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Abstract: Malnutrition is common in haemodialysis (HD) and is linked to poor outcomes. This study
aimed to describe changes in body composition after the initiation of HD and investigate whether
any routinely collected parameters were associated with these changes. The study cohort came from
the HD population of a single centre between 2009 and 2014. Body composition measurements were
obtained from a database of bioimpedance results using the Body Composition Monitor (BCM), while
demographics and laboratory values came from the renal unit database. Primary outcomes were
changes in normohydration weight, lean tissue mass and adipose tissue mass over the two years after
HD initiation. A total of 299 patients were included in the primary analyses, showing an increase
in adipose tissue, loss of lean tissue and no significant change in normohydration weight. None of
the routinely collected parameters were associated with the lean tissue changes. Loss of lean tissue
over the first year of dialysis was associated with increased mortality. The results showing loss of
lean tissue that is not limited to those traditionally assumed to be at high risk supports interventions
to maintain or improve lean tissue as soon as possible after the initiation of HD. It highlights the
importance of monitoring nutrition and the potential for routine use of bioimpedance.
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1. Introduction

Malnutrition is common in haemodialysis (HD) patients—reports suggest anywhere between
30% and 70% of patients are affected [1,2]—and it is strongly associated with mortality, inferior quality
of life, hospitalisation rates and morbidity [3–5].

Losses of lean and adipose tissue are inherently linked to many common assessments of
malnutrition—such as anthropometric measurements and malnutrition scoring tools that monitor
changes in weight—and indirectly with other parameters used for assessment, such as albumin. In HD
patients it is well established that lean tissue loss is independently associated with poor outcomes [6],
but the effect of changes in fat mass is more complicated. There is good epidemiological evidence that
body mass index (BMI) is associated with survival in HD patients across all BMI classifications, leading
to the so called ‘obesity paradox’ whereby high BMI, typically seen as a risk factor, offers a survival
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benefit [7]. However, BMI is a measure of body size rather than fat mass and attempts to isolate the
potential survival benefit of increased fat mass have shown mixed result [8,9]. It has been suggested
that increased abdominal fat is associated with mortality [10] and there are well described deleterious
effects associated with increased fat mass, such as insulin resistance, inflammation, dyslipidemia,
atherosclerosis and coronary calcification [11].

Numerous routinely collected parameters have been linked to nutritional changes in HD.
Malnourished patients identified both by subjective global assessment (SGA) and bioimpedance
analysis were shown to have elevated C-reactive protein (CRP) compared to well-nourished
peers [12,13]. There is evidence that under-dialysis is related to poor nutritional state [14]. However the
hemodialysis (HEMO) study showed higher dialysis dose did not prevent deterioration of nutritional
state when compared to the dose required to achieve dialysis adequacy standards [15], suggesting
that the effect of dialysis dose on nutritional state may plateau. The presence of insulin resistance and
increased co-morbidities in diabetic patients is associated with muscle wasting, but there is contrasting
evidence about whether the prevalence of malnutrition is truly higher in diabetic as compared to
non-diabetic HD patients [13,16,17]. As in the general population, it has been shown that fat mass
increases and muscle mass decreases with age in HD patients [18]. Acidosis and abnormalities of
insulin and insulin growth factor I (IGF-I) metabolism also contribute to muscle wasting [19]. One large
study, based on the Monitoring Dialysis Outcomes Initiative (MONDO) global database [20], has
looked at changes in body composition after dialysis initiation using bioimpedance and found that sex,
age, diabetes and initial body composition were all significant predictors [21].

The large range in the prevalence of malnutrition in HD patients from the literature is
in part due to the number and diversity of measurements used to characterise the condition.
These include: malnutrition scoring tools (such as SGA); volumetric measurements of muscle mass
(dual X-ray absorptiometry (DEXA), computed tomography (CT) or magnetic resonance imaging
(MRI)); biomarkers (albumin), anthropometric measurements (% weight loss or BMI) and bioimpedance
measurements of body composition. To date, there are no universally recommended methods for body
composition assessment in haemodialysis patients.

