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Abstract  

PURPOSE: To explore the effects of the first all-female transantarctic expedition on 

hormonal axes pertinent to reproductive and metabolic function.   

  

METHODS: Six females (aged 28-36, BMI 24.2 ± 0.97 kgm-2) hauled 80kg sledges 

1700km in 61 days. Estimated average energy intake was  



20.8 ± 0.103 MJ/day (4970 ± 25 kcal/day). Whole body and regional body composition was 

measured by DXA one and two months before, and  

15 days after, the expedition. Body fat was also estimated by skinfold and bioimpedance 

analysis immediately before and after the expedition.  

Blood tests comprised basal metabolic and endocrine markers followed by evening 

ingestion of 0.25mg dexamethasone and 1-hour, 10 μg Gonadorelin and 1.0 μg ACTH-(1-

24) tests the following morning, 39-38 pre- and 4-5 and 15-16 days post-expedition. 

Cortisol was assessed before and after the expedition in hair (monthly average 

concentrations) and saliva (5-point day curves and two-point diurnal sampling).   

  

RESULTS: Average body mass loss was 9.37 ± 2.31 kg (p<0.0001), comprising loss of fat 

mass only; total lean mass  was maintained. Basal sex steroids, corticosteroids and 

metabolic markers were largely unaffected by the expedition except leptin, which 

decreased during the expedition and recovered after 11 days, the change being 

proportionately greater than change in body fat. LH reactivity was suppressed prior to and 

during the expedition, but recovered after 11 days, while FSH did not change during or 

after the expedition. Cortisol reactivity did not change during or after the expedition. Basal 

(suppressed) cortisol was 73.25 ± 45.23 mmol/L before, 61.66 ± 33.11 mmol/L 5 days 

post- and  

54.43  ± 28.60 mmol/L 16 days post-expedition (p=0.67). Monthly average cortisol was 

elevated during the expedition.   

  

CONCLUSION: The maintenance of reproductive function and the HPA axis in women 

following an extreme physical endeavor, and despite a modest energy deficiency, suggests 

the female biological capacity for extreme endurance exercise is greater than anticipated.  
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Introduction  

  

Women undertake increasingly physically demanding sports and employment but sex-

related biological consequences of arduous exercise are poorly understood. Over the past 

20 years, emphasis on energy availability (EA, defined as energy intake minus exercise 

energy expenditure) has established low EA as a putative cause of the ‘female athlete 

triad’: hypothalamic pituitary gonad (HPG) axis suppression in athletes, leading to 

functional hypothalamic amenorrhoea (FHA) and/ or impaired bone health (1). The term 

‘female athlete triad’ has been questioned, since these phenomena can also affect men 

(2), however women may have greater sensitivity to the effects of low EA than men, and 

there is a higher prevalence of disordered eating among women than men (3).  

  

In the setting of military employment, it has been suggested that women may be at higher 

risk of psychological problems than men, such as post-traumatic stress disorder (1, 4). 

There appears to be evidence suggesting a greater incidence of primary infertility in 

military women than age-matched civilians (5). While these observations remain 

unexplored in terms of etiology, we recently proposed FHA in military women might 

contribute to menstrual dysfunction, hypothesizing this could be mediated by a complex 

alteration in hormonal milieu, including reduced EA (1). Aspects of military training and 

employment other than exercise and reduced EA may also be likely to contribute to HPG 

axis suppression, for example, sleep deprivation and psychological stress (1, 6, 7).  

  

Field studies of military training generally measure the effects of multiple concurrent 

stressors, making it difficult to delineate the effects of individual components like low EA, 

sleep deprivation or psychological stress (6). One highly researched model of the 

endocrine effects of a multi-stressor environment is US Army Ranger Training. 

Predominantly undertaken by men, Ranger training involves 61 days of strenuous 

exercise, sleep deprivation, total energy expenditure of around 4000-5000kCal/ day, 



routine energy deficit and widespread metabolic and hormonal deficiencies, e.g. elevated 

fasting cortisol, reduced total testosterone and IGF-1 (7, 8). Such changes have been 

demonstrated to be reversible upon re-feeding, cessation of stress and sleep derestriction 

(8). However, extremes of arduous exertion lasting this duration have not been widely 

researched in women.  

  

We undertook an exploratory, observational study of the concurrent acute response and 

short-term recovery of female HPG and HPA axes (using basal and dynamic testing) in 

women undertaking an unprecedented, extremely arduous expedition to cross the 

Antarctic continental landmass, of similar duration to US Army Ranger training. The 

purpose of the crossing was to attempt to become the first all-female team to complete an 

unassisted Antarctic traverse using muscle power alone, and was not competitive, 

primarily research-focused or done to achieve a political or military training objective. The a 

priori hypothesis was that this expedition would induce an energy deficit, despite a 

comprehensive programme of physical and nutritional preparation, with concurrent 

disturbances in HPG and HPA axes.   

  

Methods  

  

Participants  

  

Six women participating in an unassisted Antarctic ski traverse expedition were invited to 

participate in the study three months beforehand. This was the first all-female team to 

attempt an unassisted Antarctic traverse. Individuals planned to haul sledges weighing 

80kg for 1700 km, expecting the crossing to take around 75 days. Selection and training 

for the expedition lasted 2 years, the final team being selected from a pool of 250 women. 

While none of the participants had been to Antarctica before, all had partaken in three 

preparatory expeditions in Norway, which aimed to simulate the crossing’s intensity and 



conditions (details can be found at http://exicemaiden.com/). Participation in the study was 

voluntary and independent of the expedition. All six women volunteered and provided 

written informed consent. Ethical approval was received form the Ministry of Defence 

Research Ethics Committee (827MoDREC/17). The study was conducted in accordance 

with the Declaration of Helsinki.   

  

Experimental design  

  

The study design consisted of two pre-expedition measurement sessions, 64 and 39 days 

prior to the expedition (visit pre-1 and pre-2, respectively) (figure 1A). Additional body 

composition measurements were undertaken separately from formal study visits, 16 days 

before and  

5 days after the expedition. Follow-up visits were conducted 4 days after the expedition 

(immediately after arrival in Punta Arenas, Chile from Antarctica), and 15 days after the 

expedition, 36 hours after return to the UK (visits post-1 and post-2 respectively). As part of 

a broader preparation schedule, participants were advised to gain 0.5 kg of body mass per 

week between visit pre-1 and the expedition (64 days or 9 weeks; 4.5kg). The expedition 

altitude profile and distance are indicated in figure 1B. The maximum elevation above sea 

level (ASL) was 2950 m.  

  

Dietary provision  

Dietary provision for the expedition was estimated from changes in body mass during three 

training expeditions. During the expedition participants were provided with a complete diet 

providing average 20.9 ± 0.1 MJ per day (4970 ± 25 kcal per day, or 70.8 ± 0.35 

kcal/kg/day), comprising ~45 % carbohydrate (7.7 ± 0.32 g/kg/day), ~45 % fat (3.6 ± 0.07 

g/kg/day) and ~10 % protein (1.7 ± 0.35 g/kg/day). It is estimated (verbal communication) 



that participants consumed median 85 % (range 70 % - 99 %) of the diet provided over the 

course of the expedition and did not share rations.  

  

Procedures   

  

The schedule of measurements is illustrated in Figure 1. At visit pre-1, information 

including ethnicity, education, smoking habits, alcohol consumption, and a comprehensive 

medical reproductive and medication history taken including use and type of, and 

indication for, hormonal contraceptives was recorded. Reproductive and medication history 

and use of contraceptive questions were repeated after the expedition (visit post-1).  

