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Abstract—Principal Component Analysis (PCA) has been 

successfully used for many application including ear recognition. 

However, its performance is limited due to its significant data 

dependency. This paper presents a two dimensional multi-band 

PCA (2D-MBPCA) method, which has shown a significantly 

higher performance to that of the PCA. The proposed method 

divided the input gray image into a number of images, based on 

the intensity of its pixels using either a dynamic or predefined 

equal rang thresholds’ values. PCA is then applied on the 

resulting set of images to extract their features. The resulting 

features are used to find the best match. The application of the 

proposed 2D-MBPCA for ear recognition using two benchmark 

ear image datasets, shows the merit of the proposed technique to 

that of the standard PCA. 

Keywords—PCA, ear recognition, histogram equalization.  

I. INTRODUCTION 

Ear recognition is a field in biometrics wherein images of 
the ears are used to identify individuals. Ears are unique to an 
individual, so much so that identical twins can have 
differentiable ears [1]. Much research has been done in the last 
two decades regarding ear recognition concerning both the 
feature extraction and comparison of features of ear images [2-
6]. Principal Component Analysis (PCA) has been used 
extensively in ear recognition for both feature extraction [2-4] 
and feature reduction to reduce dimensionality of the data [5-
6]. Over the last two decades, researchers have proposed 
different methods to improve the performance of PCA on 
feature extraction. They showed that the extended PCA 
methods could improve overall performance over the standard 
PCA, in terms of computation costs, dimensionality reduction, 
memory usage and performance [9-11] (extended PCA based 
method are reviewed in Section II). However, in author’s 
knowledge, no extension of PCA method for single image 
feature extraction have been reported in the literature. This has 
inspired us to propose our two dimensional multi-band PCA 
(2D-MBPCA) for ear recognition approach. 

This paper presents a two dimensional multi-band PCA 
(2D-MBPCA) method for ear recognition. The proposed 
technique splits the input image into a number of images with 
different gray level pixel values. Two methods are investigated 

for dividing the input image pixels into different images. In the 
first method, the full gray scale equally is divided between the 
target numbers of the images. In the second approach, an 
iterative divide and test approach based on the hill climbing 
optimization method is used to divide the input image pixels 
into the target images. The proposed algorithm then applies the 
standard PCA method on the resulting set of images, extracting 
their principal components as their features. These features are 
used for ear recognition. Experimental results on the images of 
two benchmark ear image datasets demonstrates that the 
proposed 2D-MBPCA technique greatly outperforms PCA 
based matching algorithm on the original images. The rest of 
the paper is organized as follows: Section II gives a brief 
background of the ear recognition problem and current 
solutions, Section III introduces the proposed technique, 
Section IV describes the experimental results, and Section V 
concludes the paper. 

II. BACKGROUND 

A. Ear Recognition 

Much research has been conducted in the field of ear 
recognition [2-6]. Ear recognition techniques can be classified 
into several categories, including holistic and hybrid methods. 
Principal Component Analysis (PCA) and other related 
methods are examples of holistic techniques. These techniques 
extract some features from the ear image and use it as a basis 
for recognition. The first use of PCA for biometrics was 
reported by Turk and Pentland in [7] and demonstrated the use 
of PCA on images of faces to perform facial recognition in a 
technique called “eigenfaces”. This process uses a training set 
to calculate the eigenvectors that span the “eigenface” space 
and then project facial images into that space. The resulting 
projections are then compared using nearest neighbor critoria. 
Victor, Bowyer, and Sarkar [2] later applied this method to ear 
and face images. They reported that facial recognition gives 
higher accuracy matching than that of the ear recognition, 
however, ears still demonstrates merit. A similar experiment 
was later conducted by Chang, Bowyer, Sarkar, and Victor [3] 
on both face and ear images. They concluded that the 
difference in accuracy between ear and facial image 
recognition is not statistically significant, however both are  
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Fig. 1. Two dimensional multi-band PCA (2D-MBPCA) method Pipeline. 

useful biometrics. PCA in conjunction with other techniques 
has also been used for ear recognition. Nosrati, Faez, and 
Faradji were used the application of the PCA on 2D wavelet 
coefficients of the ear images for ear recognition in [8]. They 
applied PCA on the summation of wavelet high-frequency 
subbands’ coefficients and used the resulting eigenvectors for 
matching. They reported superior performance to those of the 
PCA and ICA methods. 

