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Abstract  

Understanding the determinants of attendance at public health interventions is critical for effective policy 

development. Most research focuses on individual-level determinants of attendance, while less is 

known about environmental-level determinants. Data were obtained from the Leeds Let’s Get Active 

(LLGA) public health intervention in Leeds, England. Longitudinal data (April 2015 – March 2016) on 

attendance were obtained for 25,745 individuals (185,245 visits) with baseline data on 

sociodemographic determinants (e.g. age), lifestyle practices (e.g. smoking) obtained for 3,621 

individuals. This resulted in a total of 744,468 days of attendance and non-attendance for analysis. 

Random forests were used to explore relative importance of the determinants of attendance while 

generalised linear models were applied to examine specific associations. The probability that a person 

will go more than once, the number of return visits, and the probability that a person will go on a 

particular day were investigated. Distance to leisure centre from home was the most influential 

determinant in predicting whether a person who went to the leisure centre once, returned. Age group 

was the most substantial determinant for the number of return visits. While distance to leisure centre 

was less important for predicting the number of return visits, the difference between the estimates for 

300m and 10,000m was 7-10 visits per year. Finally, month was the most important determinant of daily 

attendance. This longitudinal study highlights the importance of both individual and environmental 

determinants in predicting various aspects of attendance. It has implications for strategies aiming to 

increase attendance at public health interventions.  
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1. Introduction  

Healthy lifestyles have long been acknowledged as being central to wellbeing and the prevention of 

disease (1). Presenting just one unhealthy behaviour can have a dramatic influence on mortality and 

non-communicable disease risk (2). When unhealthy lifestyle behaviours combine, the associated risk, 

rather than being additive, can elicit a multiplicative negative effect (3). The implications of this are 

profound given the regularity with which unhealthy lifestyle practices co-occur (4-7). Despite this, 

implementation of health-related policy and health improvement interventions have struggled to provide 

workable solutions and results particularly for deprived communities (8). As a result, socially 

disadvantaged individuals tend to engage in detrimental health behaviours more frequently due to a 

myriad of social, environmental, and behavioural determinants (9). What is more, unhealthy lifestyle 

practices - principally the lack of physical activity, smoking, diet and alcohol - have been described as 

the most proximal and most foundational risk factors for many non-communicable diseases (10), and 

are in the top ten leading causes of disability adjusted life years (11). Therefore, understanding the 

influential determinants associated with the successful implementation of public health interventions 

designed to address these issues will be fundamental for any public health system wishing to be 

successful and sustainable, particularly in deprived populations (12). Public health interventions can 

improve health behaviours and health outcomes in a diverse range of populations (13). However, 

evaluation of attendance at such interventions is seldom carried out using large-scale measurement 

data and is instead more often limited by small numbers of participants, based in small geographical 

areas with only cross-sectional or few observations (14).   

 

Current evidence often focuses on the sociodemographic determinants of attendance at public health 

interventions. However, an enhanced understanding of how environmental determinants impact 

attendance at public health interventions are critical for the development of strategies that seek to 

improve them (15). For instance, wider structural, economic, and cultural determinants such as a fear 

of stigma (16), structural barriers such as accessing care due to lack of flexibility in opening hours (17), 

or irregular working hours (18, 19) may lead to poor adherence or retention at public health 

interventions. Considering wider determinants is especially important for interventions aimed at 

increasing physical activity (20), where day length and weather conditions have been identified as key 

determinants for participation (20-23). For example, the winter months, when the weather is cool and 

wet, and the evenings are darkest, generally produce the lowest activity levels (24, 25). Equally, 

excessive heat and humidity negatively impact participation (25). Although, unpleasant weather 

conditions (26) and an individual’s age (27) influence physical activity participation outdoors, less is 

known about how these determinants influence participation in physical activity undertaken indoors 

(20). Indoor opportunities during cold wet months may help foster regular physical activity habits, 

especially among chronically inactive individuals who may struggle to enact health enhancing physical 

activity practices (22). However, a review found little support for the presumed environmental 

determinants of attendance and physical activity behaviour (28). Consequently, a better understanding 
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of both individual- and environmental-level determinants of attendance at public health interventions is 

required where there is a dearth of current evidence.  