  

Psychological assessment  

  

Questionnaires comprising six validated self-rating items on a web-based application 

(SmartSurvey, Tewkesbury, UK) were completed at visits pre-2 and post-1 (figure 1). The 

psychosocial stress questionnaire was completed in an identical manner to Rosengren et 

al, assessing the sixmonth period prior to visit pre-2, and the four-month period prior to visit 

post-1 (9). Participants were asked to complete the Impact of Events Scale – Revised 

(IES-R) with reference to any major life event(s) identified (10). The Patient Health 

Questionnaire 9 (PHQ-9) (11) was chosen as a robust measure of depressive symptoms in 

military and civilian populations (12). We analyzed results on a continuous scale, to identify 

subtle differences in a low number of participants. The Beck Anxiety Inventory (BAI) and 

Connor Davidson Resilience Scale 10 (CDRISC 10) demonstrate similar consistency 

measuring anxiety and resilience, respectively, and were analyzed in the same manner 

(13, 14). The BEDA-Q assesses risk of disordered eating concisely and consistently,(15) 

and was scored according to the methods of Peric et al. (16). Total scores from each 

questionnaire were used for further analysis.  

  



Weekly intra-expedition assessments  

  

During the expedition, a weekly questionnaire was completed in the same manner as 

previous studies of female transantarctic expedition (figure 1) (17, 18). This documented 

average perceived exertion, psychological stress, restfulness of sleep and confidence the 

team would complete the expedition (all on a Likert type-scale ranging from 1 [not at all] to 

10 [the most possible]), and the average number of hours slept per night.  

  

Body composition  

  

Stature was measured at visit pre-1 (SECA Stadiometer 213, Birmingham, UK) and body 

mass was measured at every study visit (SECA  

Scales 874). Whole body and regional lean mass, fat mass and bone mineral content were 

measured using dual energy x-ray absorptiometry (DXA) was measured with participants 

wearing shorts and t-shirts at visits pre-1, pre-2 and post-2 (GE Lunar iDXA, GE 

Healthcare, Chalfont St Giles, UK) (figure 1).   

  

Sixteen days prior to the expedition (separately from main study visits), and at visit post-1, 

skinfolds were measured at four sites (bicep, triceps, sub-scapular, supraspinatus) to the 

nearest mm by the same examiner using Harpenden calipers (BodyCare, UK) according to 

the method of International Society for the Advancement of Kinanthropometry (19). The 

average of three measurements taken from each site was used to calculate percentage 

body fat (19).  

  

Body fat was measured by four-point bioimpedance (Omron BF511, Milton Keynes, UK) 

upon waking in the morning, 1, 5, 10, 15 and 18-24 days after the expedition.   

  



Basal blood samples   

After an overnight fast, a venous blood sample was collected at visits pre-2, post-1 and 

post-2 for measurements of metabolic, nutritional, reproductive and adrenal function.  

  

Dynamic reproductive and adrenal cortex function  

  

Dynamic reproductive and adrenal cortex function was measured at visits pre-2, post-1 and 

post-2. Participants first ingested 0.25 mg dexamethasone at 2200h before a second 

overnight fast. This dose has been used to assess the sensitivity of the HPA axis to a 

nearphysiological level of central negative feedback and to attempt to reduce the baseline 

variation in morning fasting cortisol prior to the prestimulation test cortisol.(20, 21) At 0800 

the following morning, a 21-gauge cannula was inserted into an antecubital or dorsal hand 

vein and a baseline blood sample was obtained before 10 μg Gonadorelin hydrochloride 

(Intrapharm, Maidenhead UK), followed by 1.0 μg ACTH-(1-24) (tetracosactrin acetate as 

Synacthen®, Mallinckrodt, Dublin, Ireland), were injected followed by a 10mL saline flush. 

ACTH-(1-24) was freshly diluted using 249ml 0.9% NaCl (Baxter, UK), to which Synacthen 

® 250 μg in 1mL had been added, shaken thoroughly and 1 ml of this mixture was injected 

using a 5 ml syringe to minimise contact with plastic. Venous blood was sampled through 

the cannula in EDTA-containing tubes 20, 30, 40 and 60 min after drug administration. The 

doses of Gonadorelin, dexamethasone and ACTH-(1-24) were selected to mimic 

physiological levels of stimulation, as opposed to stimulation tests used clinically (and 

recommended in various clinical practice guidelines) which are intended to induce maximal 

axis stimulation and exclude endocrine insufficiency (e.g. 100 μg, 1 mg and 250 μg, 

respectively) (20).  

  

 

 



Hair and saliva cortisol  

  

A 0.5cm diameter hair sample was taken close to the scalp for measurement of cortisol at 

visit pre-2 (6 x 1cm segments) and visit post-1 (4 x  

1cm segments). Hair grows at 1cm per month, thus 1cm represents 1 month of cortisol 

exposure (22).   

  

Saliva was sampled by chewing on a synthetic swab for 1 minute, which was placed in a 

plastic collection tube (Salivette®; Sarstedt, Nümbrecht, Germany). A detailed saliva day 

curve was measured at visits pre-2 and post-2 as follows: participants were woken at 

07:00 and saliva sampled at 07:10, 08:20, 09:00, 09:30, 12:15, 13:30, 17:20 and 21:50. 

Evening and morning saliva sampling (last thing at night before going to sleep and 

immediately after waking the following morning) were also measured 1, 5 and 10 days 

after the expedition.  

  

Laboratory methods  

  

Blood was collected in EDTA, serum-separating gel and fluoride oxalate tubes 

(Monovette®, Sarstedt, Nümbrecht, Germany) and centrifuged at 5,000 rpm for 5 minutes. 

Plasma and serum were stored at −80°C (after dry ice shipment to the UK of samples 

taken in Chile) until measurement.   

  

Metabolic and nutritional markers  

  

Thyroid stimulating hormone (TSH), unbound thyroxine (fT4) and total T3 (tT3) were 

measured from gel-separated serum using Abbott ®  

Architect analyzer (Abbott, Maidenhead, UK) according to manufacturer’s instructions. 

Insulin-like growth factor 1 (IGF-1), ferritin, insulin and Cpeptide were determined from gel-

separated serum using Roche ® Cobas e411 analyzer (Roche Diagnostics, Welwyn 



Garden City, UK) according to manufacturer’s instructions. Creatinine, albumin, transferrin, 

calcium, zinc, iron and magnesium were determined from gelseparated serum and glucose 

and lactate from plasma containing fluoride oxalate using commercial kits (Alpha 

Laboratories, Eastleigh, UK) adapted for use on a Cobas Fara centrifugal analyzer (Roche, 

UK). Leptin was measured by ELISA (Quantikine, USA). Urea was determined from gel-

separated serum using a commercial kit (Randox laboratories, UK) adapted for use on a 

Cobas Fara centrifugal analyzer. Plasma pH was detected in using a blood gas analyzer 

(Siemens RapidLab 348EX, Camberley, UK). Homeostatic modelling assessment (HOMA) 

for beta cell function (HOMA-B) insulin sensitivity (HOMA-S) and insulin resistance 

(HOMA-IR) were calculated according to the methods of Levy et al.  

(23).  

  

Additional data including resting energy expenditure and substrate utilization from direct 

calorimetry pre- and post-expedition are being published elsewhere.  

  

Reproductive markers  

  

Luteinizing hormone (LH), follicle stimulating hormone (FSH), progesterone and estradiol 

were determined from plasma containing EDTA using  

Abbot Architect ® analyzer according to the manufacturer’s instructions. Inhibin B was 

measured by ELISA (Beckman Coulter, High Wycombe,  

UK). Sex hormone binding globulin (SHBG) and anti-müllerian hormone (AMH) were 

determined from gel-separated serum using Roche ®  

Cobas e411 analyzer according to manufacturer’s instructions. The rationale for these 

methods are summarized in supplementary box 1.  

  

 

 

  



Adrenal markers   

  

Cortisol, 17OH progesterone, testosterone, dihydroepiandrostenedione (DHEA) and 

androstenedione were measured using liquid chromatography mass spectrometry (LC/ 

MS), by modifying internal standards from a protocol described previously (24). Hair was 

divided into 1cm segments and powdered prior to cortisol extraction in each segment, 

representing 1 month averages, for a total of 10 months. Extraction and analysis by LC/ 

MS was completed as described by Kirschbaum et al. (25). Saliva was stored at -80 C 

within 7 days of collection and was extracted and analyzed by LC/ MS as described by 

Miller et al. (26).  