B. Application of PCA for Hyperspectral Image Processing 

Hyperspectral images are images that are taken across 
multiple bands within the electromagnetic spectrum. The set of 
images captured by hyperspectral sensors can considered as a 
data cube with coordinates (x, y, λ), where x and y correspond 
to 2D positions and λ is the individual wavelength for a given 
slice. PCA and other dimensionality reduction techniques have 
been extensively investigated for feature extraction from 
hyperspectral images [9-11]. Harsanyi and Chang introduced a 
technique for hyperspectral image classification and 
dimensionality reduction in [9]. They solved the eigenvector 
problem in a similar manner to PCA, while simultaneously 
allowing for classification during feature reduction. Various 
extensions of PCA for hyperspectral images have also been 
reported in the literature [10-11]. Jia and Richards proposed the 
Segmented-PCA for hyperspectral image classification in [10]. 
Their technique divides the input hyperspectral images into a 
number of groups based on the correlations amongst the 
images. The PCA is then applied individually on images within 
each bands. The extracted features are finally used for image 
classification. Zabalza et al. in [11] proposed a Folded-PCA 
method for hyperspectral image classification. In Folded-PCA 
each spectral vector is transformed into a matrix, based on 
which, a partial covariance matrix can be directly determined 
and then accumulated for Eigen decomposition and data 
projection. They showed that the performance of the Folded-
PCA is a function of the number of the groups used to split the 
spectral in it, as it affects how much additional information can 
be extracted for added-value to the conventional PCA. Results 
show that Folded-PCA outperforms conventional PCA and 
segmented-PCA, with respect to classification accuracy. 

III. PROPOSED 2D MULTIBAND PCA TECHNIQUE 

Let E be the set of all ear images where each image in E is 
of size x × y. Each image e ϵ E is subjected to four steps: A) 
Image pre-processing, B) Multiple-image generation, C) PCA, 
and D) Image matching. The overall process is illustrated in 
Fig. 1.  

A. Image Pre-processing 

The images in E are pre-processed as follows: First, map 
the pixel intensities so they lie in the range of [0,1]. The 

resulting images are then subject to histogram equalization to 
increase their contrast. Histogram equalization is performed 
through the following steps: 

• Calculate the Probability Mass Function (PMF) of 
the image from its histogram 

• Use the PMF to calculate the Cumulative 
Distribution Function (CDF) 

• Map each pixel’s intensity to a new gray level 
value using the CDF 

After histogram equalization, each of the image in E is 
ready to be converted into multiple images. 

B. Multiple-Image Generation 

Let N be the number of partitions desired for the image e 
and let b = [b1, b2, …, bN-1] be the division along which to split 
e into. Then the image e is split into multiple images as 
follows:  

• Generate N images of size x × y, called F = [f1, f2, …, 
fN] with all pixel values equal to zero. 

• For each pixel p of intensity [0, b1) in e, assign the same 
pixel value to its respective pixel in image f1. 

• Repeat the process for [b2, b3), [b3, b4), …[bN-1,1] for 
image f2, …, fN.. 

The result is that each image e is now a collection of images F. 
Each F can be considered to be a sort of a hyperspectral image, 
where each f ϵ F captures its own intensity band. An 
illustration of this process is presented in Fig. 2, and an 
example of a F image is shown in Fig. 3. 

 

 

Fig. 2. The Multiple Image Generation Process 

 

Fig. 3. An equalized image (left) is binned into four images (right) 

 



C. Principal Component Analysis (PCA) 

For each image f ϵ F, a mean adjusted image f’ can be 
created as follows: 

 f’ = f – fM (1) 

where fM is the mean value of all of the pixels in f. If each 
image f’ is converted to a column wise vector of length (x×y), 
the bin-set of e can be represented as a matrix B of size (x×y) × 
N. PCA is performed using Singular Value Decomposition 
(SVD) on B to create the following decomposition: 

 B = UΣVT (2)   

where U is of size (x×y) × (x×y), Σ is of size (x×y) × N-1, 
and VT is of size N-1 × N-1. The columns of V are then the 
orthonormal eigenvectors of the covariance matrix of B and Σ 
is a diagonal matrix of the eigenvalues of the covariance matrix 
of B. The eigenvectors form a basis for an eigenspace for each 
image. The components in V are then used for matching.  