 

Little evidence has been collected on how environmental determinants impact on public health 

intervention attendance. Tobler’s first law of geography proposes that everything is related to everything 

else, but near things are more related than distant things (29). Accordingly, emerging evidence 

highlights the importance of proximity for public health interventions, where uptake is generally greater 

among individuals who live closer to facilities (30-32). For example, in a cross-sectional Swedish study, 

participants with ≥4 exercise facilities within their neighbourhood spent five more minutes in moderate 

to vigorous physical activity per day compared to those with no exercise facilities within their 

neighbourhood (32). While evidence is inconsistent overall (33), some shows that the environment may 

also impact on intervention outcomes. For instance, within a randomised obesity intervention study, for 

each mile closer an individual lived to a supermarket, their fruit and vegetable intake increased by 0.29 

servings per day and their BMI z-scores reduced by 0.04 units relative to controls (34). Nevertheless, 

proximity is not immune to health inequalities; with some evidence showing individuals in more affluent 

areas generally have greater access to public health services and have the social and economic capital 

to attend such services (35). Such inequalities are highlighted by research which shows how more fast-

food outlets in home neighbourhoods are associated with increased consumption of fast-food but more 

so in those of lower socioeconomic status (36, 37). Similarly, while a recent UK based cohort showed 

that the presence of more physical activity facilities are greenspaces was associated with lower risk of 

obesity, this association was only seen among those from most affluent segments of society (38). 

Finally, while recent UK based longitudinal study found inverse associations between park access and 

fitness facilities and body weight outcomes these were confined to younger adults only (38). Thus, it is 

plausible that the influence of environmental determinants may be associated with attendance in some 

age groups more than others perhaps due to differences in mobility patterns (39). However, the interplay 

between individual- and environmental-level determinants are seldom explored. 

This study aims to contribute to the current gap in the literature by examining whether the interplay 

between individual-level determinants, and environmental-level determinants of proximity and 

environmental conditions such as weather are likely to be important to inform policy decisions. 

Specifically, in this study we investigate the influence of a participants (i) proximity to a public health 

intervention, (ii) the weather and seasonality and (iii) lifestyle practices; on attendance at a city-wide 

public health intervention for physical activity over one year. We hypothesise that as distance to 

intervention and weather deteriorates, the likelihood of attendance at the public health intervention 

decreases. We also examine the hypothesis that there will be differences in associations between 

environmental determinants and attendance by the sociodemographic characteristics of age, gender, 

and socioeconomic status. 
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2. Methods 

2.1 Study Background 

The Leeds Let’s Get Active (LLGA) intervention (40) was developed by Leeds City Council as part of 

Sport England’s ‘Get Healthy, Get into Sport’ funding stream. LLGA is a community-based public health 

intervention that encourages inactive Leeds residents to “do more activity”. Participants engaging in the 

scheme had free access to 15 Leeds City Council leisure centre swimming pools and gyms on specified 

days and times. Each week around 150 one-hour long timetabled sessions – predominantly off-peak – 

were available across the participating sites. Recruitment was open to all adults in the local area 

(Yorkshire, UK). Before engaging in LLGA sessions, participants were given a standard leisure centre 

induction. Ethical approval was obtained through Leeds Beckett University research ethics committee 

and all participants provided informed consent (Application Ref: 8364). 

 

2.2 Study population 

The sample for this study were recruited between April 2015 and March 2016. Anyone who registered 

or attended LLGA within this time frame was included in the overall sample which contained 25,745 

people and included 185,245 visits. Following data cleaning, 6,598 participant’s data were excluded on 

age (i.e. under 16 years old) and five participant’s data were removed where distance from a residential 

postcode to an attended LLGA session exceeded 100 kilometres (62.1 miles). The average distance 

for these five participants was 109.4 miles. The final number of participants included a sample of 19,142 

for analysis, who registered 159,086 visits to the leisure centres between them within the study time 

frame.  

 

2.3 Measures and Data Capture 

2.3.1 Attendance  

Attendance data was captured over the full year from participating leisure centres using a membership 

number and associated card that was given to all participants at registration or at their first visit. Upon 

arrival at a LLGA session, participants presented their membership number/card to reception to log 

their attendance. At this point, data relating to the date of the visit, the venue in which the visit took 

place and the type of session attended was recorded and stored in an anonymised database. 