Bioimpedance is an attractive option. It is cheap, quick, non-invasive and able to distinguish fat
and lean tissue. The technique measures the impedance of the body to a small applied electric current
and uses the impedance data, together with an appropriate model to generate parameters including
total body water, intra- and extra-cellular fluid volumes, fat mass and fat free mass (FFM) [22].
Traditional models used to generate FFM estimates are based on an assumption of constant FFM
hydration at 73%, meaning that in states of altered hydration such as HD, the models are invalid.
In light of this, a model has been developed specifically to enable bioimpedance measurements in
renal patients with altered hydration. Chamney et al. proposed a 3-compartment model in which
the excess fluid in a patient was considered as a separate compartment, alongside lean tissue and
adipose tissue [23]. This introduced the concept of normohydration weight as the weight of the body
when lean and adipose tissue compartments have normal fractions of intracellular fluid (ICF) and
extracellular fluid (ECF) and also overhydration (OH), which is the fluid volume above or below that
of a normohydrated subject, for positive and negative values respectively. The model is based on
an assumption that, in health, lean tissue and adipose tissue compartments are normally hydrated
and they have fixed proportions of ICF and ECF across all individuals. On this basis, measurement
of ECF and ICF can be used with body weight and height to quantify normally-hydrated lean tissue
mass, normally-hydrated adipose tissue mass and OH (for model details see Appendix A). This model
theoretically allows measurements over a wide range of body composition and fluid status, as long as
the assumption about constant fractions of ECF and ICF in the lean and adipose tissue compartments
is valid. Measurements of the different components of the model using bioimpedance have been
validated against gold standard measurements [24].

Bioimpedance is increasingly being used as part of regular fluid management and has the potential
to be incorporated into nutritional management. This audit utilised bioimpedance measurements to
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investigate whether patients experience significant changes in body composition over the two years
after dialysis initiation and, if so, whether any routinely collected parameters or characteristics were
associated with these changes.

2. Materials and Methods

The Body Composition Monitor (BCM; Fresenius Medical Care, Bad Homburg, Germany)
uses multi-frequency bioimpedance spectroscopy to measure resistance and reactance at
50 frequencies, which are used to estimate fluid volumes and in turn lean tissue, adipose tissue,
normohydration-weight and overhydration. The renal service of the Leeds Teaching Hospitals NHS
Trust, which comprises two hospital—one with inpatient services—and six satellite dialysis units
covering much of West Yorkshire introduced body composition monitoring using the BCM in 2009.
BCM measurements are used primarily for determination of normohydration-weight of HD patients
when setting or reviewing target weights and are saved using the Fluid Management Tool (FMT)
software (Fresenius Medical Care, Bad Homburg, Germany). Referrals for measurement are on
indication and they are made both pre- and post-dialysis, with post-dialysis measurements being made
after sufficient time for redistribution of fluid [25]. This has resulted in the collection of longitudinal
data showing changes in lean tissue, adipose tissue and normohydration-weight.

All patients who had more than one bioimpedance result within the two years after dialysis
initiation were considered for inclusion in this investigation. The Fluid Management Tool database was
interrogated to obtain normohydration-weight, lean tissue and adipose tissue for each measurement.
The only exclusion criteria was for measurements made hand-to-hand, rather than the standard
hand-to-foot approach, which is usually done for patients with amputated or inaccessible feet or
heavily localised oedema. BCM measurements are carried out by trained staff and made in duplicate
to verify consistency. All results were based on data collected as part of routine care and extracted
from FMT anonymously; as such no ethical approval was required for the study.

There are a great many variables associated with malnutrition in HD, however this study was
designed particularly to investigate if any routinely collected variables were associated with measured
changes in body composition in HD patients. The variables included in the model, based on previous
literature and clinical judgement, were age, initial weight (at HD initiation), gender, ethnicity, diabetes,
comorbidity burden, chronic acidosis, chronic inflammation and chronic hyperparathyroidism.
Patients were classified as having high comorbidity burden if they scored positive for two or more of
the comorbidities recorded on the renal unit database (angina, previous myocardial infarction, coronary
artery bypass graft, heart failure, smoker, chronic obstructive pulmonary disease, cerebrovascular
disease, diabetes mellitus, malignancy, liver disease, claudication, ischemic/neuropathic ulcers,
angioplasty, peripheral vascular disease amputation). Acidosis was indicated by serum bicarbonate
below the normal range (22 mmol/L), inflammation was indicated by a serum C-reactive protein (CRP)
above normal range (10 mg/L) and hyperparathyroidism was indicated by a serum parathyroid
hormone (PTH) greater than 32 pmol/L. A patient was considered as having chronic acidosis,
inflammation or hyperparathyroidism where more than half of the routine monthly blood tests
over the first two years of dialysis indicated a particular condition.

