it can be
realized that in terms of the problem errors TD(0.4) performed best since its errors are the least of all the
studied TD(λ) algorithms. Further, when examining the after-learning collection it can be seen that TD(0.4)
also performed best. This comes equally surprising as it should be TD(0.9) who is expected to get all the
praise.
The reason for both situations can be deduced from Fig. 8. the fastest two algorithms in terms of gaining

the most rewards in the early episodes are TD(0.4) and TD()(3 conj
tλ). Both algorithms got the best results

after-learning because even though their performances have deteriorated after the first 150 episodes of the
during-learning, however significant amount of learning takes place during this early stage because the
learning rate is reduced quickly according to equation (59). It can be seen that TD(0.4) (the light green line)

was the fastest out of all the TD(λ) algorithms and that TD()(3 conj
tλ) was also the fastest in terms of gaining

the most rewards in the early stages. Both scored the best in the after-learning because they learned very
quickly and because most of the learning takes place in the early stages in the proposed model. Still why
these algorithms have deteriorated after that stage? This is because exploration was higher than these
algorithms could keep up with. Compared to the intricate learning that these algorithms achieved in a
short time the high exploration caused a noisy learning which in turn deteriorated the algorithms
performance in the later episodes without very much affecting what they have already gained in the early
episodes. This can be added to the dis/advantages of those algorithms. So the mid range decay traces are
more subtle to explorative action which might distort their learning. As for who is better TD(0.4) or

TD()(3 conj
tλ), it is apparent form the angular error RMS(ω) and the after learning measures that

TD()(3 conj
tλ) is the best.

6.2.6 ε-Greedy divergence
ε-greedy divergence is a divergence that occurs after learning when the agent changes from the decreasing
ε-greedy-Gibbs policy to a fixed ε-greedy policy. It has occurred sometimes especially when the agent had
to switch from the reinforcement learning behaviour to the reactive behaviour near the walls and obstacles.

For example the TD(λ=0.9) and TD()(2 conj
tλ) diverged in this way. Also using the walls more is the likely

cause that made the RMS(w) of TD(0.95) to beat the RMS(w) of TD(0.4).

6.2.7. Recapitulation

So Who Wins? It can be construed that TD()(1 conj
tλ) outperformed all of the described algorithms during

learning, while TD()(3 conj
tλ) outperformed all of the described algorithms after learning. TD()(1 conj

tλ) and

TD()(2 conj
tλ) suite more a gradual learning process while TD()(3 conj

tλ) suits quick and more aggressive

learning process. TD()(1 conj
tλ) might still be preferred over the other updates because it preformed

collectively best in all of the proposed measures (during and after learning). This demonstrates that using

the historically oldest form of conjugate factor β to calculate)(1 conj
tλ , proposed by Hestenes and Steifel, has

performed the best of the three proposed TD(conj
tλ) algorithms. The likely reason is that this form of

)(conj
tλ uses the preceding eligibility trace in its denominator, equation (40), not only the current and

previous gradients.

Advances in Reinforcement Learning

24

The TD-conj methods has the important advantage over TD(λ) of automatically setting the learning

variable)(conj
tλ equivalent to λ in TD(λ), without the need to manually try different λ values. This is the

most important contribution of this new method which has been verified by the experimental comparisons.
TD-conj gives a canonical way of automatically setting λ to the value which yields the best overall
performance.

7. Conclusions and future work
In this chapter a new family of RL methods, TD-conj(λ), has been established by using the conjugate
gradient direction instead of the gradient direction in the conventional TD(λ). More importantly, TD-conj(0)

was proved to be equivalent to TD(conj
tλ) when both are used with function approximation. conj

tλ is a
variable λ that establishes a way of automatically deepening or shallowing the blame trace in each time
step to maximize the algorithm’s performance. It is hoped that this finding would be of benefit to boost
future/existing algorithms that use TD(λ) update because it requires minimal additional implementation
and experiments suggest that it costs little or no overhead. A comprehensive comparison study was
conducted on both families of algorithms through various measures that uncover the strengths and
weaknesses of them for a homing task.

