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Abstract12

The depth-sensing indentation (DSI) is currently one of the main experimen-13

tal techniques for studying elastic properties of materials of small volumes.14

Usually DSI tests are performed using sharp pyramidal indenters and the15

load-displacement curves obtained are used for estimations of elastic mod-16

uli of materials, while the curve analysis for these estimations is based on17

the assumptions of the Hertz contact theory of non-adhesive contact. The18

Borodich-Galanov (BG) method provides an alternative methodology for es-19

timations of the elastic moduli along with estimations of the work of adhesion20

of the contacting pair in a single experiment using the experimental DSI data21

for spherical indenters. The method assumes fitting the experimental points22

of the load-displacement curves using a dimensionless expression of an appro-23

priate theory of adhesive contact. Earlier numerical simulations showed that24

the BG method was robust. Here first the original BG method is modified25

and then its accuracy in the estimation of the reduced elastic modulus is26

directly tested by comparison with the results of conventional tensile tests.27

The method modification is twofold: (i) a two-stage fitting of the theoret-28

ical DSI dependency to the experimental data is used and (ii)a new objective29

functional is introduced which minimizes the squared norm of difference be-30

tween the theoretical curve and the one used in preliminary data fitting. The31

direct experimental validation of accuracy and robustness of the BG method32

∗Corresponding author
Email address: PerepelkinM@cardiff.ac.uk (Nikolay V. Perepelkin)

Preprint submitted to Mechanics of Materials November 8, 2018



has two independent steps. First the material properties of polyvinyl silox-33

ane (PVS) are determined from a DSI data by means of the modified BG34

method; and then the obtained results for the reduced elastic modulus are35

compared with the results of tensile tests on dumbbell specimens made of36

the same charge of PVS.37

Comparison of the results of the two experiments showed that the abso-38

lute minimum in relative difference between individual identified values of the39

reduced elastic modulus in the two experiments was 3.80%; the absolute max-40

imum of the same quantity was 27.38%; the relative difference in averaged41

values of the reduced elastic modulus varied in the range 16.20 ... 17.09%42

depending on particular settings used during preliminary fitting. Hence, the43

comparison of the results shows that the experimental values of the elastic44

modulus obtained by the tensile tests are in good agreement with the results45

of the extended BG method. Our analysis shows that unaccounted factors46

and phenomena tend to decrease the difference in the results of the two ex-47

periments. Thus, the robustness and accuracy of the proposed extension of48

the BG method has been directly validated.49

Keywords: the BG method, estimation of material properties, depth50

sensing indentation, tensile testing, polyvinyl siloxane (PVS)51

1. Introduction52

Evaluation of elastic moduli of materials and their adhesive properties is53

one of the important tasks of modern materials science. However, the experi-54

mental estimations of the material properties become particularly challenging55

if the specimen is made of a small quantity of material or if it is a thin film56

deposited on the surface of another object. In these cases one of the most57

useful techniques is the depth sensing indentation (DSI). This technique in-58

cludes loading and unloading of a material specimen by a probe (indenter),59

and continuous monitoring the value of the applied force (P ) and the probe60

displacement (δ).61

DSI was introduced by Kalei (1968) 50 years ago. Then it was suggested62

to use the experimental unloading P − δ curves for extracting the values63

of the elastic modulus of the tested material (Bulychev et al., 1975, 1976;64

Shorshorov et al., 1981). Currently there are several approaches for eval-65

uation of the elastic modulus employing the DSI experiments with sharp66

pyramidal indenters (Doerner and Nix, 1986; Oliver and Pharr, 1992; Bull,67
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2005; Galanov and Dub, 2017). On the other hand, the DSI technique works68

with spherical indenters too. One of the techniques based on an inverse69

analysis of the DSI experiments with spherical indenters is the BG method.70

Originally the BG method was introduced by Borodich and Galanov (2008)71

and then it was discussed in a series of papers (Borodich et al., 2012a,b,72

2013). Numerical tests and experimental studies showed that even the origi-73

nal BG method is simple and robust. Our paper is devoted to the extension74

of the BG method and direct experimental validation of both the accuracy75

and robustness of this extended method.76

To explain the advantages of the BG approach, we need to discuss the77

common DSI techniques working with pyramidal indenters first. In the above78

cited approaches to DSI by sharp indenters, the unknown elastic proper-79

ties of samples are estimated from the experimental DSI data by solving an80

inverse problem to the non-adhesive Hertz-type contact problem (see e.g.,81

Johnson (1985); Popov (2010); Borodich (2014)). As any other model-based82

approaches, it requires a prebuilt mathematical model of the interaction be-83

tween the probe and the specimen. It follows from the Hertz contact the-84

ory that the elastic modulus may be estimated using the BASh (Bulychev–85

Alekhin–Shorshorov) formula. Originally formula was derived for frictionless86

contact of some axisymmetric punches and it was suggested to extend it to87

non-axisymmetric indenters, e.g. pyramidal indenters (Bulychev et al., 1975).88

Then it was noted that if one applies the geometrically linear formulation of89

Hertz-type contact problem to unloading branch of the P − δ curve then one90

needs to take into account the actual distance between the indenter and the91

plastically distorted surface (the Galanov effect) (Galanov et al., 1983, 1984).92

It was also shown that the friction between the indenter and the speciment93

surface may also affect the slope of the unloading curve (Borodich and Keer,94

2004b). Thus, the BASh formula can be written as (Argatov et al., 2017)95

dP

dδ
= β

2√
π
E∗
√
A, β = β1 · β2 · β3 (1)

where A is the area of the contact region and E∗ is the reduced elastic contact
modulus. For isotropic materials, this modulus can be obtained from the
following formula

1

E∗
=

1− ν2
1

E1

+
1− ν2

2

E2

where Ei and νi (i = 1, 2) are the elastic modulus and Poisson’s ratio of96

the two contacting solids (the specimen and the indenter) respectively. If the97
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indenter is rigid, i.e. E2 =∞ then E∗ = E/(1−ν2) where E = E1 and ν = ν198

are the elastic modulus and Poisson’s ratio of the half-space, respectively. In99

(1) the factor β1 is introduced due to the concept of the effective indenter100

shape (the Galanov effect) (Galanov et al., 1983, 1984), β2 is the contact101

area shape factor which extends the BASh formula to the non-axisymmetric102

case, and the factor β3 is introduced due to the effects of friction between103

the indenter and the half-space (Borodich and Keer, 2004a,b). It has been104

shown in the case of adhesive (no-slip) contact between a rigid indenter and105

an elastic sample β3 = CNS that can be expressed as a function of the106

material Poisson ratio (ν)107

CNS =
(1− ν) ln(3− 4ν)

1− 2ν
. (2)

The above described approaches to indentation by sharp indenters have108

several drawbacks. Strictly speaking the Hertz contact theory is not appli-109

cable to these tests based on the use of sharp indenters (see a discussion in110

Borodich and Keer (2004a); Chaudhri and Lim (2007); Borodich (2014)), in111

addition, it ignores the adhesive effects between the indenter and the sample.112

On the other hand, the use of spherical indenters allows the researchers to113

avoid plastic deformations of specimens and therefore, they may work in the114

framework of theory of elasticity and do not violate the geometrical assump-115

tions of the Hertz formulation. In addition, devices with cantilever-supported116

indenters may be used. In the case of cantilever support the inavoidable in-117

clination of the cantilever (see e.g. Al-Musawi et al. (2016)) has much less118

influence on interaction between the indenter and the specimen in comparison119

to the case when a sharp indenter is used.120

The original version of the BG method is based on solving an inverse121

problem to adhesive contact between a spherical indenter and an elastic half-122

space using one of the well-established theories of adhesive contact, e.g. the123