  

Inter-assay %CV was <4% for Architect ®, e411, Fara assays and blood gas analyzer, and 

intra-assay %CV <10% for all ELISAs.  

  

Statistical Analysis  

  

Data are presented as individual data, or mean ± SD or median (IQR) for group 

comparison. Normality was assessed using Shapiro-Wilk test and non-normally distributed 

data were log transformed prior to statistical analysis. Due to the small sample size, 

variables are presented as mean (95% confidence interval [CI]). Repeated measures 

ANOVA was used to compare change in variables over time and pairwise comparisons 

were used where appropriate for statistically significant results. Paired t tests were used to 

compare the two pre-expedition DXA scans, and single post-expedition variables with 

baseline. Pre- and post-expedition dichotomous questionnaire data were compared using 

Chi squared test. One individual was excluded from analyses of basal reproductive 

hormones as she had commenced a combined contraceptive pill immediately prior to the 

expedition. Serum LH and FSH concentrations following injection of GnRH and ACTH 

were described as absolute values, and as percentage change, by dividing concentrations 



after injection by the baseline concentration. This was done to allow comparison of within-

subject change, since hormone-containing contraceptive use influenced baseline values. 

Area under the curve (AUC) was calculated using the trapezoidal rule. Within-subject 

changes in peak and AUC of cortisol and fold-rise in LH and FSH from baseline were 

compared from before to after the expedition.   

  

Statistical analysis was performed using SPSS version 23.0 for Mac (IBM, USA). 

Significance was set at p<0.05. For multiple variables assessed in the same domain, 

Bonferroni adjustment was made as follows: body composition, p<0.01; basal reproductive 

markers, p<0.005, adrenal markers p<0.05, metabolic markers, p<0.002.  

  

Results  

  

Description of participants  

  

Baseline characteristics of the cohort are shown in table 1. The median (range) age was 

32.8 (28.6 to 36.1) years. Baseline questionnaires demonstrated high resilience, low 

depression and anxiety scores and normal patterns of eating behaviour. Fasting TSH, free 

T4, total T3, prolactin, LH:FSH ratio, androstenedione, total testosterone, DHEA, 17-OH 

progesterone, urea, sodium, potassium, chloride and creatinine were within normal limits 

prior to the expedition (table 2).   

  

All participants used hormonal contraceptives during the expedition, intending to induce 

amenorrhoea. One individual commenced levonogestrel 150 mcg/ ethinylestradiol 30 mcg 

immediately prior to the expedition. One individual used Nexplanon ® contraceptive 

implant while all others used a Mirena ® intrauterine device. Five participants were 

amenorrhoeic during the expedition and one menstruated twice, stating this was less 

frequent than normal, within 4-10 days of due date.  



  

Intra-expedition rating scales  

  

Average scores for physical exertion scale were 5.5 ± 2.3 /10 and stress level 3.7 ± 1.94 

/10, and level of confidence the team would complete the expedition 6.73 ± 1.81)/10; (6.35 

± 1.93 in weeks 1-3 and 7.11 ± 1.32 in weeks 5-8, p=0.09). Average duration of sleep was 

6.73 ± 1.75 hours and rating of restfulness of sleep was 5.53 ± 2.05 /10. Questionnaires 

following the expedition suggested moderately lower levels of psychosocial stress and 

financial stress, and fewer significant adverse events than prior to the expedition (p=0.079, 

supplementary table 2).  

  

Body composition, metabolic and nutritional changes  

  

Physical changes during the study are presented in figure 2 and supplementary tables 1 

and 2. All participants gained body mass during the two months prior to the expedition, 

(average increase 2.56 ± 0.79 kg, or 3.69 ± 1.12 % of body weight, p=0.006), consisting of 

body fat  

(average increase 4.05 ± 0.96 %, p<0.0001), and lost body mass during the expedition 

(average loss 9.37 ± 2.31 kg, or 12.9 ± 3.17 % of body weight, p<0.0001). Body composition 

measured by DXA demonstrated a significant increase in total fat mass before (13.2 ± 2.11 

vs 17.5 ± 2.52 kg, p<0.001) and loss during the expedition (fat mass at visit post-2 was 12.1 

± 1.37 kg, p<0.001), with these changes reflected in most regions (supplementary table 2). 

However, there was no difference in total lean mass or bone mineral content between visit 

pre-2 and visit post-2 (52.3 ± 2.10 vs 51.5 ± 3.04, p=0.27), despite a 6.10% loss in lean mass 

from the legs. In the 15 days between the expedition and the follow-up DXA scan, fat mass 

estimated by bioimpedance tended to increase (supplementary table 1). Regional DXA 

analysis showed statistically significant but modest decreases in android (area between the 

ribs and pelvis), gynoid (pelvis and upper thighs) and leg lean mass between visits pre-1 



and pre-2, and loss of leg lean mass during the expedition (average 6.05 ± 1.11 % 

decrease), but these did not impact the change in total lean mass (supplementary table 2). 

There was a small but statistically significant increase in total bone mineral content prior to 

the expedition (2.75 ± 0.13 kg vs 2.80 ± 0.13) kg, p=0.005, but no change between visits 

pre- 2 and post- 2 (2.77 ± 0.12, p=0.19 (supplementary table 2).   

  

Leptin decreased significantly following the expedition, thereafter increasing two-fold from 

visits post-1 to post-2 (table 2). Post-hoc tests showed the change between visit pre-2 and 

post-1 was significant (p=0.005), while there was no difference between pre-2 and post-2 

(p=0.39). Thyroid stimulating hormone, free T4 and total T3 were normal pre-expedition 

and remained unchanged after the expedition (table 2). Fasted glucose, HOMA-B, HOMA-

S and HOMA-IR, adjusted calcium, magnesium and phosphate did not change during or 

after the expedition (table  

2).   

  

Questionnaire data demonstrated a marginal increase in BEDA-Q scores after the 

expedition, consistent with higher markers of disordered eating risk (supplementary table 

3). Markers of nutritional status (albumin, magnesium, phosphate, iron, zinc), urea (Ln 

transformed) and electrolytes did not change during or after the expedition (table 2).  

  

Reproductive function  

  

Basal markers of reproductive function are displayed in table 2. Estradiol tended to be 

lower at visit post-1, with a recovery noted by visit post2. No differences between other sex 

steroids, LH or FSH were shown. Inhibin B and AMH did not differ between baseline and 

immediately after the expedition (p=0.71 and p=0.15, respectively, table 2).   

  



Dynamic LH and FSH responses before and after the expedition are shown in figure 3. 

Fold rise in FSH and FSH AUC were log transformed prior to statistical analysis. LH and 

FSH fold rise and AUC during the test did not differ between visit pre-2 and visit post-1. At 

visit post-2, FSH had not changed from visit pre-1 (figure 3C, supplementary table 4), while 

there was a marked upward trend in LH, measured by AUC fold rise and peak fold rise 

(p=0.055 and p=0.071, respectively; figure 3D, supplementary table 4).  

  

Adrenal cortex function  

  

Basal plasma cortisol did not change significantly during or after the expedition (table 2).   

  

Average hair cortisol before and during the expedition is shown in figure 4b. Mean values 

are shown in supplementary table 4. Most participants demonstrated a significant increase 

in average cortisol levels during the expedition.   

  

Individuals’ dynamic plasma cortisol responses before and after the expedition are shown 

in figures 4A. Both AUC and peak cortisol did not change between the three time points 

(p=0.12 and p=0.45, respectively, figure 4B). Subjects demonstrated marked suppression 

of early morning cortisol following low-dose dexamethasone administration   

  

One participant demonstrated a more suppressed baseline in plasma cortisol than others 

(filled square symbol, figure 4). This individual also demonstrated markedly higher hair 

cortisol concentration through the expedition and two months beforehand.  

  

Salivary cortisol in the days immediately following the exercise was blunted but by day 10 

had recovered (figure 4C), reflected in a normal day curve which was unchanged from 

baseline (figure 4D).  