Subject characteristics were described using mean (standard deviation) or proportions as
appropriate. The primary analysis was to describe changes in lean tissue, adipose tissue and
normohydration-weight over time using linear mixed-effects models to account for repeated BCM
measures on individuals. Subject was taken as the random effect, with time and all the variables
associated with malnutrition included as fixed effects. The models were examined with plots of
standardised residuals against fitted values to check the assumption of homoscedasticity and Q-Q
plots of the residuals to assess normality.

Secondary analysis investigated the effect of lean tissue change in the first year of treatment on
survival using a Cox-regression model. This analysis was based on a subset of the cohort who had a
BCM measurement in the first 3 months after dialysis initiation and again in a window at 9–15 months
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after dialysis initiation (see Figure 1). Lean tissue change over the first year of HD was defined as
the difference between BCM results in these two time periods. Where more than one measurement
was available in any given time period, the results closest to HD initiation and 12 months after HD
initiation were chosen. Data was censored for end of follow up, transplantation or transferring to
another renal centre. Confounding factors were taken as age, chronic acidosis, chronic inflammation,
chronic hyperparathyroidism, comorbidity burden and initial weight. The statistical software package
‘R’ version 3.0.2 (R Foundation for Statistical Computing, Vienna, Austria) was used for all analyses.
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Figure 1. Timeline of data included in primary and secondary analyses. Primary analysis defining
body composition changes used data from any patient with more than one Body Composition Monitor
(BCM) measurement in the first 2 years of haemodialysis (HD). For secondary analysis of survival,
data for calculating the change in lean tissue over the first year of HD, ∆lean tissue came from discrete
periods. LTM1 is the lean tissue mass from the first BCM measurement in the period 0–3 months.
LTM2 is the lean tissue mass for the BCM measurement closest to the anniversary of HD initiation,
within the 9–15 months window.

3. Results

3.1. Subjects

During the study period, 929 patients started HD within the renal service. Of these, 299 subjects
had more than one eligible BCM measurement in the first two years after HD initiation and for these
subjects there were a total of 1924 BCM measurements that were included in the regression model.
Of these 299 patients, 129 patients had measurements both in the first 3 months of dialysis and again
in a window from 9 to 15 months for survival analyses, and this cohort was largely representative of
the whole group (Tables 1 and 2).

Table 1. Characteristics of those patients involved in the analysis.

Variable Whole Group Survival Analysis Group

N 299 129
Age (years) 63 (15) 62 (15)

Gender (% male) 62 60
Ethnicity (% white) 77 76

Diabetes (%) 42 43
High comorbidity burden (%) 44 45

Chronic acidosis (%) 45 41
Chronic inflammation (%) 47 40

Chronic hyperparathyroidism (%) 28 67
eKt/v greater than 1.2 (%) 73 71

Continuous variables are mean values (standard deviation) and categorical values are percentages, unless
stated otherwise.
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Table 2. Characteristics of those patients involved in the primary analysis (whole group) and secondary
analysis (survival group).

Variable Whole Group
(Baseline)

Survival Analysis
(Baseline)

Survival Analysis
(1 Year)

Normohydration weight (kg) 75 (20) 76 (21) 78 (20)
Lean tissue mass (kg) 34 (12) 33 (11) 31 (10)

Adipose tissue mass (kg) 42 (19) 44 (20) 48 (20)

Variables are mean values (standard deviation).

3.2. Body Composition Changes

The results from the regression models can be seen in Table 3. Over the first two years of
haemodialysis, patients typically lost about 0.9 kg of lean tissue and gained about 0.7 kg in adipose
tissue, resulting in no significant change in normohydration weight. None of the covariables were
significantly associated with any of the body composition compartments, other than patients with
lower initial weight tending to gain more adipose tissue than those of higher initial weight.