JKR or DMT ones. The method uses a dimensionless mathematical depen-124

dency between the force applied to the indenter and its displacement (the125

theoretical load-displacement curve) as the mathematical model of the adhe-126

sive interaction ”indenter-specimen”.127

Any analytical force-displacement dependency can be written in a dimen-128

sionless form. To do so, one needs to determine the so-called characteristic129

scales of the problem. These scales are the model parameters and their values130

are subject to adjustment through an optimization process until the best fit131
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of the theoretical curve to the experimental data points is found. The par-132

ticular representation of the theoretical curve and the characteristic scales133

depends on the theory of adhesive contact chosen as the framework of the134

problem (e.g. the Johnson-Kendall-Roberts (JKR)(Johnson et al., 1971) or135

the Derjaguin-Muller-Toporov (DMT)(Derjaguin et al., 1975) theories). For136

example, for a spherical indenter of radius R, the characteristic scales may137

be taken as138

Pc =
3

2
πwR, δc =

3

4

(
π2w2R

E∗2

)1/3

. (3)

In the JKR theory, the above characteristic scales have a clear mechanical139

meaning: Pc is denoted the absolute value of the pull-off force, and δc is the140

absolute value of the minimum displacement that occurs due to adhesion.141

Once optimal values of Pc and δc are found, the material properties E∗ and142

w can be easily evaluated by inversion of the latter formulae143

w =
2Pc
3πR

, E∗ =
Pc
4

√
3

Rδ3
c

. (4)

Contrary to the interpretation of the DSI tests based on the BASh for-144

mula, the BG method allows not only to evaluate the elastic properties (the145

reduced elastic contact modulus E∗) but also the adhesive properties (the146

work of adhesion w) of tested pair of materials. Unlike the other methods147

of mechanics of materials that require separate experimental set-ups for the148

determination of elastic and adhesive properties of materials, the BG method149

allows to identify those quantities simultaneously using a single set-up. More-150

over, it can utilize only the stable compressive part of the load-displacement151

data whereas some other approaches require the pull-off force measurements152

in order to estimate the value of the work of adhesion (e.g. Ebenstein and153

Wahl (2006); Carrillo et al. (2005); Rundlöf et al. (2000); Wahl et al. (2006);154

Yu et al. (2015)). However, measurements of the pull-off force can be influ-155

enced by many factors: the roughness of contacting surfaces, surface chem-156

istry, wear of the DSI probe, chemical modification of its surface (in case of157

atomic force microscopy used), dust particles etc. (see e.g., Grierson et al.158

(2005); Beach et al. (2002); Gorb and Gorb (2009)). Therefore, the ten-159

sile part of DSI load-displacement data can be considered unstable and less160

trustworthy, and the BG method has an advantage here.161

The BG method is non-direct because the characteristic values are not162

measured but rather evaluated from the stable part of the P − δ diagram,163
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while Pc is extracted from measurements on the unstable part of the dia-164

gram in the direct methods (Wahl et al., 2006; Ebenstein and Wahl, 2006).165

In addition, the BG method differs from the ordinary least-squares fitting166

because: (i) it uses different objective functional and therefore, it provides167

different optimum, (ii) whenever possible, dimensionless variables are used168

which allows to apply optimization procedures to the quantities of different169

physical nature and different orders of magnitude.170

The paper is organized as follows. In Section 2, the paradigm of the BG171

method is extended. Originally the method was applied only to the con-172

tact problem between a spherical indenter and an elastic half-space. Here,173

it is argued that the BG method can be considered as a general model-174

based approach to determination of the effective contact modulus and the175

work of adhesion of materials or structures from the DSI data. Examples176

of appropriate theories of adhesive contact and the corresponding theoret-177

ical load-displacement curves are considered. Then an alternative formula-178

tion of the objective functional of the BG method is also given. A concept179

of two-stage fitting of the theoretical DSI dependency to the experimental180

data points is introduced. This means that the data is fitted firstly by an181

auxiliary curve which acts as a filter in certain sense. The mathematical182

representation of that pre-fitting curve is supposed to be as simple as pos-183

sible. This allows one to use some advanced fitting/filtering techniques to184

reduce measurement noise and fluctuations in the data. Secondly, the the-185

oretical load-displacement curve (the expected DSI dependency which may186

be a complex expression) is fitted to the auxiliary one via minimization of187

the squared norm of the difference of the two functions (the objective func-188

tional). The sought material properties are determined from the optimal set189

of characteristic parameters that give minimum to the objective functional.190

In Section 3 the results of a DSI-based experiment and an application of191

the extended BG method are described. The experimental set-up and raw192

data pre-processing are also discussed. A specimen was made of polyvinyl193

siloxane (PVS). This is an elastomer widely used as an impression material,194

particularly in dentistry. A series of DSI tests was carried out using DSI195

equipment and a spherical indenter (lens) of large radius (R = 5.155 mm)196

supported by a cantilever spring with constant c = 1023.9N/m. The experi-197

mental data was processed using the extended BG method, and the values of198

the modulus E∗ and the work of adhesion w were calculated. The specimen199

size was large enough to consider it as an elastic half-space, and therefore,200

the JKR theory of adhesive contact was applied.201
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In Section 4 the description of the tensile set-up used for the validation of202

the BG method is given as well as the discussion regarding post-processing203

of the measured data and the obtained results. In this experiment we per-204

formed conventional tensile testing (Davis, 2004) of ISO 37 type 3 dumbbell205

specimens made of exactly the same PVS material using Zwick Roell ten-206

sile machine. As the result of this experiment, the elastic modulus E and207

Poisson’s ratio ν were determined which allowed us to calculate the reduced208

elastic contact modulus E∗ = E/ (1− ν2) and compare it to the value ob-209

tained using the BG method. Since our piece of equipment was not equipped210

with extensometer, two types of mathematical modelling (analytical and fi-211

nite element) of the tensile experiment was used to introduce correction into212

the values of E produced from the raw tensile data. The value of Poisson’s213

ratio was estimated from video records of stretching process by using the214

methods of photogrammetry.215

In Section 5, the results of the two experiments are compared and the used216

approaches discussed. It is shown that the values of E∗ calculated using the217

two different approaches coincide well. Our analysis shows that unaccounted218

factors and phenomena tend to decrease the difference in the results of the219

two experiments. Thus, the accuracy of the BG method has been directly220

validated in this work. The obtained results also provide more experimen-221

tal data on PVS properties, since this matter is not widely represented in222

literature (see e.g., Chai et al. (1998); Wieckiewicz et al. (2016))223

2. The extended BG method224

As it is mentioned above, the BG method allows one to extract from the225

experimental data of DSI test the two properties of the tested material simul-226

taneously: the reduced elastic contact modulus E∗ and the work of adhesion227

w. The BG method in its original form presumes the use of either the JKR228

or the DMT theories of adhesive contact between a spherical indenter and229

an elastic half-space. The load-displacement relation in these theories can be230

represented in the dimensionless form as231

F

(
P

Pc
,
δ

δc

)
= 0. (5)

Let us consider a set of N measured experimental values of indentation232

depth δi and indentation force Pi : (δi, Pi) , i = 1, . . . , N . If the measurements233

are absolutely exact, then the values of Pc and δc can be determined quite234
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easily. Indeed, the theoretical curve in such case passes through all the data235

points which can be mathematically expressed as the set of equalities236

F

(
Pi
Pc
,
δi
δc

)
= 0, i = 1, . . . , N. (6)