  



Discussion  

  

With on-going debate as to whether women can endure extreme physical activity without 

detrimental effects on hormonal axes, given the finding of HPA and HPG axis suppression 

in extremely arduous exercise in men (e.g. in US Army ranger training (7, 8)), we exploited 

the opportunity to examine the HPA and HPG axes among six women who completed a 

1700km ski expedition hauling 80kg sledges up to 2950m elevation. In doing so, the team 

broke several records including being the first all-female team to cross the Antarctic 

unsupported. Our data demonstrate HPG and HPA axis resilience during extreme exertion 

despite significant fat loss. HPA axis basal function, sensitivity to central suppression and 

adrenal reactivity to ACTH did not change during or after the expedition, but demonstrated 

greater sensitivity to suppression from dexamethasone than anticipated from other studies 

using a similar protocol in older participants (20, 21). Hair cortisol rose during the 

expedition as would be expected with sustained arduous exercise (27).  

  

Coincidentally, the expedition duration (61 days) was identical to US Army Ranger training. 

Trainee Rangers are expected to cover around 322 km, carrying 30-41 kg. While the 

expedition comprised a different form of exercise (skiing rather than walking or running), it 

was arguably noninferior in terms of effort or endeavor. One crucial difference is the 0-5 

hours of sleep per day expected during Ranger training,(7) and deliberate psychological 

stress (28). which contrasts with the average 6.73 ± 1.75 hours of sleep per night, albeit 

with poor perception of restfulness (in 24-hour daylight), and modest weekly and whole-

expedition stress ratings.   

  

The primary drivers of adverse endocrine and metabolic changes in Ranger training 

appear to be nutritional deprivation (with loss of lean mass), psychological stress, sleep 

deprivation and exercise intensity. Nindl et al. showed a 12.6% loss of body mass, 6% lean 

mass and 50% fat mass (7, 28). The endocrine effects of negative energy balance are 



well-documented adaptations for survival and include suppression of the HPG axis and 

hypercortisolemia (1). In their meta-regression of field studies of arduous training, Murphy 

et al. showed that the combination of training duration and low EA were inversely 

associated with physical performance (29), although it is difficult to delineate EA as a 

cause from the other factors described here.  

  

A carefully calculated provision of approximately 21 MJ/ day (5000 kcal/ day; ~45% 

carbohydrate, ~45% fat and ~10% protein), with significant fat gain prior to the expedition, 

plus a relatively low altitude and preservation of sleep, meant participants lost only fat 

mass, not lean mass. Sustained, submaximal exertion appears to have had the effect of 

preserving total lean mass, although leg lean mass reduced by 6.10%. This may relate to 

muscle fiber pennation rather than reduced mass per se; we were unable to confirm this by 

biopsy. Thus, weight loss was healthy, reinforcing the importance of appropriate nutrition 

preventing loss of lean mass and/ or hormonal disturbances, as has been shown in 

overtraining syndrome.(30) As insufficient nutrition has been shown to cause multiple 

endocrine deficiencies in sports and exercise,(2) we hypothesize that sufficient and 

appropriate nutrition had an important role in preventing changes to the HPA and HPG 

axes.   

  

Calbet et al. demonstrated that exercise maintains lean mass, during a 4-day extreme 

energy deficit in overweight men (31). Protein supplementation alone (1.5g/kg body 

mass/day) did not preserve lean mass, compared with carbohydrate. However, as 

demonstrated by Smith et al. in obese, sedentary women, a protein intake of 1.2 g/kg/day 

mitigated loss of lean mass, compared with low protein intake (0.8 g protein/kg/day) during 

10% weight loss over 27 weeks (32). In men undertaking arduous military training, a mixed 

dietary supplement  

(5.1MJ/day (1220 kcal/day); ~45% carbohydrate, ~40% fat, ~15% protein) prevented 2 kg 

loss in lean mass, over 8 weeks, compared with nonsupplemented controls (33). Despite a 



caloric deficit (indicated by weight loss), our participants maintained total lean mass, with 

an average protein intake of around 1.6 g/kg/day.   

  

Low ambient temperatures induce brown adipose tissue (BAT) thermogenesis, mediated 

by catecholamine upregulation, acting as a sink for glucose and fatty acid uptake.(34) 

Adaptive thermogenesis is upregulated by ß-3 adrenergic receptors, which are expressed 

in fat but not in muscle.(35) Thus, the cold Antarctic environment could partially explain the 

high selectivity of substrate.  

  

In mixed sex Norwegian Ranger training involving seven-day food and sleep deprivation, 

women demonstrated greater fat utilization and glycogen preservation than men, implying 

greater capacity for endurance exercise.(36) Estrogens appear to be responsible for this 

substrate dimorphism,(37) while women subjectively claim better patrolling performance 

than men perhaps because of this metabolic advantage.  

  

In addition to exercise and nutrition, the modest altitude of the expedition environment 

could have mitigated the loss in lean mass, compared with arduous expeditions at extreme 

altitudes, where hypobaric hypoxia contributes to loss of lean mass (38). Likewise, 

insufficient sleep, whether at altitude or as a programmed part of arduous training, could 

impede absorption of macronutrients and reduces gut readiness for daytime absorption 

(39), and it could be postulated that preservation of sleep contributed to the maintained 

total lean mass we observed.   

  

No suppression of metabolic parameters such as thyroid hormones or elevated cortisol 

were seen during or after the expedition. Lean mass exerts a greater effect on resting 

metabolic rate and appetite than fat mass (40), and demonstrates a greater bidirectional 

relationship with androgens, and to a lesser extent estrogens, than fat mass (41). Thus, 

preservation of total lean mass might mitigate against some of the endocrine sequelae of 



negative energy balance. The decrease in leptin, followed by recovery post-expedition, 

was more pronounced than the changes we observed in body fat. Cold exposure itself may 

reduce leptin in women,(42) but this appears to become effective only when cold exposure 

is sustained.(43) The change in HPG axis function we observed did not correlate with 

leptin, as has been reported previously.(44)  

  

Dynamic attenuations in LH and sex steroids following an energy deficit may confer 

immediate survival benefits but may be associated with maladaptive suppression of 

hormonal axes and reproductive, bone or psychological sequelae if sustained.(2) 

Luteinizing hormone was relatively suppressed prior to and during the expedition 

(reflecting hormonal contraception usage), but recovered by post-exercise visit pre-2. 

There was no change in FSH before, during or after the expedition; this is consistent with 

studies of overtraining syndrome which generally demonstrate relatively normal FSH levels 

when LH is suppressed (reviewed in Cadegiani et al. (45)), and laboratory studies of 

reduced EA, which show normal levels relative to suppression of LH in response (46).  

  

Cortisol reactivity and diurnal salivary cortisol were blunted relative to other studies, and 

may be an appropriate response to a high intensity of training (20, 21). Alternatively, 

similar responses have been noted in dynamic testing of athletes during dysfunctional 

overtraining, also associated with elevated basal cortisol (reviewed in Cadegiani et al.) 

(45). Elevated hair cortisol concentrations are associated with exercise per se; whether the 

marked elevation during the expedition may represent an overtraining syndrome would be 

a pertinent question for future studies (27). The response of the HPA axis to central 

negative feedback is greater than has been described elsewhere (4, 20). Yehuda et al. 

reviewed the use of low-dose dexamethasone suppression in post-traumatic stress 

disorder (PTSD), showing PTSD was associated with increased central axis sensitivity (4). 

No suggestion of PTSD was noted from the psychological stress or IES-R assessments 



before or after the expedition, thus this may relate simply to age, fitness and lower volume 

of distribution of these participants compared with previous studies.  

  

Similar exercise-associated patterns in the HPA and HPG axis were seen following 

restricted carbohydrate intake with aerobic and resistance activity (average  46 ± 9.1 MET 

and 4.7 ± 0.7 sessions per week, respectively), in normal BMI women over 20 weeks (47). 

This regimen achieved a 11.9% weight loss with unchanged lean mass, and was 

associated with increased menstrual dysfunction, reduced testosterone, estradiol, free T3 

and TSH and unchanged cortisol compared with weight-stable, exercising controls. While 

the degree of weight loss was similar to the present study, this intervention was achieved 

primarily through dietary restriction, since the exercise was less intense. The investigators 

also assessed recovery, demonstrating partial normalization of sex and thyroid hormones 

and leptin after 18 weeks. As in the current study, mood profile was unaffected by the 

intervention, which might possibly account for the apparently stable cortisol 

responsiveness we observed.  