D. Image Matching 

Let U = u1, u2…, uN-1 be the set of principal components of 
some query image q. Let r be an image in the dataset of images 
R with principal components V = v1, v2, …vN-1. The set of 
Euclidean distances D = d1, d2,…, dN-1 between q and r is then 
shown in equation 3: 

 dn = (sum(un – vn)2)1/2 (3) 

After the distances dn are calculated, they are averaged into 
a singular distance metric. This singular distance S between q 
and r is then written in equation 4: 

 S = sum(D) / (N – 1) (4)   

 The best match for q in the dataset R is the image for 
which S is minimized. 

IV. EXPERIMENTAL RESULTS 

This investigation uses two benchmark image datasets: The 
Indian Institute of Technology Delhi II (IITD II) dataset [12] 
and the University of Science and Technology Beijing II 
(USTB II) dataset [13]. IITD II dataset consists of 793 images 
of the right ear of 221 participants. Each participant was 
photographed between three and six times, with each image 
being of size 180 × 50 pixels and in 8-bit grayscale. For 
consistency, only the first three images for any individuals are 
used in this research. The USTB II dataset consists of 308 
images of the right ear of 77 participants, each of whom were 
photographed four times. Unlike IITD II, the images in USTB 
II are not tightly cropped. The first image for each participant 
in this dataset is a frontal image under standard illumination 
condition, the second and the third images are rotated by +30 
and -30 degrees respectively, and the fourth image is taken 
under weak illumination. Examples of images of multiple 

subjects from both the IITD II and the USTB II datasets can be 
seen in Fig. 4.  

Three separate experiments were conducted. The first 
experiment was used to generate a baseline for comparison, the 
second experiment determined the number of images to be 
generated and number of the principal components used, and 
the last experiment was an attempt at dynamically choosing the 
number of bins and bin size. All experiments were conducted 
as follows:  

• Select the first image of each subject to act as a 
query set; let the rest of the images serve as a 
dataset for that image. 

• Perform the 2D Multiband PCA Technique on 
both the query set and dataset images as described 
in Section III. 

• For each query image, if it is correctly matched 
with a dataset’s image, mark it as a Top-1 image. 
Similarly, if it is correctly matched with one of the 
closest five images, mark it as a Top-5 image. 

• The percentage of Top-1 and Top-5 images of the 
dataset are the Top-1 and Top-5 accuracies. 

• Repeat this process for the second, third, and in 
the case of USTB II, fourth images for each 
individual. Average the Top-1 and Top-5 
accuracies across all trials. 

 

 

Fig. 4. (a) Samples from the IITD II dataset [11]. (b) Samples from the  
USTB II dataset [12]. 

 



TABLE I.  BASELINE COMPARISON OF PCA 

Dataset 

Used 

Type of Match 

Top-1 Top-5 

IITD II 36.35% 52.94% 

USTB II 17.21% 34.09% 

A. Experiment to Generate a Baseline 

To create a baseline, PCA was applied to each image 
individually. The resulting eigenvectors were then compared as 
discussed above. The results for both the IITD II and USTB II 
datasets are presented in Table I. It can be seen that IITD II’s 
baseline is higher than USTB II’s. This is likely due to the 
rotations present in the USTB dataset, making it more 
challenging.  

B. Experiment to Determine the Number of Bins and 

Principal Components 

The proposed method was applied to both datasets using 
two to 10 partitions. For a set of trials using N partitions, the 
size of each partition was defined as 1/N, corresponding to an 
intensity band between zero and one. In this experiment, the 
number of principal components was varied between one and 
N-1. The number of correct matches was calculated for each 
combination of partition count and principal component count. 
A subset of the results for both the IITD II and USTB II 
datasets are presented in Tables II through V, with the most 
accurate trial in bold. The matching accuracy produced this 
method increased as the number of partitions increased to a 
point, but then decreased. For brevity, only the results up to 
and including the maximum accuracy are included in the 
presented tables. 

Results show that the proposed method greatly outperforms 
the baseline on both the IITD II and USTB II datasets. 
Furthermore, and an increased number of features used for a 
given number of bins is correlated with a higher accuracy. The 
IITD II dataset required fewer partitions to achieve its best 
accuracy than the USTB II dataset. This is likely due to the 
increased complexity of the USTB II dataset and the fact that 
the IITD II dataset is tightly cropped, while the USTB II 
dataset is not.  