The correct values of Pc and δc make all of these equations valid simultane-237

ously. Therefore, one needs to take any two of them and solve for Pc and238

δc. However, the real experimental measuremets (δi, Pi) always contain some239

measurement errors. Therefore, one needs to take into account all of the N240

expressions in (6) simultaneously. Due to measurement errors the expres-241

sions (6) never become true at the same time and the inverse problem of242

finding the characteristic scales from the DSI data is ill-defined (one has an243

overdetermined system of equations) (Borodich and Galanov, 2008).244

Since it is impossible to make all of the expressions in (6) true, one245

can only minimize the measure of the overall ’error’ produced in (6). If246

εi = F

(
Pi
Pc
,
δi
δc

)
is the residual of i-th equation, then the measure of the247

total ’error’ can be the mean square value of all such residuals248

ε =
1

N

N∑
i=1

ε2
i . (7)

Hence, in order to find the appropriate values of the characteristic pa-249

rameters an optimization problem must be solved. The optimal values of the250

characteristic parameters P ∗c , δ
∗
c that minimize the mean square residual (7)251

of the equations (6) are found as the result of minimization of the objective252

functional (the cost functional) of the problem Φ(Pc, δc)253

{P ∗c , δ∗c} = arg min Φ(Pc, δc) (8)

where254

Φ(Pc, δc) =
N∑
i=1

[
F

(
Pi
Pc
,
δi
δc

)]2

. (9)

After the above optimization problem is solved (see e.g., Boyd and Vanden-255

berghe (2004); Chong and Zak (2001)), the theoretical curve (5) becomes best256

fit to the experimental data in the sense of (9) through the choice Pc = P ∗c257

and δc = δ∗c and the sought material parameters E∗ and w can be evaluated258

using (4).259
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In particular, if the JKR theory of adhesive contact (Johnson et al., 1971)260

is used, then the load-displacement dependency can be written as a piece-wise261

function of the form262 

(3χ− 1)

(
1 + χ

9

) 1
3

− δ

δc
= 0

for χ ≥ 0,
δ

δc
≥ −3−2/3,

(3χ+ 1)

(
1− χ

9

) 1
3

− δ

δc
= 0

for
2

3
≥ χ ≥ 0, −3−2/3 >

δ

δc
≥ −1

(10)

where χ =
√

1 + P
Pc

(Maugis, 2000). As mentioned earlier, the characteristic263

scales Pc and δc are expressed as (3) for spherical indenter.264

The experimental data is fitted with the stable part of the above depen-265

dency which becomes the function F
(
P
Pc
, δ
δc

)
in the BG method:266

F

(
P

Pc
,
δ

δc

)
= (3χ− 1)

(
1 + χ

9

) 1
3

− δ

δc
= 0. (11)

As compared to the fitting approaches used by other researchers, the BG267

method (8)-(9) has its own distinctive features: (i) the metric (9) differs268

from the one normally introduced in least-squares curve fitting, therefore269

producing different optimum point, (ii) the method uses fitting curve writ-270

ten in dimensionless form which allows to treat quantities of different orders271

of magnitude in the same way, (iii) the fitting process is performed via ad-272

justing characteristic scales Pc and δc and not the material properties. Also273

the method successfully allows to estimate E∗ and w using only compres-274

sive part of the load-displacement data, thus using only stable measurements275

(Borodich et al., 2012a,b).276

In the present paper, however, we use a variant of the extended BG277

method. This approach is particularly useful for the cases when the theoret-278

ical load-displacement curve is represented as a parametric function.279

In this approach we first fit the experimental data with an auxiliary curve280

P = Ψ (δ) with low number of degrees of freedom. The curve acts as a high-281

pass filter, smoothing the data significantly (see Fig. 1,a). In the current282
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work this smoothing curve was chosen to be a polygonal chain with relatively283

small number of segments NS.284
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Figure 1: The concept of two-stage fitting the experimental data: (a) smoothing experi-
mental data using a polygonal chain (the preliminary fitting with an auxiliary curve), (b)
fitting the theoretical load-displacement curve to the auxiliary one.

The point of doing so is that the auxiliary curve is supposed to have very285
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simple mathematical representation. Therefore, some advanced fitting meth-286

ods can be used to construct it. In this work the smoothing dimensionless287

curve is built as the result of minimization of the sum of squares of orthogonal288

distances from it to the data points (the so-called orthogonal distance fitting289

concept, ODF (Ahn, 2004; Boggs et al., 1987)). This approach is useful when290

both abscissas and ordinates of the data points are subject to measurement291

errors. Since the distance from a point to a straight line can be presented292

as a well-known formula, it is possible to explicitly program a function eval-293

uating the sum of squared orthoghonal distances and made it the subject of294

minimization process. Due to simple mathematical form (piece-wise linear),295

fitting with polygonal chain is performed extremely quickly using well-known296

computer algebra systems (e.g. Matlab).297

It is important to note that the term ”distance” cannot be directly applied298

to the space of variables of different physical meaning and of different orders299

of magnitude. That is the reason why the preliminary orthogonal distance300

fitting is performed using the normalized data:301

δn =
δn − 〈δi〉

max (δi)−min (δi)
,

Pn =
Pn − 〈Pi〉

max (Pi)−min (Pi)
,

i, n = 1, . . . , N.

(12)

where 〈· 〉 is the following averaging operator

〈xi〉 =
1

N

N∑
i=1

xi.

This kind of normalization transforms all dimensionless values of force Pn and302

displacement δn into the interval [−1, 1]. When the coordinates of optimal303

polygonal chain are found in the space of the dimensionless quantities, they304

can be easily recalculated back to the space of dimensional quantities by305

inverting the formulae (12).306

The particular way of construction of the pre-fitting polygonal chain was307

chosen as follows. The polygonal chain is supposed to have NS segments and308

NS + 1 vertices. The first vertex is located at δmin, the last one is located at309
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δmax (see Fig. 1,b for reference). The abscissas of the vertices are uniformly310

spaced: the k-th vertex abscissa is δV k = δmin + (δmax − δmin)(k − 1)/NS.311

The ordinates of the vertices PV k are subject to optimal fitting the polygonal312

chain to the data by means of the ODF fitting in the space of dimensionless313

quantities (12).314

On the second step of the extended BG method the theoretical curve (10)315

is fitted to the auxiliary one via adjusting Pc and δc. We require minimiza-316

tion of the squared norm of the difference between the two functions on the317

interval [δmin, δmax] where δmin = min (δi) , δmax = max (δi) , i = 1, . . . , N318

(Fig. 1,b):319

Φ(Pc, δc) =

δmax∫
δmin

[P (δ)−Ψ (δ)]2 dδ → min. (13)

Here P = P (δ) is the theoretical load-displacement curve, and P = Ψ (δ) is320

the auxiliary one.321

Since the stable branch of (10) cannot be written as P = P (δ) , we322

transform (13) as follows. Firstly, a dimensionless parameter ā along the323

theoretical curve is introduced as P = Pcā. Secondly, the stable branch of324

the theoretical JKR curve (10) is rewritten in parametric form as325 δ = δc

(
3
√

1 + ā− 1
)(1 +

√
1 + ā

9

) 1
3

,

P = Pcā

(14)

or326 {
δ = δcf (ā) ,

P = Pcā.
(15)

Substitution of (15) into (13) yields:327

Φ(Pc, δc) = δc

āmax∫
āmin

[Pcā−Ψ (δcf (ā))]2
df

dā
dā → min. (16)

The problem (16) is the particular one used in the present study to calcu-328

late the optimal values of Pc and δc. It was done for every separate measure-329
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ment (data set) and the corresponding values of E∗ and w were calculated330

using (3).331

In the general case of parametrically-represented load-displacement curve332 {
δ = δcf1 (ā, δc, Pc) ,

P = Pcf2 (ā, δc, Pc) ,
(17)

the optimization problem (16) becomes333

Φ(Pc, δc) = δc

āmax∫
āmin

[Pcf2 (...)−Ψ (δcf1 (...))]2
∂f1 (...)