Mean follow up time for the Cox proportional hazards model was 3 years and 4 months and there
were 36 deaths during this period. Multivariate analysis suggested that for every 1 kg gain in lean
tissue during the first year of dialysis, there is a 7% reduction in mortality (Table 4). Increasing age
and chronic acidosis were also associated with mortality. Univariate analysis showed similar results,
although the change in lean tissue was not statistically significant, which is likely to be related to the
well-established association between loss of lean tissue and ageing.

Table 3. Mixed results regression model for the change in body composition over the first two years
of HD.

Variable
Lean Tissue Adipose Tissue Normohydration Weight

Value (kg) 95% CI Value (kg) 95% CI Value (kg) 95% CI

Time (years) −0.85 * −1.1 to −0.60 0.65 * 0.32 to 0.98 0.15 −0.11 to 0.41
Age −0.01 −0.04 to 0.03 0.02 −0.06 to 0.03 −0.03 −0.06 to 0.01

Sex (male) −0.56 −1.2 to 0.03 0.37 −0.40 to 1.1 −0.15 −0.76 to 0.47
Ethnicity (White) 0.35 −0.75 to 1.5 0.03 −1.4 to 1.5 0.19 −0.91 to 1.3
Chronic acidosis 0.05 −0.71 to 0.81 0.18 −0.83 to 1.2 0.10 −0.68 to 0.87

Chronic inflammation −0.34 −1.1 to 0.37 0.44 −0.50 to 1.4 0.27 −0.46 to 1.0
Chronic hyperparathyroidism −0.02 −0.82 to 0.78 −0.37 −2.2 to 0.50 −0.24 −1.1 to 0.58

Diabetes 0.28 −0.73 to 1.3 −0.98 −2.3 to 0.37 −0.53 −1.6 to 0.48
High comorbidity burden 0.17 −0.86 to 1.2 −0.49 −1.9 to 0.88 −0.15 −1.2 to 0.87

Initial weight (kg) 0.02 −0.01 to 0.04 −0.05 * −0.08 to −0.02 −0.03 * −0.06 to −0.01

* indicates p < 0.05.

Table 4. Cox proportional hazards model to assess the association between some routinely collected
parameters linked to malnutrition and risk of death, presenting hazard ratios (HR), 95% confidence
intervals (CI) and p-values (p).

Coefficient
Unadjusted Adjusted

HR 95% CI p HR 95% CI p

∆lean tissue (kg) 0.95 0.90–1.01 0.08 0.93 0.88–0.98 0.01
Age (years) 1.04 1.01–1.08 0.01 1.04 1.01–1.07 0.02

Chronic acidosis 2.3 1.2–4.7 0.02 2.6 1.9–5.5 0.02
Chronic inflammation 1.8 0.92–3.7 0.08 1.9 0.87–4.1 0.1

Chronic hyperparathyroidism 1.2 0.58–2.4 0.7 1.4 0.66–2.9 0.38
High comorbidity burden 1.3 0.63–2.5 0.5 1.9 0.86–4.1 0.12

Initial weight 1.0 0.98–1.01 0.7 0.99 0.97–1.0 0.3

A total of 128 patients were included in the analysis and there were 36 deaths during follow up and the mean
(standard deviation) time between measurements was 305 (50) days.
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4. Discussion

These results showed a tendency for patients to lose lean tissue and gain adipose tissue over
the first two years of HD, resulting in no change to normohydration-weight. Furthermore, there is a
suggestion that these changes in body composition occur across the whole HD population.

Despite known associations between body composition changes and outcomes in HD patients,
there are relatively few robust longitudinal studies characterising body composition changes around
HD initiation. Use of the MONDO database provided a large dataset of BCM measurements which
demonstrated similar changes in body composition to our findings here [21]. Although the choice
of predictor variables considered were somewhat different from this study, analysis suggested that
female gender, diabetic status and low baseline fat were associated with increases in fat tissue and that
diabetes, male gender, high baseline lean tissue and low baseline fat were associated with reductions
in lean tissue. The differences with the results presented here could be explained by the relatively
small size of our study in comparison and the chance of it being underpowered. John et al. used CT
measurements of muscle cross sectional area around HD initiation which also showed similar trends
as this data [26]. Interestingly, this study showed that pre-dialysis patients exhibited an even greater
rate of muscle loss and that dialysis initiation actually reduced the rate of muscle loss. Other studies
were unable to measure notable changes in body composition over 12 months on HD [27,28], but these
studies were based on small patient numbers and used a measure of body composition—dual energy
X-ray absorptiometry—which is unable to differentiate excess fluid from lean tissue.