 TD(conj
tλ) and the conventional TD(λ) families of algorithms were utilized to learn a homing task in the

context of a novel robot visual homing model. The proposed homing model has a straightforward and
effective learning procedure without a need to build a map for the environment explicitly. No human
intervention is required, no pre- or manual processing is required, and no a priori knowledge about the
environment is needed (landmarks etc), with the added advantage of solving the robot abduction problem
instantly. The only required information is in the form of m stored views of the home that could be fed to
the robot independently of the learning process.
A number of enhancements are planned for the future. Although setting up a suitable
exploration/exploitation was automated in the model and required only the specification of 0ε and

0ε
n

prior to execution, finding the best balance between these parameters needs more examination. Also
increasing/decreasing the robot speed proportional to the increase/decrease in the reward is another
enhancement that is worth looking at. Finally, reducing the number of the learning parameters by reducing
the sparsity of the feature space (feature selection) is another issue that is being investigated.

8. References

Altahhan, A. (2008). Conjugate Gradient Temporal Difference Learning for Visual Robot Homing. Faculty

of Computing and Engineering. Sunderland, University of Sunderland. Ph.D.: 206.
Altahhan, A., K. Burn, et al. (2008). Visual Robot Homing using Sarsa(λ), Whole Image Measure, and Radial

Basis Function. International Joint Conference on Neural Networks (IJCNN), Hong Kong.
Anderson, A. M. (1977). "A model for landmark learning in the honey-bee." Journal of Comparative

Physiology A 114: 335-355.
Argyros, A. A., K. E. Bekris, et al. (2001). Robot Homing based on Corner Tracking in a Sequence of

Panoramic Images. 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR'01)

Arkin, R. C. (1998). Behavior-Based Robotics, MIT Press.
Asadpour, M. and R. Siegwart (2004). "Compact Q-learning optimized for micro-robots with processing

and memory constraints." Robotics and Autonomous Systems, Science Direct, Elsevier.
Baird, L. C. (1995). Residual Algorithms: Reinforcement Learning with Function Approximation.

International Conference on Machine Learning, proceedings of the Twelfth International
Conference, San Francisco, CA, Morgan Kaufman Publishers.

Bhatnagar, S., R. S. Sutton, et al. (2007). Incremental Natural Actor-Critic Algorithms. Neural Information
Processing Systems (NIPS19).

Boyan, J. A. (1999). Least-squares temporal difference learning Proceedings of the Sixteenth International
Conference on Machine Learning San Francisco, CA Morgan Kaufmann.

Cartwright, B. A. and T. S. Collett (1987). "Landmark maps for honeybees." Biological Cybernetics 57: 85-93.

Robot Visual Homing using Conjugate Gradient Temporal Difference Learning, Radial Basis Features and A Whole
Image Measure

25

Falas, T. and A.-G. Stafylopatis (2001). Temporal differences learning with the conjugate gradient
algorithm. Neural Networks, 2001. Proceedings. IJCNN '01. International Joint Conference on,
Washington, DC, USA.

Falas, T. and A.-G. Stafylopatis (2002). Temporal differences learning with the scaled conjugate gradient
algorithm. Neural Information Processing ICONIP 2002.

Floreano, D. and F. Mondada (1998). Hardware solutions for evolutionary robotics. First European
Workshop on Evolutionary Robotics, Berlin, Springer-Verlag.

Gillner, S., A. M. Weiß, et al. (2008). "Visual homing in the absence of feature-based landmark information."
Cognition 109(1): 105-122.

Hagan, M. T., H. B. Demuth, et al. (1996). Neural Network Design, PWS Publishing Company.
Kaelbling, L. P., M. L. Littman, et al. (1998). "Planning and acting in partially observable stochastic

domains." Artificial Intelligence 101: 99–134.
Konda, V. and J. Tsitsiklis (2000). Actor-critic algorithms. . NIPS 12.
Lazaric, A., M. Restelli, et al. (2007). Reinforcement Learning in Continuous Action Spaces through

Sequential Monte Carlo Methods. NIPPS 2007.
Michel, O. (2004). "Webots: Professional Mobile Robot Simulation." International Journal of Advanced

Robotic Systems 1: 39-42.
Murphy, R. R. (2000). Introduction to AI Robotics. Cambridge, Massachusetts., The MIT Press.
Muse, D., C. Weber, et al. (2006). "Robot docking based on omnidirectional vision and reinforcement

learning." Knowledge-Based Systems, Science Direct, Elsevier 19(5): 324-332
Nehmzow, U. (2000). Mobile robotics: A Practical Introduction, Springer-Verlag.
Nocedal, J. and S. J. Wright (2006). Numerical Optimization. New York, Springer.
Peters, J., S. Vijayakumar, et al. (2005). "Natural Actor-Critic." Proceedings of the Sixteenth European