∂ā
dā → min (18)

where (...) denotes (ā, δc, Pc).334

Remark. The actual distance from the probe surface to the specimen335

surface is unknown. The moment when the indenter jumps into contact due336

to adhesion forces during loading is rather unclear due to measurement noise.337

This means that the origin of the δ axis is in fact unknown. Therefore, in the338

light of the above the measured values of δ are supposed to have an unknown339

additional shift value δs (separate for each of the DSI data sets) introduced340

into the readings. This value is determined as follows. A series of possible341

shift values is generated. Each such value is subtracted from the measured342

set δi (i = 1, . . . , N) and then minimization of (16) is performed. The correct343

shift value is supposed to give the absolute minimum of the functional values344

among all trial minimizations. The corresponding values of Pc and δc are345

considered to be the true ones.346

3. Determination of material propertiess from a DSI experiment347

by the extended BG method348

Let us describe a DSI-based experiment that was carried out in order to349

test the robustness of the modified BG method using real experimental data.350

3.1. The experimental set-up and raw data pre-processing. Assumptions val-351

idation352

The custom made force measurement device Basalt-1 (TETRA GmbH,353

Ilmenau, Germany) was used for DSI experiments (Fig. 2). In this set-up,354

the PVS specimen was loaded by a spherical indenter (a glass lens of known355
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radius R = 5.155 mm) attached at the end of a planar cantilever spring with356

constant c = 1023.9N/m. The displacement of the other end of the spring357

was set using a piezo drive. Two fiber optical sensors S1 and S2 were used358

to control the deflections of both ends of the spring. The readings from the359

sensor S2 went to the output file as total displacement δ0 while the difference360

in the readings of S1 and S2 was recalculated into the values of applied force361

(in device-dependent arbitrary units) which also went to the output file. The362

latter values were converted to Newtons using the results of calibration.363

To obtain the load-displacement dependency of the indenter, one needs to364

subtract the deformation of the spring from the total recorded displacement365

applied to the system ”spring-indenter-specimen”. It was done using the366

following formula367

δ = δ0 −
P

c
(19)

where δ0 is the total displacement applied via piesoelement, δ is the displace-368

ment of the indenter (the true displacement), P is the applied force, c is the369

spring stiffness.370

Since some measurements exhibited drift of zero point in the force value,371

the values of force were manually corrected for each measurement by means372

of a custom Matlab script. The same script was used to subtract the defor-373

mation of the spring which was done using the modified formula (19):374

δ = δ0 −
P − Pcorr

c

where Pcorr is zero drift value. The typical processed readings are represented375

in Fig. 3.376
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(a)

(b)

Figure 2: The DSI setup: (a) the schematic, (b) the photographic image.
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Figure 3: Typical processed DSI data (spring deflection subtracted, force readings rescaled
to Newtons)

The specimen for DSI study consisted of a 35(diameter) x 10(height) mm377

Petri dish filled with two-component AFFINIS (R) light body PVS (Coltene,378

Switzerland) (Fig. 4,a). After filling the dish the PVS surface was covered379

with a clean piece of glass slide (Carl Roth, Karlsruhe, Germany) until the380

PVS polymerized in order to produce flat clean surface. Since PVS tends to381

form bubbles during moulding process, the top surface of the specimen was382

visually examined using optical microscope and 5 indentation locations were383

selected far from any visible inhomogeneity. Schematically the specimen is384

represented in Fig. 4,b, numbers denote measurement locations. Five DSI385

measurement were performed at each location which resulted in 25 data386

sets in total. Maximum indentation depth did not exceed 40 μm in each387

single experiment. The specimen was tested after approximately 16 h after388

polymerization.389
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(a) (b)

Figure 4: The PVS specimen for DSI experiment: (a) the photographic image, (b) the
schematic image. Numbers denote locations of individual DSI experiments.

In the present work we model interaction between the indenter and the390

specimen as indentation of an elastic half-space. Indeed, many authors391

modelled indentation of finite-size specimens by means of the finite element392

method (FEM) (see e.g. Sadeghipour et al. (1994)). These studies show that393

a large enough finite specimen acts effectively as an elastic half-space. To con-394

firm this for the particular geometry of our specimen we use FEM in applica-395

tion to the problem of non-adhesive indentation of the finite volume cylindri-396

cal specimen of radius r and height h by a rigid sphere (see the model in Fig.397

5,a) The modeling was performed by means of ANSYS 18 Mechanical APDL398

software (https://www.ansys.com/products/structures/ansys-mechanical-pro)399

in axisymmetric formulation using the following finite element types: PLANE183400

for PVS; CONTA175 and TARGE169 for contact pair (the description of401

these element types can be found in the ANSYS software manual or in in the402

SNARCNET academic network https://www.sharcnet.ca/Software/Ansys/17.2/en-403

us/help/ans elem/Hlp E ElemTOC.html). The indenter was assumed to be404

rigid, the PVS bulk was assumed to have the following properties: E = 2.97405

MPa, ν = 0.418. Indentation depth was supposed to be δ = 40µm. The406

obtained numerically load-displacement curves for different sizes of the spec-407

imen are shown in Fig. 5,b. The reference curve obtained from Hertz contact408

theory for a rigid sphere and an elastic half-space is shown as well (thick solid409

line).410

In these results the dashed line corresponds to measurement point No.2 on411

the specimen (r=17 mm, h=10 mm), while the thin solid line represents the412

case which is worse than any of the points No. 1,3,4 and 5 (r=7 mm, h=10413

mm). Comparison the latter two simulations at the maximum indentation414
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depth and the Hertzian model give the relative error in force value of 4.6%415

and 6.6% correspondingly. Since FEM also introduces some inaccuracy in416

comparison to the analytical Hertzian curve, the above results are compared417

with the results of FEM simulation of a very large specimen ( r=68 mm,418

h=40 mm, dots in Fig. 5) which gives the relative error of 3.9% and 5.8%,419

correspondingly.420

Thus, modeling the actual specimen as an infinite elastic half-space pro-421

vides acceptable level of accuracy. Therefore, the mathematical apparatus of422

the JKR theory of adhesive contact can be applied here.423

Based on the above justification, the BG method was applied to the424

unloading parts of the P−δ curves using the classic JKR contact theory as the425

framework for the problem. The theoretical load-displacement dependency426

was supposed to have the form (10) and the BG method was used in the427

extended formulation (16).428

The results of application of the BG method to the obtained experimental429

data are described below.430
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Figure 5: Numerical modelling of indentation of a finite size specimen : (a) FEM model
(axisymmetric, the right part of the axial cross-section is shown), (b) comparison of load-
displacement curves obtained for different r and h: thick solid line (red) is the reference
Hertzian curve for half-space; thin solid line (blue) corresponds to h=10 mm (h/r = 1.43);
dashed line to h=10 mm (h/r = 0.59); circles to h=20 mm (h/r = 0.59); and dots to
h=40 mm (h/r = 0.59).
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3.2. The results of the DSI experiment431

As it is mentioned above, 25 data sets representing unloading branches of432

the DSI curves were obtained in the experiment. Each of these data sets was433

pre-fitted with a polygonal chain. These lines were used as the pre-fitting434

function P = Ψ(δ) in (16). Since the number of segments in the pre-fitting435

polygonal chain has some influence on the identified values of E∗ and w, the436

number of segments was varied from 4 to 10. Every time the values of E∗ and437

w were identified separately for each of the 25 data sets. Then the averaged438

values < E∗ > and < w > as well as the standard deviations σE∗ and σw439

were computed.440

As an example, in Fig. 6 the results of identification are shown for pre-441

fitting with 7-segment line. The complete result set is shown in the Appendix442

in Fig. A.19-A.21. It can be seen that the points on the (w,E∗) plane443

obtained using the modified BG method build very compact groups which444

shows that the approach (16) is robust against the measurement noise and445

fluctuations in data.446
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Figure 6: An example of a set of identified values of material properties extracted using
pre-fitting with polygonal chain. Number of segments in chain: 7.