  

Other correlates of overtraining syndrome include sleep deprivation and psychological 

stress.(48) Psychological stress is a prominent feature of extreme physical endeavor. 

Therefore, while both stress and reduced EA may be shown to cause reproductive 

endocrine dysfunction independently, their impact in this context may be synergistic and it 

may be impossible to draw a distinction between them (1). The expedition required both 

significant mental and physical exertion, although perceived stress levels were modest 

through the expedition and anxiety, depression and psychosocial risk factor assessments 

did not change after the expedition.  

  

It has been suggested the psychological stress of Ranger training results from nutrient and 

sleep deprivation, which serve to increase the arduousness of many military training 

formats (6). Sleep deprivation in isolation is associated with elevated evening cortisol, 



flattened cortisol day curve, reduced androgen secretion and higher sympathetic nervous 

system activity (39). Female sex hormones appear to be protective of the effect of sleep 

deprivation on cortisol blunting after psychosocial stress (49). The sustained moderate to 

high exercise intensity needed for a polar traverse represents a different form of exertion 

compared to US Ranger training, including its sustained, repetitive nature, austere 

environment, safety concerns and isolation. The stress and physical exertion scores 

reported during the expedition were consistent with previous arduous expeditions (17, 18), 

while sleep diaries showed significantly longer sleep duration than would be expected in 

Ranger training (7, 28), albeit of low perceived restfulness. Both increased sleep and the 

sustained, submaximal intensity of exercise could also account for the biological resilience 

we observed. Together with the nutritional strategy taken, and relatively reduced energy 

expenditure in women compared with men, these factors might have contributed to 

mitigating some of the negative psychological effects.  

  

The major strength of our study is the unique nature of the expedition; this likely represents 

the first opportunity to study a cohort of female participants complete an endeavor of such 

a prolonged, arduous nature. Mitigating against low EA in women is important, since 

women appear to be at greater risk of low EA and its consequences than men (1, 2). 

Previous studies of prolonged, arduous training have focused on male cohorts and 

recovery rates in women have not been studied. Furthermore, the effects of exercise or 

low EA on the dynamic of the HPA and HPG axes have not previously been studied in 

either sex.   

  

Limitations to our study include the small number of participants. This is unavoidable on 

such extreme expeditions; we have attempted to mitigate this by a comprehensive 

characterization of the participants. The team is larger than any previous female-only 

transantarctic attempts, increasing the number of women who have skied across the 

continent from four to 10 (17, 18). Other limitations include the natural limitations of a field 



study, such as four day delay in testing after the expedition. Every effort was made to 

overcome these using study visits shortly after the expedition arrived in Chile with imaging 

undertaken as soon as reasonably possible following the participants return to the UK. It 

was not logistically possible to repeat imaging immediately before and after the expedition, 

or use the same examiner to perform skinfolds in the UK and Chile, so we used the best 

feasible measures of body composition. The use of hormonal contraceptives, while 

representative of real-world hormonal milieu, do limit the interpretation of LH responses. 

For logistical and ethical reasons, dynamic tests of the HPA axis at a higher level (e.g. 

insulin tolerance test, corticotrophin releasing hormone test, desmopressin test) were not 

possible, however in future studies a maximal or two-bout exercise test could be 

considered. Calculation of cortisol awakening response would add merit to our study, but 

was not possible since participants were woken 10 minutes before the first saliva sample 

taken in the pre- and post-expedition day curves.  

  

In conclusion, no short term adverse effects were demonstrated from an unprecedented, 

successful transantarctic expedition in women. Cortisol reactivity and pituitary 

gonadotrophin reactivity were not impaired. We hypothesize these findings related to and 

pre- and intraexpedition nutrition, sleep provision, on the background of desirable selection 

characteristics, so that participants did not rate the expedition as subjectively stressful and 

lean mass was maintained.   
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 Table 1. Characteristics of participants at visit pre-1  

   

Age, years; median (range)  32.7 (28.6 to 36.1)  

Reproductive characteristics  

  Age at menarche, years; median (range)  13 (11-16)  

  Medical suppression of menstruation  

    Levonorgestel 20mcg per 24h intrauterine device (Mirena ®) only – 4 

(67%)  

    Mirena ® plus ethinylestradiol 30 mcg/ levonorgestrel 50 mcg – 1* 

(17%)  

    68 mg subcutaneous implant (Nexplanon ®) – 1 (17%)  

Body composition  

  Body mass, kg  

Mean (SD)  

72.8 (4.00)  

  BMI, kgm-2  

Mean (SD)   

24.2 (0.97)  

  % fat by DXA, kg   20.92 (2.12)  



 

mean (SD)   

  Lean mass by DXA, kg  

Mean (SD)  

53.5 (3.06)  

  Psychological assessments  

  Several periods of psychological stress  

Mean (SD)  

5 (83)  

  Permanent, psychosocial stress   

N (%)  

0  

  Some periods of psychological stress   

N (%)  

1 (17)  

  Never experienced psychological stress  

N (%)  

0  

  One or more adverse events   

N (%)  

4 (67)  

  High or severe financial stress   

N (%)  

0  



  IES-R  36 (9 – 52)**  

 

Median (range)   

  PHQ-9  

Median (range)  

3 (0 – 11)  

  BAI  

Median (range)  

11 (2 – 15)  

  CDRISC 10  

Median (range)  

34 (31 – 36)  

  BEDA-Q     

     Score  

Median (range)  

4 (0-6)  

  BEDA-Q part B     

     “Are you trying to lose weight now?”    

     Yes  

N (%)  

0  

     “Have you ever tried to lose weight?”    



     Yes  

N (%)  

3 (50)  



     “If so, how many times?”    

Number of times (n [%])  3-5 (2 [33])  

>5 (1 [17])  

Caption. Data are mean (SD) unless otherwise stated.  

BEDA-Q brief eating disorders in athletes questionnaire. IES-R Impact of events scale (revised), PHQ-9 adjusted patient health questionnaire  

9, BAI Beck Anxiety Inventory, CDRISC10 Connor Davidson Resilience Scale 10, N/A not applicable  

* One participant using Mirena ® also commenced ethinylestradiol 30 mcg/ levonorgestrel 50 mcg once daily immediately prior to expedition 

until after testing was completed.   

** Applies to four subjects who experienced a significant event  

  

    



 Table 2. Biochemical and hormonal parameters at baseline, 4 and 14 days after the expedition.  

   

Basal (fasting) variable   Visit pre 2   (39 

days 

preexpedition)   

mean (SD)  

Visit post 1   

  (Expedition + 

4 days   mean 

(SD)  

Visit post 2  

  (Expedition + 

15 days    mean 

(SD)  

 Mean (95% CI) difference 

visit pre 2 versus visit post 1  

Mean (95% CI) difference 

visit pre 2 versus visit post 2  

P 

value   

  

Reproductive and HPA axis markers         

  Estradiol   mmol/L  227 (176)  163 (144)  394 (183)  64.3 (-156, 284)  -168 (-427.4, 91.7)  0.043  

  LH  

  IU/L  

5.36 (2.03)  5.13 (3.70)  3.42 (1.43)  0.23 (-4.15, 4.61)  1.94 (-1.02, 4.91)  0.332  

  FSH  

  IU/L  

5.83 (1.09)  5.30 (1.36)  3.50 (0.48)  0.53 (-1.47, 2.53)  2.33 (-0.82, 5.48)  0.161  

  Androstenedione   mmol/L  9.56 (2.98)  

  

7.33 (2.61)  

  

8.91 (2.78)  

  

2.23 (0.45, 4.01)  

  

0.65 (-2.92, 4.22)  

  

0.148  

  Total testosterone   mmol/L  1.46 (1.56)  

  

0.59 (0.81)  

  

0.54 (0.4)  

  

0.87 (-0.8, 2.55)  