Conference on Machine Learning: 280–291.
Rubner, Y. and et al. (2000). "The Earth Mover's Distance as a Metric for Image Retrieval." International

Journal of Computer Vision 40(2): 99-121.
Schoknecht, R. and A. Merke (2003). "TD(0) Converges Provably Faster than the Residual Gradient

Algorithm." Machine Learning 20(2): 680-687.
Sheynikhovich, D., R. Chavarriaga, et al. (2005). Spatial Representation and Navigation in a Bio-inspired

Robot. Biomimetic Neural Learning for Intelligent Robots. S. Wermter, M. Elshaw and G. Palm,
Springer: 245-265.

Simmons, R. and S. Koenig (1995). Probabilistic Robot Navigation in Partially Observable Environments.
Proc .of the International Joint Conference on Artificial Intelligence. .

Stone, P., R. S. Sutton, et al. (2005). "Reinforcement learning for robocup soccer keepaway." International
Society for Adaptive Behavior 13(3): 165–188.

Sutton, R. S. (1988). "Learning to predict by the methods of temporal differences." Machine Learning 3: 9–
44.

Sutton, R. S. and A. Barto (1998). Reinforcement Learning, an introduction. Cambridge, Massachusetts, MIT
Press.

Szenher, M. (2005). Visual Homing with Learned Goal Distance Information. Proceedings of the 3rd
International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE
2005), Awara-Spa, Fukui, Japan, Springer.

Thrun, S. (2000.). Probabilistic Algorithms in Robotics, CMU-CS-00-126. .
Thrun, S., W. Burgard, et al. (2005). Probabilistic Robotics. Cambridge, Massachusetts; London, England,

The MIT Press.
Thrun, S., Y. Liu, et al. (2004). "Simultaneous localization and mapping with sparse extended information

filters." International Journal of Robotics Research 23(7-8): 693–716.
Tomatis, N., I. Nourbakhsh, et al. (2001). Combining Topological and Metric: a Natural Integration for

Simultaneous Localization and Map Building. Proc. Of the Fourth European Workshop on
Advanced Mobile Robots (Eurobot 2001).

Tsitsiklis, J. N. and B. Van Roy (1996). "Feature-based methods for large scale dynamic programming. ."
Machine Learning 22: 59-49.

Tsitsiklis, J. N. and B. Van Roy (1997). "An analysis of temporal-difference learning with function
approximation." IEEE Transactions on Automatic Control 42(5): 674–690.

Ulrich, I. and I. Nourbakhsh (2000). Appearance-Based Place Recognition for Topological Localization IEEE
International Conference on Robotics and Automation San Francisco, CA.

Vardy, A. (2006). Long-Range Visual Homing. IEEE International Conference on Robotics and Biomimetics,
2006. ROBIO '06., Kunming.

Advances in Reinforcement Learning

26

Vardy, A. and R. Moller (2005). "Biologically plausible visual homing methods based on optical flow
techniques." Connection Science 17(1–2): 47–89.

Vardy, A. and F. Oppacher (2005). A scale invariant local image descriptor for visual homing. Biomimetic
neural learning for intelligent robots. . G. Palm and S. Wermter, Springer.

Weber, C., D. Muse, et al. (2006). "A camera-direction dependent visual-motor coordinate transformation
for a visually guided neural robot." Knowledge-Based Systems, Science Direct, Elsevier 19: 348–
355.

Weber, C., S. Wermter, et al. (2004). "Robot docking with neural vision and reinforcement." Knowledge-
Based Systems, Science Direct, Elsevier 17(2-4): 165-172.

Weber, K., S. Venkatesh, et al. (1999). "Insect-inspired robotic homing." Adaptive Behavior 7(1): 65-97.
Zhang, C., S. Abdallah, et al. (2008). Efficient multi-agent reinforcement learning through automated

supervision. International Conference on Autonomous Agents Estoril, Portugal.
Ziv, O. and N. Shimkin (2005). Multigrid Methods for Policy Evaluation and Reinforcement Learning. IEEE

International Symposium on Intelligent Control, Limassol.