The dependency of the averaged values of the reduced elastic contact447

modulus and the work of adhesion on the number of segments is shown in448

Fig. 7,a. According to the presented results the averaged values of E∗ vary449

from 4.2959 to 4.3419 MPa, the averaged values of w vary from 0.116 to 0.136450

J/m2. Clearly, these values do not vary much which shows that the proposed451

method is stable and robust with respect to chosen number of segments NS.452
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The dependency of the values of standard deviation of the reduced elastic453

contact modulus and the work of adhesion on the number of segments is454

shown in Fig. 7,b.455
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Figure 7: The experimental results: (a) identified averaged PVS properties values versus
the number of segments in the pre-fitting curve (the reduced elastic contact modulus and
the work of adhesion), (b) standard deviations of the identified PVS properties values
versus the number of segments in the pre-fitting curve.
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4. The tensile experiment456

The purpose of the tensile test was to validate accuracy of the BG method457

by evaluation of the reduced elastic contact modulus E∗ of the very same458

PVS material using a completely different experiment, namely a standard459

tensile test. Since the BG method provided us with the estimated values of460

the reduced elastic modulus, one needs to evaluate both the elastic modulus461

and Poisson’s ratio from the results of tensile testing, in order to be able to462

compare the results of these two experiments.463

Hence, this Section consists of two independent parts. In the first part464

we describe the experimental evaluation of the elastic modulus of the PVS,465

while the second part is devoted to description of the process of estimation of466

the Poisson’s ratio of the same material using methods of photogrammetry.467

4.1. Experimental set-up and the measurements468

The conventional tensile testing of dumbbell specimens was carried out469

as an alternative way to determine the properties of PVS (Davis, 2004). The470

specimens were manufactured as close as possible to the requirements of ISO471

37 type 3 specifications and made of exactly the same PVS charge which was472

used in the DSI testing. The Zwick Roell zwickiLine tensile machine and473

testXpert II software were employed. A schematic of the specimen is shown474

in Fig. 8,a. The brown shaded area corresponds to the part of the specimen475

being gripped by the tensile equipment. Nominal specimen thickness is 2476

mm. The five actual specimens had the following dimensions of the cross-477

sections of the gage sections (thin parts) (thickness x width): 1) 2.2 x 4.35478

mm, 2) 2.1 x 4.1 mm, 3) 2.15 x 4.1 mm, 4) 2.2 x 4.15 mm 5) 2.05 x 4.5479

mm. The photographic image of the specimens is shown in Fig. 8,b. The480

specimens were tested approximately 18 h after moulding.481

The testing was performed up to 3% of overall grip-to-grip elongation.482

Each specimen was tested 10 times. The recorded strain-stress curves showed483

that the specimens 1,3,5 produced very similar results while the two other484

specimens (2, 4) did not (the two lower sets of lines in Fig. 9,a). These two485

specimens were considered to have internal defects (most likely these defects486

were air bubbles inside the material) and were excluded from the further data487

analysis.488

The tests showed that the material behavior may be well described as489

linearly elastic up to few percent deformation.490
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(a)

(b)

Figure 8: ISO37 type 3 specimens: (a) the schematic, (b) the actual specimens tested.

The specimens stretching during tensile test was recorded using a HD491

camera for evaluation of the Poison’s ratio. The methods of photogrammetry492

were applied to the captured images of the specimens.493

The photographic image of the whole set-up is shown in Fig. 9,b.494

4.2. Evaluation of elastic modulus. Correction factors for the compliance of495

the specimens.496

Normally, in the tensile experiment the deformation of the thin part (gage497

section) of the specimen is measured. This allows one to evaluate the elastic498
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modulus using simplest theory of a rod under uniaxial tension.499

Indeed, consider a rod of length L0 and constant rectangular cross-section500

of area A = b0 · h where b0 is its width and h is the thickness, under tensile501

load P . Assuming homogeneous uniaxial stress condition inside the rod, the502

elastic modulus of the material can be determined as503

E =
dσ

dε
=

d
(
P
A

)
d
(
∆L0

L0

) =
L0

A

dP

d∆L0

=
L0

b0h

dP

d∆L0

(20)

where ∆L0 is the elongation of the rod. Assuming linear behaviour of the504

material, one can also write505

E =
L0

b0h

P

∆L0

. (21)
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(a)

(b)

Figure 9: (a) the stress-strain curves for specimens 1-5 (screenshot of the testXpert soft-
ware), (b) the experimental set-up for the tensile experiment.
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Because our experimental set-up was not equipped with an extensometer506

to control the deformation of the gage section of the specimens, the defor-507

mation of the whole specimen was controlled (the grip-to-grip elongation).508

If the grip-to-grip distance is denoted as L and the grip-to-grip elongation is509

denoted as ∆L, then simple substitution L as L0 and elongation of the whole510

specimen ∆L as ∆L0 into (21) clearly introduces some amount of inaccuracy511

because the grip-to-grip elongation is influenced by the compliance of the512

non-gage parts of the specimen and the machine compliance as well.513

It should be noted that many authors argue that shape of specimens and514

the compliance of the load cell of the tensile machine can influence the results515

significantly. For example, Jia and Kagan (1999) provide evidences that the516

results may differ drastically from the expected ones due to the compliance517

of the dumbbell parts of the specimens and machine compliance. Further,518

Sergueeva et al. (2009) found that the calculated values of elastic modulus519

depended on the specimen geometry, in particular, on the gage length of the520

specimen. Thus, because the specimens were made of rather soft material,521

the influence of the compliance of the dumbbell parts of the specimens must522

be assessed and the method for computation of the results corrected.523

Load-cell compliance was taken into account during the factory calibra-524

tion of the Zwick/Roell material testing machine. Therefore, this factor was525

not considered, only the compliance of the specimen has to be analyzed.526

Consider a dumbbell specimen of the length L and constant thickness h527

which is subjected to tensile load by the force P . The width of the cross-528

section is the function of the picked location b(x). Let us consider the gage529

section of the specimen subjected to uniaxial stress. This part has length530

L0 and cross-section width b0 (Fig. 10). In our experiment the grip-to-grip531

distance was L = 33.16mm and the gage length was L0 = 10mm for ISO37532

type 3 specimens. Let us follow the ideas expressed in Jia and Kagan (1999)533

for estimation of the error introduced into the evaluated value of E when one534

substitutes L as L0 and elongation of the whole specimen ∆L as ∆L0 into535

(21).536
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Figure 10: A dumbbell specimen under tension.

Let us denote here by E the true value of elastic modulus and by Ea the537

apparent elastic modulus, where538

E =
L0

b0h

P

∆L0

, Ea =
L

b0h

P

∆L
. (22)

Consider the value of ∆L in (22) under the hypothesis of uniform stress539

across the section of the specimen540

∆L (P ) = 2

L/2∫
0

ε (x) dx = 2

L/2∫
0

σ (x)

E
dx =

= 2

L/2∫
0

P

A (x)E
dx = 2

L/2∫
0

P

Ehb (x)
dx =

=
2P

Eh

L/2∫
0

dx

b (x)
.

(23)

Substitution of (23) into (22) yields541

Ea =
L

b0h

P

∆L
=

LP

b0h
2P

Eh

L/2∫
0

dx

b (x)

=
LE

2b0

L/2∫
0

dx
b(x)

. (24)

The latter gives the value of the correction factor k which is the ratio of542

apparent to the real elastic moduli:543
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k =
Ea
E

=
L

2b0

L/2∫
0

dx
b(x)

. (25)

Using the standard dimensions of the ISO37 specimens, the cross-section544

width b (x) can be expressed (in millimeters) as the following piece-wise func-545

tion546

b (x) = 2



2 for x ∈ [0; 8) ,

9.5−
√

7.52 − (x− 8)2

for x ∈ [8; 11.679) ,

−5.75 +
√

102 − (x− 16.585)2

for x ∈ [11.679; 16.585) ,
4.25 for x ≥ 16.585.