TABLE II.  TOP-1 ACCURACY FOR THE IITD II DATASET 

Number of 

Bins 

Number of Principal Components 

1 2 3 4 

2 89.29% - - - 

3 88.69% 92.61% - - 

4 86.27% 90.80% 91.86% - 

5 84.31% 88.69% 90.95% 92.76% 

 

TABLE III.  TOP-5 ACCURACY FOR THE IITD II DATASET 

Number of 

Bins 

Number of Principal Components 

1 2 3 4 

2 95.02% - - - 

3 94.57% 96.68% - - 

4 94.12% 95.32% 97.13% - 

5 92.76% 95.32% 96.23% 96.98% 

TABLE IV.  TOP-1 ACCURACY FOR THE USTB II DATASET 

Number 

of Bins 

Number of Principal Components 

1 2 3 4 5 6 

2 30.84% - - - - - 

3 32.14% 39.29% - - - - 

4 33.44% 42.21% 48.05% - - - 

5 35.39% 42.86% 46.10% 49.68% - - 

6 37.34% 44.48% 47.40% 51.30% 53.57% - 

7 35.06% 39.61% 45.45% 47.40% 49.68% 53.90% 

TABLE V.  TOP-5 ACCURACY FOR THE USTB II DATASET 

Number 

of Bins 

Number of Principal Components 

1 2 3 4 5 6 

2 48.05% - - - - - 

3 54.22% 61.04% - - - - 

4 53.25% 62.01% 66.88% - - - 

5 55.52% 63.31% 65.91% 71.43% - - 

6 54.55% 64.61% 65.58% 65.26% 72.08% - 

7 54.87% 60.71% 65.58% 66.88% 70.13% 73.05% 

C. Dynamic Binning Experiment 

For this experiment, neither a particular number of 
partitions nor a partition size was selected. Instead, the 
partitions were dynamically generated using a greedy hill 
climbing approach. This was accomplished by first selecting a 
step size, delimiting the smallest partition size possible. For 
this experiment, the step size was fixed at 0.05 as a 
compromise between performance, overfitting, and 
computation time. A single partition to split the image into two 
images was then iteratively tested across all possible splitting 
points. The splitting point that produced the most accurate 
matches was then chosen. The process was then repeated to 
create additional partitions until creating another partition no 
longer resulted in an improved matching accuracy. Although 
this greedy approach is not guaranteed to find the global 
optimum for partition size, it produces sufficient results while 
simultaneously reducing computation time. The results for this 
experiment are shown in Table VI, with those that exceeded or 
matched the results from experiment two in bold.  

The IITD II dataset naturally partitioned itself into six bins 
during this experiment. In contrast, the best accuracy in the  



TABLE VI.  DYNAMIC BINNING FOR THE IITD II AND USTB II DATASETS 

Dataset 

Used 

Type of Match 

Number of Partitions Top-1 Top-5 

IITD II 6 93.21% 97.13% 

USTB II 5 51.95% 73.05% 

 

previous experiment was achieved using only five partitions. 
Of particular interest is that the partitions in the upper range of 
the intensities seem to be smaller. The USTB II dataset was 
partitioned into five partitions, also differing from its fixed 
partition results. Results for this experiment show that dynamic 
binning produced slightly more accurate results on the IITD II 
dataset. However, this technique did not result in an overall 
higher accuracy on the USTB II dataset. Interestingly, 
however, it should be noted that the accuracy for dynamic 
partitioning was higher than its fixed partition counterpart 
when only considering the same number of partitions used. 
This demonstrates the potential of the dynamic partitioning 
approach and suggests that a true global optimum for partition 
size and number of partitions exists. 

V. CONCLUSION 

In this research, a PCA based algorithm called two 
dimensional multi-band PCA (2D-MBPCA) was presented and 
demonstrated on ear images. Each input image is partitioned 
into several images based on the intensity of its pixels, with 
each resulting image set being passed to PCA. Partitions of 
both fixed sizes and variable sizes were examined. Results 
show that this novel multi-band approach greatly outperforms a 
direct image comparison using PCA. Furthermore, variable 
sized partitions outperformed fixed sized on one of the two 
benchmark datasets. Despite the slightly reduced performance 
on the USTB II dataset, dynamic partitioning still showed 
merit when compared with an equivalent number of partitions 
for both datasets. This indicates that there is still potential for 
the dynamic partitioning approach, and that there is a potential 
global maximum for the image splitting problem. In future 
work, other optimization algorithms can be investigated to 
perform the dynamic partitioning. Furthermore, this splitting 
approach is not limited to the use of PCA with Euclidean 
distance. Another line of inquiry can investigate the use of 
binning with other feature extraction and ear matching 
algorithms. 
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