  

0.92 (-0.39, 2.22)  

  

0.178  

  Dihydrotestosterone   mmol/L  2.93 (2.12)  

  

2.18 (1.24)  1.33 (0.78)  

  

0.75 (-0.5, 1.99)  

  

1.6 (-1.09, 4.28)  

  

0.182  



  DHEA  360.24 (85.34)  370.37 (46.32)  412 (42.3)  -10.1 (-81.9, 61.6)  -52.4 (-114, 9.62)  0.127  

 

  mmol/L            

  17-OH Progesterone   mmol/L  3.81 (5.04)  1.54 (1.51)  7.97 (4.53)  2.27 (-2.18, 6.72)  

  

-4.15 (-13.1, 4.74)  

  

0.071  

  SHBG  

  nmol/L  

59.5 (25.4)  100 (53.0)  69.0 (25.0)  -40.7 (24.6, -104)  13.8 (-44.9, 25.9)  0.132  

  Prolactin   mU/L  

(60 to 500)  

338 (45)          N/A  

  LH:FSH ratio  1.05 (0.22)  0.93 (0.32)  1.32 (0.57)  0.12 (-1.10, 1.34)  -0.26 (-2.12, 1.60)  0.791  

  AMH   pmol/L  12.2 (3.85)  9.44 (2.61)    2.79 (-1.38, 6.97)    0.147  

  Cortisol (unsuppressed)   mmol/L  552 (67.3)  434 (74.2)  519 (19.4)  117 (-123, 358)  32.2 (-122, 186)  0.279  

Cortisol (suppressed by 0.25 mg 

dexamethasone 10 hours before) mmol/L  

73.3 (45.2)  61.7 (33.1)  54.4 (11.7)  11.6 (-28.1, 51.3)  18.8 (-5.21, 42.9)  0.302  

Basal metabolic and nutritional markers    



  Albumin   g/L  35.4 (2.06)  33.1 (0.84)  34.9 (1.58)  0.94 (-0.14, 4.71)  0.92 (-1.88, 2.84)  0.075  

  Glucose   mmol/L  4.93 (0.62)  4.57  

(0.25)  

4.42  

(0.75)  

0.37 (-0.2, 0.97)  0.52 (-0.2, 1.19)  0.132  

 

  HOMA  

    %B  

    %S  

    IR  

  

96.4 (27.8)  

113 (31.3)  

0.94 (0.24)  

  

114 (39.6)  

130 (82.2)  

1.00 (0.46)  

  

118 (63.0)  

140 (39.5)  

0.76 (0.22)  

  

15.8 (-59.1, 22.5)  

42.8 (-127, 92.8)  

0.26 (-0.74, 0.62)  

  

21.6 (-77.1, 34.0)  

18.5 (-75.3. 19.8)  

0.10 (-0.08, 0.43)  

  

0.634  

0.712  

0.537  

  Leptin   ng/mL  10.8 (4.84)  2.71 (1.57)  4.93 (3.58)  8.09 (3.64, 12.5)  5.87 (1.04, 10.7)  0.002*  

  IGF-1   ng/mL  46.0 (18.8)  29.1 (11.9)  46.0 (18.8)  33.1 (-44.4, 110)  -19.5 (-79.3, 40.3)  0.116  

  Iron   μmol/L  23.3 (6.05)  28.3 (8.87)  19.0 (4.29)  2.50 (-11.4, 1.43)  1.76 (-0.20, 8.87)  0.091  

  Ferritin   ng/mL  59.7 (22.8)  55.3 (35.3)  55.2 (26.7)  4.33 (-11.1, 19.8)  4.50 (-14.6, 23.6)  0.801  

  TSH   mU/L  2.51 (0.57)  3.53 (1.84)    -1.02 (-2.69, 0.66    0.180  



  Total T3   nmol/L  1.43 (0.08)  1.42 (0.09)  1.38 (0.07)  -0.17 (-0.40, 0.37)  0.05 (-0.20, 0.30)  0.924  

 Free T4   pmol/L  12.5 (0.34)  11.8 (0.54)    0.67 (-0.42, 1.75)    0.181  

  Zinc   μg/dL  134 (6.15)  122 (12.3)  137 (15.7)  5.60 (-1.91, 26.9)  4.31 (-13.7, 8.41)  0.041  

  Urea  4.53 (0.65)  5.37 (1.07)  4.63 (0.9)  -0.83 (-1.7, 0.05)  -0.1 (-1, 0.81)  0.243  

 

  mmol/L         

  Sodium   mmol/L  141 (10.2)  143 (8.04)  139 (5.09)  -2.67 (-15.1, 9.73)  1.17 (-9.5, 11.84)  0.822  

  Potassium   mmol/L  4.27 (0.34)  4.45  

(0.24)  

4.08  

(0.33)  

-0.18 (-0.4, 0.05)  0.18 (-0.4, 0.74)  0.144  

  Magnesium   mmol/L  0.79 (0.06)  0.81 (0.04)  0.80 (0.73)  0.02 (-0.06, 0.17)  0.01 (-0.04, 0.25)  0.360  

  Chloride   mmol/L  105.17  

(6.97)  

107.5  

(5.01)  

103.83  

(3.19)  

-2.33 (-10.3, 5.65)  1.33 (-5.3, 7.93)  0.381  

  Creatinine   µmol/L  63.7 (5.89)  63.3 (3.98)  69.0 (5.66)  0.33 (-4.8, 5.42)  -5.33 (-9.9, -0.8)  0.023  



  Creatine kinase  

  U/L  

130 (16.94)  137 (33.2)  153 (71.8)  77.3 (-145.6, 300)  -118 (-371, 134)  0.357  

  Lactate   mmol/L  0.75 (0.17)  0.85  

(0.25)  

0.57  

(0.12)  

-0.1 (-0.4, 0.17)  0.04 (-0.4, 0.44)  0.491  

  pH  7.43 (0.05)  7.35  

(0.01)  

7.40  

(0.01)  

-0.02 (-0.3, 0.24)  -0.08 (-0.4, 0.19)  0.642  

  Calcium (adjusted)   mmol/L  2.56 (0.08)  2.55 (0.06)  2.56 (0.04)  0.01 (-0.06, 0.09)  -0.01 (-0.11, -0.01)  0.813  



  25 OH D  112 (25.3)  75.8 (21.3)    35.8 (14.3, 57.4)    0.008*  

  Phosphate   mmol/L  1.19 (0.05)  1.08 (0.04)  1.34 (0.09)  0.07 (-0.06, 0.29  0.01 (-0.35, 0.025)  0.017  

  

Caption. AMH, antimüllerian hormone; DHEA, Dehydroepiandrosterone; βCTX, β-carboxyl-terminal cross-linked telopeptide of type I collagen; 

P1NP Amino-terminal propeptide of type 1 procollagen; FSH, follicle stimulating hormone; HPA, hypothalamic-pituitary-adrenal; HOMA, 

homeostatic modelling assessment; IGF-1 insulin-like growth factor 1; %S insulin sensitivity; %B –beta cell function; -IR- insulin resistance; 

LH, Luteinizing hormone; T3, triiodothyronine; T4, thyroxine; TSH, thyroid stimulating hormone; 25 OH D 25 hydroxyl vitamin D.  P value for 

repeated measures ANOVA. * denotes statistical significance after Bonferroni adjustment: p<0.005 for reproductive markers, p<0.05 for 

cortisol, p<0.002 for metabolic and nutritional markers.  

  



Figure captions.  

Figure 1. Overview of experimental design and expedition  

  

A. Timeline summary of major investigations. Saliva cortisol: 5-point day curve was measured 40-

34 days pre- and 18-24 days post-expedition (filled circle); morning and evening sampling 

undertaken 1, 5 and 10 days post-expedition (unfilled circle).  