(26)

Substitution of this function into (25) gives the value of correction factor as547

k = 1.2002. One can see that according to this rough analytical model, the548

real elastic modulus may be 20% lower than the apparent one which is rather549

a significant correction. Therefore, more thorough study is performed below.550

In order to obtain more accurate value of the correction factor k, finite551

element modeling of the tensile experiment was performed using ANSYS 18552

Mechanical APDL software in symmetric formulation (particularly, only the553

half of the model was built) using the SOLID186 finite element type. The554

FE model is depicted in Fig. 11,a. The shaded areas were the subject to555

nodal constraint loading: the nodal displacements UY and UZ were assigned556

zero values while the nodal displacements UX were assigned the value UX =557

∆L/2 = 0.03L/2 = 1.33 mm which is 1.5% of initial grip-to-grip distance. As558

it was mentioned earlier, the real testing was performed up to the elongation559

of 3% of the grip-to-grip distance.560

Analysis of the stress distribution (Fig. 11,b) shows that this model561

is more accurate than the previous one since the stress distribution across562

the cross-section is homogeneous only in the central part of the specimen563

while the previousanalytical model (23) model assumed this across the whole564

specimen.565

Since the stress distribution in the middle part of the specimen can be566

considered uniaxial, the total applied force was evaluated as P = σx0 · h · b0,567

where σx0 is the stress in the center of symmetry of the whole FE-modeled568

specimen (point O in Fig. 10).569
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(a)

(b)

Figure 11: FE modeling of the tensile experiment: (a) the FE model, (b) the distribution
of the σx stresses in the specimen.

Since ANSYS applies loads gradually via several sub-steps, it was possible570

to evaluate the apparent elastic modulus using differential formula as571

Ea =
L

b0h

dP

d∆L
. (27)

Differential formula allowed us to track changes in Ea with respect to model572

deformation (if any). Differentiation was performed numerically by means of573

ANSYS itself. Since the ”true” value of E was set in the beginning of the574

simulation, the correction factor was computed as k = Ea/E.575
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Multiple trial runs under different parameter values showed that in linear576

formulation the coefficient k: (i) does not depend on the values of E in the577

wide range of applied stresses (1-6 MPa), (ii) slightly depends on Poisson’s578

ratio (for a large interval of the ratio values ν = 0.2...0.49, it may change ap-579

proximately by 0.017), (iii) depends on specimen geometry and, in particular,580

for the standard ISO37 type 3 specimen made of a material with ν = 0.417581

it is equal to k = 1.16977, (iv) does not depend on specimen deformation in582

linear FE formulation.583

Individual values of the correction coefficients k obtained by means of584

ANSYS for the specimens No. 1,3 and 5 were the following: k1 = 1.15294,585

k3 = 1.16338, k5 = 1.14864.586

The latter coefficients allowed us to evaluate the values of E from ex-587

perimental data using the following strategy. First, for each of the three588

specimens and each of 10 tests per specimen, the force-elongation depen-589

dency was fitted with straight line in the interval
∆L

L
∈ [0.0005; 0.0025] and590

the value
dP

d∆L
was found. Note that fitting by means of linear regression591

was needed because the data was rather noisy when deformations were very592

small (Fig. 12,a).593

Then the apparent value of elastic modulus was evaluated using (27). The594

true values of E were calculated as E =
Ea
k

using individual correction coef-595

ficients. Finally, the whole 30 values of E were statistically post-processed.596

The raw force-elongation dependencies obtained during the experiment597

in the interval
∆L

L
∈ [0.0005; 0.0025] are shown in Fig. 12,b.598

The computed values of the elastic modulus versus the test number for599

all the three specimens are presented in Fig. 13. The averaged value across600

all 30 data sets is < E >= 2.9723 MPa. Standard deviation of the obtained601

data is 7.3833e-2 MPa.602
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Figure 12: Force-elongation dependencies obtained during the experiment in the interval
∆L

L
∈ [0.0005; 0.0025] (raw data): (a) fitting the raw data with a straight line, (b) the

raw force-elongation data for all 3 valid specimens (10 measurements per specimen).
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Figure 13: The computed values of the elastic modulus versus the test number. Dots:
specimen 1, asterisks: specimen 3, triangles: specimen 5.

Obtaining the value of elastic modulus is not enough to validate the re-603

sults of the DSI experiment in this study. In order to do so, evaluation of604

the Poisson’s ratio of the PVS is required. The corresponding method is605

discussed below.606

4.3. Estimation of Poisson’s ratio607

In order to estimate Poisson’s ratio of the PVS, the photogrammetry608

approach was used that alowed us to capture the necessary data from the609

tensile experiments. In particular, video recording of the stretching process610

of the specimens was performed using a camera with HD resolution in the611

macro mode using different magnification factors. By extracting the photo-612

graphic image of the specimen before and after stretching, it is possible to613

estimate the deformations in axial direction εx and in orthogonal direction614

εy. Poisson’s ratio may be then evaluated as ν = −εy
εx

.615

In the beginning all recorded videos were subject to temporal denoising616

and then pairs of images (before/after stretching) were extracted. These im-617

ages were converted to HSV colour system and only the “Value” (V) channel618

was kept producing grayscale pairs of specimens’ photographs. Using Mat-619

lab the contrast of these pairs of grayscale images was enhanced using the620

imadjust routine and the images were also sharpened using the imsharpen621

routine. The examples of such pairs of post-processed images are shown in622
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Fig. 14. In total, 17 image pairs of this kind were produced. Two of such623

image pairs are shown in the Fig. 14. In each pair, the top/left image corre-624

sponds to the undeformed specimen, while the bottom/right one corresponds625

to the stretched specimen.626

(a)

(b)

Figure 14: Examples of post-processed images used for identification of the specimens’
deformations (in each pair: the top/left one is before and the bottom/right one is after
stretching): (a) the images taken at low magnification, (b) images taken at high magnifi-
cation.

Next, the Matlab routine imregtform was applied to each pair of images627

producing a global affine transform necessary to fit the image of the stretched628

specimen into the initial photograph of that specimen. For this purpose, in629

each pair one of the images was kept unchanged while the second one was630

deformed (including shift, shear, stretching and rotation) so that finally it631

became a part of the first image (or they had some parts in common). This632

is the so-called image registration process.633

In order to assure the quality of performed image registration, the differ-634
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ence between the images was computed for each pair. In a pair of grayscale635

images each one is essentially a matrix with integer values in 0..255 range.636

Hence, the difference image is a matrix containing the absolute values of the637

result of their subtraction. If some features in the two images coincide, the638

dark area on the difference image is produced. Only the features that do not639

coincide are highlighted because they have a non-zero difference in the lumi-640

nosity values. Examples of such difference images corresponding to Fig. 14641

are shown in Fig. 15. It can be noted that the difference images contain only642

noise and do not contain the features of the original images which is a good643

evidence of successful registration. That is, the affine transform allowing to644

fit the right image into the left one was computed with high accuracy. More645

on digital image processing methods can be found in Gonzalez and Woods646

(2018) and the corresponding sections of Matlab manual.647
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(a)

(b)

Figure 15: Examples of difference images produced for image pairs after registration.
There are no features of the original images in the regions where subtraction was performed
which is the sign of successful registration. The brightness is increased for illustrative
purpose.

