Citation:

Link to Leeds Beckett Repository record:
http://eprints.leedsbeckett.ac.uk/id/eprint/6007/

Document Version:
Conference or Workshop Item (Accepted Version)
Presentation Theme
Player training and monitoring

Title
Giving ‘live’ GPS feedback to athletes: Does it alter locomotor performance during small-sided games?

Authors
Dale B. Read¹, Jonathon J.S. Weakley¹,², Hugh H.K. Fullagar³, Carlos Ramirez-Lopez¹,², Ben Jones¹,²,⁴,⁵,⁶, Cloe Cummins¹,⁶ and John A. Sampson⁷

Affiliations
¹Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, UK
²Yorkshire Carnegie Rugby Union Football Club, UK
³Faculty of Health, University Technology Sydney, Australia
⁴Leeds Rhinos Rugby Football League Club, UK
⁵The Rugby Football League, UK
⁶School of Science and Technology, University of New England, Australia
⁷Centre for Human and Applied Physiology, University of Wollongong, Australia

Corresponding Author
Dale B. Read
d.read@leedsbeckett.ac.uk
+61 (0) 412 321 093

Character Count
2500 / 2500
Introduction
Small-sided games (SSGs) are used to train physical qualities while practicing sport specific skills. Live Global Positioning Systems (GPS) data can provide feedback during these games; however, the impact of feedback on subsequent locomotor performance is unknown. This study aimed to investigate if providing ‘live’ GPS feedback to players in between bouts of SSGs altered locomotor performance.

Methods
Using a reverse counterbalanced design, twenty male university rugby players received either feedback or no-feedback (control) during ‘off-side’ touch rugby SSGs. Eight 5v5, 6x4 minute SSGs were played over four days (2/day) with a 20-minute rest between SSGs and at least 72-hours rest between days. Teams were assigned to feedback (4-games) with verbal feedback provided during a 2-minute between bout rest interval, or no feedback (4-games) for the day. Locomotor performance was measured via a 10 Hz GPS and variables were analysed using a linear mixed model, reported using effect sizes (ES) and 90% confidence intervals and then interpreted via magnitude-based inferences.

Results
Over the full SSG (6x4 min bouts) there was a possibly trivial (ES = 0.15 [-0.03, 0.34]) difference between conditions in total distance (2200 (156) vs. 2177 (186) m). There was also possibly trivial (ES = 0.18 [0.00, 0.37]) and likely trivial (ES = -0.07 [-0.27, 0.13]) differences between conditions in low- and high-speed distance. Between bouts there was a possibly or likely trivial (ES = 0.08 to 0.14) difference in total distance for bouts 2, 4, 5 and 6, with unclear (ES = -0.01 [-0.24, 0.22]) differences in bout 3. There was a likely trivial (ES = 0.11 [-0.01, 0.22]) difference in total distance covered during the first minute of each bout.

Discussion
In this study, verbal feedback did not alter locomotor performance in rugby players during SSGs. These data suggest that technical and tactical aspects of SSGs might reduce any ergogenic effects of feedback, although it is unknown if the type of feedback provided nullified any potential effects. Furthermore, extrinsic motivating factors such as team success are likely to be perceived as more important than locomotor performance. Future research should endeavour to investigate if these findings are consistent across other forms of feedback, bout durations, football codes, playing levels or training modalities.

Conclusions
Verbal feedback of distance covered during bouts of SSGs does not alter subsequent locomotor performance.