Anthropometric examination: weight and skinfolds were undertaken 16 days pre- and 5 days 

post-expedition (filled triangle). Body fat was estimated by bioimpedance 1,5,10 and 20 days 

post-expedition (unfilled triangle). Questionnaires were undertaken 39 days pre- and 5 days post-

expedition (diamond). Dynamic and basal blood tests: fasted blood sampling and 

dexamethasone-suppressed combined GnRH and ACTH-(1-24) test, 39 days pre, and 4-5 and 

15-16 days post-expedition (unfilled square). Body composition measured by DXA scan 64 and 



39 days pre and 15 days post-expedition (filled square). B: Altitude profile of study. Dashed line: 

altitude. Solid line: elapsed ski distance. Target icons indicate altitude of study visits in 

Camberley, UK. GnRH, gonadotrophin releasing hormone; ACTH adrenocorticotrophic hormone, 

DXA dual-energy x-ray absorptiometry, ASL above sea level  

  

     



Figure 2. Anthropometric changes during the expedition.  

  

Data are mean ± SD. Shaded rectangle: Duration of expedition. Circle with solid line: BMI. 

Square with dashed: total body fat (%) by skinfold. Triangle pointing upwards with dash-dotdot 

line: total body fat (%) by bio-electrical impedance. Triangle pointing downwards with dotted line: 

Total body fat (%) by dual energy x-ray absorptiometry. Diamond with dash-dot line: total lean 

mass (kg) by dual energy x-ray absorptiometry. BMI, body mass index 

 

 

 

 

 

 



Figure 3. Dynamic gonadotrophin function before and after the expedition.  

  

Individuals represented by symbols. Actual concentrations (top row) and fold difference from 

baseline concentrations (middle row) after 10μg GnRH administration before, 5 and 16 days after 

the expedition for FSH (A) and LH (B). The bottom row shows change in AUC and peak 

concentrations following 10μg GnRH administration at the same 3 time points for FSH (C) and LH 



(D). FSH AUC fold rise and peak fold rise did not change across visits (p=0.71 and p=0.55, 

respectively). There was an upward trend in LH AUC fold rise and peak fold rise (p=0.055 and 

p=0.071, respectively). FSH, follicle stimulating hormone; LH, luteinizing hormone; GnRH, 

gonadotrophin releasing hormone; AUC, area under the curve. One individual (filled square) 

commenced levonogestrel 150 mcg/ ethinylestradiol 30 mcg immediately prior to the expedition. 

One individual (unfilled circle) used Nexplanon ® contraceptive implant while all others used a 

Mirena ® intrauterine device  

  

  



Figure 4. Dynamic, monthly average hair and diurnal saliva cortisol concentrations  

  



A: adrenal response to (1-24) adrenocorticotrophin, 10 hours after central suppression with 0.25mg dexamethasone, before, and 5 days and 16 

days after the expedition. Top row: cortisol concentrations. Bottom row: fold difference in cortisol from baseline. Area under the curve and peak 

cortisol did not change between the three time points (p=0.12 and p=0.45, respectively, figure 4B). B: average monthly cortisol from 1cm hair 

segments prior to and during the expedition (expedition represented by bracket). C: change in AUC and peak concentrations during the 

dynamic test before, and 5 and 16 days after the expedition. D: Saliva cortisol 36-40 days pre-expedition and 18-24 days post expedition (left 

panel) and diurnal cortisol 1,4 and 10 days post-expedition (right panel).  

Individuals represented by symbols. Time: after ACTH-(1-24) administered. ACTH, adrenocortiocotrophin; F, cortisol. ** p<0.001  



Supplementary table 1. Anthropometric changes during the expedition.  

   

  Pre-expedition    Post-expedition  

  Visit pre-1  

(-64 days)  

Visit pre-2   

(-39 days)  

- 16 days  +1 day  Visit post- 

1  

(+5 days)  

+ 10 days  Visit post-2  

(+15 days)  

+ 18 to 24 

days  

BMI, kgm-2   

Mean (SD) [range]  

24.2 (0.97)  

[22.8 - 25.45]   

  

24.9 (1.24)   

[23.11 -  

26.72]   

25.0 (1.11)   

[23.48 -  

26.73]  

21.7 (1.23)   

[19.68 -  

22.91]  

22.3 (1.03)   

[20.59 -  

23.27]  

22.3 (1.17)   

[20.37 -  

23.53]  

22.4 (1.02)   

[20.56 -  

23.42]  

22.7 (1.02)   

[20.81 -  

23.72]  

Body mass, kg  

Mean (SD) [range]  

70.47 (4.51)   

[62.7 - 74.2]  

72.6 (1.75)   

[65.85 -  

76.83]  

  

72.8 (3.99)   

[65.8 -  

77.2]  

  

63.2 (4.74)   

[55.5 -  

68.4]  

  

64.9 (4.20)   

[58.0 -  

69.2]  

  

65.0 (4.03)   

[58.4 -  

68.9]  

65.3 (4.21)   

[58.3 - 69.1]  

66.2 (4.11)   

[59.5 - 69.7]  

  

% fat, DXA mean (SD)  20.92 (2.12)   

[19.2 to  

25.4]  

24.97 (2.39)   

[23.3 to  

30.3]  

        19.02 (1.28)   

[17.2 to  

20.4]  

  



         

% fat, skinfold mean (SD)      31.0 (2.0)   

[0.28 -  

0.33]  

  23.0 (1.0)   

[0.21 -  

0.24]  

      

%fat, BIA mean (SD)        22.15  

(2.22)   

[19.4 -  

26.0]  

21.8 (3.71)   

[18.1 -  

28.8]  

23.3 (1.20)   

[22.5 -  

25.7]  

  

25.0 (2.04)  23.2 (1.74)   

[22.2 - 28.1]  

  

Total body mass, DXA, kg  

Mean (SD) [range]  

70.6 (4.5)   

[62.68 to  

74.26]  

72.6 (3.9)   

[65.85 to  

76.83]    

      66.4 (4.2)   

[59.67 to  

70.76]  

  

Total lean mass, DXA, kg  

Mean (SD) [range]  

53.5 (3.06)   

[48.81 to  

57.27]  

52.3 (2.00)   

[48.85 to  

54.72]  

        51.5 (3.04)   

[47.25 to  

54.24]  

  

Total bone mineral content, 

DXA, kg  

Mean (SD) [range]  

2.75 (0.13)   

[2.62 to  

2.97]  

2.80 (0.13)   

[2.67 to  

3.02]  

        2.77 (0.12)   

[2.64 to  

2.97]  

  



BMI, body mass index. DXA, dual x-ray absorptiometry; BIA, bio-electrical impedance.   



Supplementary table 2.   

Regional lean, fat and bone mass changes during the expedition  

   

  Visit pre-1  Visit pre-2  Visit post-1  

Lean mass (kg)     

  Arms  5.44 (0.57)  5.15 (0.45)*  4.99 (0.36)  

  Legs  18.79 (1.05)  18.08 (0.98)*  16.98 (1.22)*  

  Trunk  26.15 (1.96)  26.06 (1.5)  26.52 (1.84)  

  Android  3.52 (0.24)  8.33 (0.61)*  53.57 (3.06)  

  Gynoid  3.73 (0.25)  8.4 (0.59)  52.34 (1.99)  

  Total  3.67 (0.31)  8.22 (0.54)  51.55 (3.04)  

Fat mass (kg)     

  Arms  1.44 (0.12)  1.94 (0.16)*  1.49 (0.19)*  

  Legs  6.4 (1.13)  7.26 (1.47)*  5.05 (0.79)*  

  Trunk  5.59 (1.09)  7.47 (1.16)*  4.79 (0.66)*  

  Android  0.61 (0.17)  0.9 (0.15)*  0.49 (0.08)*  

  Gynoid  2.92 (0.52)  3.71 (0.59)*  2.49 (0.43)*  

  Total  14.23 (2.11)  17.5 (2.52)*  12.13 (1.37)*  

  Total (%)  1.44 (0.12)  1.94 (0.16)*  1.49 (0.19)*  

Bone mineral content (kg)     

  Arms  0.34 (0.02)  0.35 (0.03)  0.35 (0.03)  

  Legs  1.05 (0.06)  1.05 (0.06)  1.05 (0.05)  

  Trunk  0.83 (0.07)  0.86 (0.07)*  0.83 (0.07)  



  Android  0.05 (0.00)  0.06 (0.01)*  0.05 (0.01)  

  Gynoid  0.30 (0.02)  0.30 (0.02)*  0.30 (0.02)  

  Total  2.75 (0.13)  2.80 (0.13)*  2.77 (0.12)  

   

Android: the area between the ribs and pelvis, gynoid: pelvis and upper thighs.  