Next, the above mentioned affine transform was inverted producing the648

transform from initial to stretched state. The produced affine transform649

contains information about translation, rotation, axial and shear deforma-650

tions necessary to fit one image into another. Since image registration via651

imregtform was performed iteratively as the result of Matlab’s internal op-652

timization algorithm, the obtained transforms did not purely contain axial653

deformations but also small amount of the other types of transformation.654

In order to extract the information about axial deformations in vertical and655

horizontal directions it was decided to apply the obtained transform to a set656

of points with known coordinates initially forming a square (Fig.16,a). Let657

a be the side length of this square.658
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(a) (b)

Figure 16: Set of four points forming a quadrangle before and after application of the
identified affine transform: (a) initial state, (b) deformed state. The amount of shear
deformation is increased for illustrative purpose.

After evaluation of the coordinates of the vertices of the deformed square659

the absolute values of axial deformations were estimated as follows660

εx =
|xA−xD|+|xB−xC |

2
− a

a
,

εy =
|yA−yB |+|yD−yC |

2
− a

a
.

(28)

Finally, Poisson’s ratio was computed as661

ν = −εy
εx
. (29)

The results of evaluation of Poisson’s ratio values for all 17 image pairs662

is represented in Fig. 17. The averaged value is ν = 0.41758, the standard663

deviation is σν = 0.0147.664
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Figure 17: The computed values of the Poisson’s ratio for different captured images.

5. Comparison of the results of two experiments665

Now the results of the two different experiments can be compared. As it666

has been discussed above, the experimental results are influenced by many667

factors related to the used equipment, mathematical algorithms, and assump-668

tions of different kinds. Let us analyse briefly some of these factors.669

Two types of noise were present in the measured DSI data: high-frequency670

noise and small low-frequency fluctuations that influenced the overall trend of671

load-displacement curves. The noise was produced mostly from the electronic672

circuits of the DSI sensors and was effectively eliminated by the pre-fitting673

curve. Slow fluctuations in the data can be caused by small inhomogeneities674

of properties of the surface of the specimen. Influence of these factors was675

minimized by multiple repeated testing at different locations. A pre-fitting676

curve with the low number of degrees of freedom may also smooth away677

’bumps’ in the measured load-displacement sequence.678

The experimental results showed in Fig. A.19-A.20 are packed in rather679

tight clouds of points which demonstrate the robustness and accuracy of680

the tested BG approach. However, the optimal number of segments in the681

pre-fitting polygonal chain may be the matter of discussion because the ob-682

tained results do not exhibit a clearly visible optimum, e.g. global minimum683

in standard deviation etc., and low number of segments leads to unreason-684
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able increase in the identified values of the work of adhesion. In any case,685

the results corresponding to different numbers of segments in the pre-fitting686

polygonal chain do not differ significantly.687

In the DSI experiment we used the JKR theory of adhesive contact as the688

theoretical background. This theory requires the tested elastic medium to be689

a half-space. Using numerical simulations, we showed in the corresponding690

Section that the thick PVS specimen effectively models properties of an elas-691

tic half-space, given that indentation depth is small. However, the finite size692

specimen is stiffer than a half-space which means that the actual measured693

values of indentation force were slightly higher than it would be expected.694

The same effect may also be caused by non-linearity of the constitutive law695

for PVS. As PVS is a hyperelastic material, it means that non-linear compo-696

nents of stresses - however small they might be - make the specimen material697

appear stiffer during compression in comparison to purely linear case or in698

comparison to tensile load.699

Altogether, the above means that the values of the reduced elastic contact700

modulus E∗ obtained by means of the BG method using that particular701

specimen are slightly higher than they could be if the BG method was applied702

to a data obtained using a linearly elastic half-space.703

On the other hand, the tensile experiment has its own sources of possible704

inaccuracies. It can be seen that at small deformation range (at which elas-705

tic modulus is usually identified) the obtained force-elongation data is rather706

noisy (Fig. 12). This issue has been overcome by means of fitting the data707

with straight line. Normally, the obtained values of both the force and elon-708

gation are used in conventional formulae of the materials science describing709

a rod under tension which allows to estimate the value of the elastic modulus710

quite easily.711

Clearly, it was not the case in our experiment because the elongation712

of the gage section of the specimens could not be measured directly and713

the deformation of the whole specimen was measured instead. Therefore, we714

studied how the identified values of elastic modulus depend on the compliance715

of the non-gage parts of the sample. Both analytical and numerical modeling716

provided similar values of the correction factor k (the ratio of the apparent to717

the real elastic moduli). Similarity of these results obtained in different ways718

indicates that the obtained value of the correction factor is rather correct.719

Finite element model indeed provided more accurate values of k since it720

better reproduced stress distribution in the specimen. However, the presence721

of grip force was not taken into account in it. It is expected that if grip722
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pressure is applied to the grip area in the FE model (shaded areas in Fig.723

8,a and Fig. 11,a) instead of zero normal displacements, it causes reduction724

in the tension of the gage section as material is ”squeezed” out of the grip.725

In turn, this should reduce the computed correction factors k. Thus, the726

real identified values of the elastic modulus of the PVS are likely to be a727

little higher then the presented in the previous Section because they were728

calculated as E = Ea/k.729

Poisson’s ratio of the PVS in this work was not determined from a sep-730

arate dedicated experiment but rather estimated using photogrammetry ap-731

proaches. Simple determination of deformations using changes in distance732

between features in specimens’ photographs might be an unreliable approach733

when processing images containing noise. Hence, we applied ready-to-use734

Matlab routines for image registration which computed a global transform735

needed to fit the photograph of the stretched specimen into the photograph736

of the unstretched one. In this case the entire image was used as the source737

of metric calculation for image fitting algorithm. As the result, the obtained738

estimated values of Poisson’s ratio looked pretty stable with respect to differ-739

ent zoom factors used and different amounts of noise present in the processed740

images. This is an implicit evidence of the correctness of the obtained results.741

It also should be noted here that PVS is a rubber-like material. So we expect742

that in case of any inaccuracies the real values of Poisson’s ration should not743

be less than the identified value ν = 0.41758 but even higher than that. In744

that case, the value of E∗ identified in the tensile experiment should also be745

higher.746

Applying the extended BG method to the results of the DSI tests, the747

values of the reduced elastic contact modulus E∗ and the work of adhesion748

w of the tested material were obtained. The averaged values of E∗ varied749

from 4.2959 to 4.3419 MPa, while the averaged values of w varied from 0.116750

to 0.136 J/m2 depending on the number of segments in the pre-fitting line.751

Indeed, the identified values of the reduced contact modulus and the work of752

adhesion depend on the theory of adhesive contact used as the mathematical753

model for the indentation experiment. Hence, the use of the JKR theory as754

the framework for the problem must be justified.755

In their papers Tabor (1977) and Muller et al. (1980) (see also Maugis756

(2000)) introduced a dimensionless parameter suitable for clear distinction757

of applicability range between the JKR and the DMT theories of adhesive758

contact:759
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µ =

(
Rw2

E∗2z3
0

)1/3

(30)

where R is the effective curvature radius of contacting bodies (if a sphere is in760

contact with a plane, R is equal to the radius of the sphere, that is R = 5.155761

mm); z0 is the equilibrium distance between atoms of the contacting bodies,762

usually assumed to be 0.3...0.5 nm.763

Values µ � 1 indicate that the experiment is in the applicability range764

of the JKR theory, while values µ� 1 suggest that the DMT theory should765

be used. Assuming z0 = 0.4 nm and using the total maximum and minimum766

identified values of E∗ and w among all calculations (see Table 1 and 2 below)767