These results suggested that the tendency for loss of lean tissue was not confined to patients from
any perceived group at risk but was present across the whole population, which has been demonstrated
previously with the particular variables from this study [13,26]. There was an association between
initial weight and loss of adipose tissue and normally hydrated weight, but this finding could be
related to the ‘regression toward the mean’ phenomena or the fact that those of lowest initial weight
who lost lean tissue may be less likely to survive and be included in the analysis than those of higher
initial weight who lost lean tissue.

The loss of lean tissue as measured by BCM was shown to be associated with mortality, with
a 1 kg loss in lean tissue being associated with a 7% reduction in mortality. These results must be
viewed with caution as the retrospective nature of the study meant the model was not powered.
The inclusion of 7 covariates with only 36 events would generally indicate the potential for over-fitting,
although computer modelling has suggested that models with greater than 5 events per covariate are
not particularly susceptible to problems [29].

These results support efforts towards monitoring and interventions aimed at preserving lean
tissue. Exercise training has been shown to improve muscle mass and function in HD patients [30]
and there is growing interest in the provision of appropriate exercise programmes, but the difficulties
and barriers to uptake need to be further explored. Bioimpedance is potentially well suited for routine
regular monitoring of HD patients, but care must be made when selecting which bioimpedance
parameters to use. Previous applications of bioimpedance in this field have used phase angle [27] and
lean body mass measured by bioimpedance analysis [31], both of which are confounded by altered
fluid status. The parameters from the BCM are independent of fluid status and the high within-subject
precision of the test [32] makes the BCM ideal for longitudinal tracking of body composition in
clinical practice.

There were some limitations to this study. This was a single centre study and the retrospective
nature limited the number of patients that could be included, leading to a relatively small sample size
and the possibility that some of the outcomes were not adequately powered. It would also have been
interesting to have been able to confirm the changes in body composition using other measurements
of nutritional status, such as anthropometric measures or malnutrition scoring tools, but these were
not available.
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5. Conclusions

This study has shown that marked changes in body composition occur in the first two years
after HD initiation and these are not confined to elderly, co-morbid patients and those traditionally
considered most at risk of wasting. Nutritional monitoring and interventions should be applied across
the HD population and this should occur as soon as possible after the initiation of treatment.
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Appendix A. Technical Basis and Validation of the BCM Model

The body composition model employed by the BCM [24] is designed specifically to account for
the presence of altered fluid status in HD patients. It is centred on the assumption that in health, lean
tissue and adipose tissue compartments are normally hydrated and the proportion of ICF and ECF in
each compartment does not differ between individuals. On this basis, it is relatively straightforward to
show that simply by measuring ECF and ICF and knowing body weight and height, simultaneous
equations can allow the quantification of normally-hydrated lean tissue mass, normally-hydrated
adipose tissue mass and OH [23].

The values for these fractions were determined experimentally. Simultaneous measurements
of dual energy X-ray absorptiometry (DEXA) body fat, ECF with bromide dilution and TBW with
deuterium dilution (allowing an estimate of ICF by subtraction of ECF) were made. Percentage body
fat was plotted against ECF and ICF and a regression line allowed an estimation of the fractional ECF
and ICF at the hypothetical states of 0% and 100% body fat—i.e., the percentage ECF and ICF for lean
and adipose tissue (see Figure A1).
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The model is commonly used with bioimpedance assessments of ECF and ICF for measuring
normo-hydration weight and OH in particular, but also for lean and adipose tissue. There are a
number of studies that have attempted to validate the measurements [24,32], but, for normo-hydration
weight and OH, this is very difficult as no gold-standard exists. There is a growing body of evidence
supporting a link between measurements of OH using this model and outcomes [33–35] which further
supports the clinical validity of the values from the model. However, it must be acknowledged that all
measurement techniques have their limitations and even the criteria methods used in the development
of this model have a certain degree of uncertainty which will feed into that of the model. This should
be considered for each application of the model.
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