* p<0.05 vs previous visit (paired t test)  

      



 Supplementary table 3 Comparison of Pre and Post- Expedition psychological testing  

   

  Score Pre  Score Post (‘during 

expedition’)  

p  

  Several periods of 

psychological stress  

5  2  0.079  

  Permanent psychosocial 

stress  

0  0  

  

1.0  

  Some periods of 

psychological stress  

1  3  0.2  

  Never experienced 

psychological stress  

0  1  1  

  One or more adverse 

events  

4  1  0.079  

  High or severe financial 

stress  

0  0  1.0  

IES-R  

Median (range)  

36 (9 – 52)*  41**  N/A  

PHQ-9  

Median (range)  

3 (0 – 11)  4 (1 – 6)  1.0  

BAI  

Median (range)  

11 (2 – 15)  6 (2 – 11)  0.386  

CDRISC 10  

Median (range)  

34 (31 – 36)  31 (29 – 35)  0.076  

BEDA-Q         



     Score  

Median (range)  

4 (0-6)  7 (2-8)  0.009  



BEDA-Q part B         

     “Are you trying to lose weight now?”     

     Yes n (%)  0 (0.0)  1 (16.7)  1.00  

     “Have you ever tried to lose weight?”     

     Yes n (%)  3 (50)  4 (66.7)  0.558  

     “If so, how many times?”      

  3-5 (2)  

>5 (1)  

>1 (1)  

3-5 (2)  

>5 (1)  

  

  

BEDA-Q: brief eating disorders in athletes questionnaire, IES-R: Impact of events scale  

(revised), PHQ-9 adjusted patient health questionnaire 9, BAI Beck Anxiety Inventory,  

CDRISC10 Connor Davidson Resilience Scale 10, N/A not applicable  

* Applies to four subjects who experienced a significant event  

**Applies to one subject who experienced a significant event  

    



  Supplementary table 4. Mean values for dynamic endocrine function tests  

 

FSH concentration (figure 3A)  

  Baseline  20 min  30 min  40 min  60 min  

Pre-Ex  5.83 (2.66)  6.91 (2.38)  7.28 (2.49)  7.25 (2.33)  7.05 (2.1)  

Ex + 5 days  5.3 (3.33)  6.31 (3.65)  6.55 (3.77)  6.71 (3.79)  6.27 (3.42)  

Ex + 16 days  3.5 (1.18)  4.67 (1.65)  4.91 (1.73)  5.03 (1.8)  4.86 (1.68)  

FSH concentration relative to baseline (figure 3B)  

Pre-Ex    1.24 (0.25)  1.32 (0.28)  1.31 (0.26)  1.29 (0.28)  

Ex + 5 days    1.29 (0.26)  1.37 (0.36)  1.43 (0.44)  1.34 (0.4)  

Ex + 16 days    1.33 (0.18)  1.40 (0.20)  1.43 (0.18)  1.39 (0.19)  

LH concentration (figure 3C)  

Pre-Ex  5.36 (2.04)  13.59 (4.35)  13.73 (4.03)  12.90 (4.03)  10.89 (3.68)  

Ex + 5 days  5.13 (3.70)  10.49 (7.10)  10.84 (7.63)  9.92 (7.12)  8.25 (5.95)  

Ex + 5 days  3.42 (1.43)  12.67 (4.42)  13.03 (4.18)  12.12 (4.15)  10.04 (3.08)  

LH concentration relative to baseline (figure 3D)  

Pre-Ex    2.68 (0.82)  2.74 (0.91)  2.57 (0.86)  2.14 (0.63)  

Ex + 5 days    2.24 (0.64)  2.40 (0.87)  2.12 (0.72)  1.82 (0.65)  

Ex + 5 days    4.10 (1.86)  4.19 (1.75)  3.86 (1.49)  3.24 (1.31)  

Cortisol concentration (figure 4A)  

Pre-Ex  73.25 (45.23)  127.54 (39.77)  128.14 (33.82)  110.53 (28.95)  100.60 (19.9)  

Ex + 5 days  61.66 (33.11)  130.53 (14.62)  140.09 (23.50)  131.77 (19.47)  110.16 (21.39)  

Ex + 5 days  54.43 (28.60)  122.21 (21.50)  125.79 (8.02)  137.61 (26.91)  113.19 (12.03)  



  

 Baseline: immediately prior to dynamic function test, LH: luteinizing hormone, FSH: follicle  

stimulating hormone, Ex: expedition  

   

 

 

 

 

 

 

     

 

Hair cortisol by month (figure 4B)  

Month*  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec  Jan  

  8.36  

(2.89)  

11.40 

(1.78)  

10.83 

(3.43)  

11.96 

(4.89)  

11.58 

(4.68)  

9.50  

(4.94)  

35.22  

(29.31)  

38.86 

(36.2)  

41.48  

(48.56)  

54.79  

(75.41)  

Diurnal Hair cortisol post-Ex (figure 4C)  

Ex+1 day PM  Ex+2 days AM  Ex+4 days PM  Ex+5 days AM  Ex+10 days PM  Ex+11 days AM  

6.38 (4.24)  6.89 (7.74)  3.47 (2.45)  4.86 (3.73)  1.37 (0.55)  10.29 (4.15)  

Hair cortisol day curve (figure 4D)  

Time  07:10  08:30  09:00  09:30  12:15  13:30  17:20  21:50  

Pre-Ex  13.68 (6.16)  7.03  

(5.37)  6.48 (4.76)  3.97 (1.43)  3.36 (1.79)  4.6 (2.39)  3.26 (2.42)  

2.68  

(2.75)  

Post-Ex  10.31 (5.63)  

6.39 (3.2)  3.82 (1.39)  3.47 (1.52)  2.2 (0.85)  3.17 (1.79)  2.18 (0.97)  

0.86  

(0.50)  



 Supplementary box 1.  

   

Hormonal markers tested  

  

17 OH Progesterone is an important steroid precursor hormone and is elevated in 

common forms of congenital adrenal hyperplasia (CAH). It is commonly checked to 

exclude CAH.  

  

Androstenedione is a weak adrenal androgen and precursor of testosterone and 

estradiol. It is also produced in the ovaries under influence of gonadotrophins and higher 

levels may predict recovery from FHA. {falsetti 2002}  

  

Anti-müllerian hormone is a biomarker of ovarian reserve. It peaks during puberty, then 

correlates inversely with age from around age 25 years.{Lie Fong 2012}  

  

Cortisol is a glucocorticoid produced by the hypothalamic-pituitary-adrenal axis. It has 

important roles in mobilizing energy stores and may be released in response to external 

stimuli, such as physical or psychosocial threats or challenges.  

  



Estradiol is the major feminizing sex hormone, responsible for the development of 

secondary sexual characteristics. It is produced from estrone or testosterone, 

predominantly but not exclusively in the ovaries.  

  

Inhibin B is produced in the ovaries in response to FSH and is reflects early-follicular 

phase follicle activity.{McNeilly 2012}  

  

LH, FSH are secreted in a pulsatile manner by the anterior pituitary in response to GnRH, 

and serve to control gonad function. The LH:FSH ratio is elevated in conditions with 

elevated androgen levels, such as polcystic ovarian syndrome.  

  

Prolactin is secreted by the anterior pituitary and is included as part of a complete 

anterior pituitary function test.  

  

Sex hormone binding globulin is produced by the liver and binds androgens and 

estrogens, limiting the amount of biologically available hormone. It is produced in 

response to estrogens while its production is reduced by androgens and IGF-1.  

  

Testosterone is the main androgen, produced in in men and to a lesser extent women. It 

is activated to dihydrotestosterone, which has higher androgenic effect, by 5 reductase  
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