one can estimate the range of values of the parameter µ as follows:768

µmin =

(
Rw2

min

E∗2maxz
3
0

)1/3

and

µmax =

(
Rw2

max

E∗2minz
3
0

)1/3

where the subscripts ”max” and ”min” denote the maximum and the mini-769

mum identified values of the corresponding physical quantities.770

The calculated values of the Tabor-Muller parameters were: µmin =771

2930.2, µmax = 5014.1. Thus, the DSI tests in the present work fall within772

the range of applicability of the JKR theory.773

In the second experiment, tensile testing of dumbbell PVS specimens was774

performed. The obtained data allowed us to evaluate the values of elastic775

modulus and Poisson’s ratio of the material of the specimens. The corre-776

sponding values were E = 2.9723 MPa (averaged across the set of 30 val-777

ues with minimum identified value of 2.8687 MPa and maximum identified778

value of 3.1121 MPa) and ν = 0.41758 (averaged across the set of 17 values779

with minimum identified value of 0.37999 and maximum identified value of780

0.43827) which gave us the value of the estimate value of the reduced elastic781

contact modulus as E∗ = E/(1− ν2) = 3.60005 MPa. Using the above min-782

imum and maximum values of E and ν one can find that the lowest and the783

highest individual identified values of the reduced elastic contact modulus784

E∗ in the tensile experiment were 3.353 MPa and 3.852 MPa respectively.785

Table 1 contains minimum, maximum, and averaged values of the reduced786

elastic contact modulus E∗ identified by means of the BG method from the787
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DSI experiment (depending on the number of segmentsNS in pre-fitting line).788

The relative differences with the tensile experiment (based on mean values)789

are shown as well. The relative differences ∆rel in the identified values were790

computed as791

∆rel =
|E∗TENS − E∗DSI |

E∗DSI
(31)

where E∗TENS and E∗DSI are the values identified from the tensile experiment792

and in the DSI experiment (by means of the BG method) respectively.793

Graphical comparison of the results of the two experiments (identification794

of E∗) is shown in Fig. 18. Filled rectangles denote total ranges of individual795

identified values of E∗ in all calculations. Dots denote averaged values of E∗.796

Percentages denote relative difference in values calculated according to (31).797

In case of the DSI experiment the BG method was used. Hence, multiple798

dots correspond to different values of NS in pre-fitting.799

Detailed comparison of the values of E∗ calculated in the two experiments800

(Fig. 18) showed that the relative difference (31) between total maximum801

in the tensile experiment and the total minimum in the DSI experiment802

was 3.80%. The relative difference between total minimum in the tensile803

experiment and the total maximum in the DSI experiment was 27.38%. The804

relative difference in averaged values of E∗ varied between 16.20% and 17.09%805

depending on the number of segments NS used during pre-fitting. This can806

be considered as a good result.807

Summarizing all the above considerations, we note that due to the sample808

size effect and the material properties the values of E∗ identified by means809

of the BG method were slightly higher than they could have been. At the810

same time, due to shortcomings in the processing of the data of the tensile811

experiment the identified values of E∗ were lower than they could be. Thus,812

the difference in results of the two experiments could be even smaller than the813

figures of 16.20 ... 17.09% stated above. Thus, the accuracy of the extended814

BG method in formulation (16) has been directly confirmed.815
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Figure 18: Graphical comparison of the results of the two experiments (identification of
E∗). Filled rectangles: total ranges of individual identified values of E∗ in all calculations;
dots: averaged values; percentages denote relative differences (31). In case of the DSI
experiment the BG method was used. Hence, multiple dots correspond to different values
of NS in pre-fitting.

Table 1: Minimum, maximum, averaged values of the reduced elastic contact modulus
E∗ identified by means of the BG method, and the relative difference from the results of
the tensile experiment ∆rel.avg for averaged values versus the number of segments NS in
pre-fitting line.

NS min E∗, MPa max E∗, MPa avg E∗, MPa ∆rel.avg, %
4 4.004 4.544 4.342 17.09
5 4.131 4.558 4.336 16.97
6 4.027 4.541 4.329 16.84
7 4.099 4.599 4.334 16.93
8 4.051 4.586 4.325 16.76
9 4.065 4.609 4.296 16.20
10 4.064 4.617 4.302 16.32
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Table 2: Minimum, maximum, averaged values of the work of adhesion w identified by
means of the BG method versus the number of segments NS in pre-fitting line.

NS min w, J/m2 max w, J/m2 avg w, J/m2

4 0.1042 0.1584 0.1360
5 0.1022 0.1536 0.1264
6 0.0832 0.1468 0.1252
7 0.0981 0.1479 0.1226
8 0.0816 0.1555 0.1207
9 0.0879 0.1489 0.1182
10 0.0966 0.1476 0.1168

Conclusions816

In this work a concept of a model-based approach to simultaneous identi-817

fication of elastic (the reduced elastic contact modulus E∗) and adhesive (the818

work of adhesion w) properties of materials and structures from experimen-819

tal results of depth sensing indentation (DSI) has been presented. This new820

approach is an extended version of the BG method developed by Borodich821

and Galanov (2008) which uses different objective functional and the idea of822

preliminary smoothing the data.823

The extended BG method uses the concept of two-stage fitting of the824

theoretical DSI dependency to the experimental data points. Firstly, the825

data is fitted with an auxiliary curve which acts as a filter in certain sense.826

The mathematical representation of this pre-fitting curve is supposed to be as827

simple as possible. This allows us to use some advanced fitting/filtering tech-828

niques to reduce measurement noise and fluctuations in the data. Secondly,829

the theoretical load-displacement curve (the expected DSI dependency which830

may be a complex expression) is fitted to the auxiliary one via minimization831

of the squared norm of the difference of the two functions (the objective func-832

tional). The sought material properties are determined from the optimal set833

of characteristic parameters that give minimum to the objective functional.834

The accuracy and robustness of the above approach has been directly835

validated by means of two independent experiments in which the properties836

of specimens made of polyvinyl siloxane (PVS) were determined. Both ex-837

periments allowed us to evaluate the values of the reduced elastic modulus838

E∗ of the PVS and compare these values.839

In the first experiment a DSI equipment was used and the BG method840
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was applied to the obtained data as described above using the JKR theory841

of adhesive contact as the theoretical background for the problem. The842

pre-fitting curve was chosen to be a polygonal chain. It was fitted to the843

normalized (dimensionless) data using orthogonal distance fitting approach844

which has advantage over conventional least-squares fitting when both force845

and displacement readings are supposed to have measurement errors.846

In the second experiment we performed tensile testing of dumbbell PVS847

specimens while taking video recording of the stretching process. The ob-848

tained data allowed us to separately evaluate the values of elastic modulus849

and Poisson’s ratio of the material of the specimens and then calculate the850

value of the reduced elastic modulus of the material.851

Comparison of the of the results of the two experiments showed that the852

absolute minimum in relative difference between individual identified values853

of the reduced elastic modulus E∗ in the two experiments was 3.80%; the854

absolute maximum of the same quantity was 27.38%; the relative difference855

in averaged values of E∗ varied between 16.20% and 17.09% depending on856

the number of segments NS used during pre-fitting. The above can be con-857

sidered as a good result. Our analysis showed that unaccounted factors and858

phenomena tend to decrease the differences in the results of the two experi-859

ments. Therefore, the results obtained by means of the two different methods860

in this work should differ even less.861

However, since the results of the two experiments coincide well enough,862

it can be concluded that the methods used in both experiments are rather863

effective and well justified as well as the used assumptions. Thus, the ro-864

bustness and accuracy of the proposed extension of the BG method has been865

directly validated.866
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the 25 data sets. The result of each identification is represented as a dot in1019

the figures.1020
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Figure A.19: Material properties extracted using pre-fitting with polygonal chain. Number
of segments in chain are correspondingly 4 (a), 5 (b), 6 (c).
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Figure A.20: Material properties extracted using pre-fitting with polygonal chain. Number
of segments in chain are correspondingly 7 (a), 8 (b), 9 (c).
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Figure A.21: Material properties extracted using pre-fitting with polygonal chain. Number
of segments in chain: 10.
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