Associated to a participant’s membership number/card were data pertaining to their age, gender and 

residential postcode. 

 

2.3.2 Demographics and Lifestyle Practices  

Participant data were collected at baseline via an on-line survey incorporated into the LLGA registration 

process. Demographics were obtained in relation to ethnicity, deprivation, employment, education and 
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marital status. Area-level deprivation was defined by LLGA intervention based on the Index of Multiple 

Deprivation for the lower super output area of residence and how they ranked within Leeds. They were 

then classified as part of four categories in line with local guidance into: 1) Not a deprived area, 2) Top 

3% Most Deprived Areas in Leeds, 3) 4-10% Most Deprived Areas in Leeds, 4) 11-20% Most Deprived 

Areas in Leeds. For lifestyle practices, participants were asked to self-report the amount of moderate 

to vigorous intensity physical activity (MVPA) they accumulated over the preceding week (41, 42). 

Based on UK physical activity recommendations (43), participants failing to accumulate the equivalent 

of ≥150 minutes MVPA were categorised as being insufficiently active, and those achieving <30 minutes 

MVPA as inactive (44). Diet was assessed by summing fruit and vegetable portions (≥100gs) consumed 

by participants on a typical day. To follow UK policy guidance, participants were deemed to have an 

unhealthy diet if they ate less than five portions per day (45). Alcohol consumption was measured using 

the brief screening tool, AUDIT-C (46). Unhealthy practices in relation to alcohol were recorded for 

participants scoring four or greater on the test. Participants were also asked about their smoking habits. 

Current smokers were categorised as presenting this as an unhealthy practice (47). Participant’s height 

and weight were also self-reported to calculate body mass index (BMI). Two subjective wellbeing 

questions were included within the data collection tool. Participants were asked how satisfied they were 

with their life and how happy they felt. Both questions were answered on a scale of 0-10 where ‘0’ was 

‘not at all’ ands ‘10’ was ‘completely’. A score of 0-4 was considered very low, 5-6 was considered low, 

7-8 was categorised as medium and 9-10 were high (48). Data on these lifestyle practices were 

collected for n=5,280 participants at baseline. This included only those people who registered from April 

2016 and provided the lifestyle data. All other participants were already registered and data were only 

available for some of their demographics and lifestyle practices.   

 

2.3.3 Weather Conditions  

Longitudinal weather data were scraped from for each visit and day of the year to account for days of 

non-attendance from the National Centre for Atmospheric Science, Leeds weather station (Latitude: 

53° 48.36' N, Longitude: 001° 33.36' W, Altitude: 92 metres). The station uses a VantagePro2, 

controlled by 'weewx', an experimental weather software system written in Python. Weewx was 

designed to be simple, fast, and easy to understand by leveraging modern software concepts. Data 

were collected for maximum, minimum and mean daily temperature (Celsius), daily average wind speed 

(mph) and daily rainfall (mm). 

 

2.3.4 Proximity  

The data set contained 159,086 records of visit origin and destinations, data were geocoded in ArcGIS 

Online providing latitude and longitude as well as easting and northing. Ordnance Survey Open Roads 

was used to model the road network distance from home to leisure centre intervention site. The dataset 

is an open data source which is good for defining travel by motor vehicle (49). Network distance was 

calculated using ArcGIS Origin-Destination (OD) Cost Matrix tools using the Network Analysis extension 
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with home sector postcode as origin and full postcode of LLGA facility as destination. One of the main 

advantages of using distance to measure accessibility is that the results, in absolute units, are easily 

understood by researchers and policy makers (50).  

 

2.3.5 Study area  

Data from the LLGA study were used to model associations between individual-level and 

environmental-level determinants and attendance at the LLGA sessions. As shown in Figure 1, Leeds 

is a large city in West Yorkshire, in the north of England. At the most recent population estimate (2018), 

the metropolitan district had a total population of 789,194.   

 

Figure 1. A map showing the location of the study area and the location of LLGA leisure centres with 

the 2015 Index of Multiple Deprivation. 
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2.4 Statistical Analyses 

Descriptive statistics were used to describe the demographic characteristics of the participants, the 

incidence of unhealthy practices and health outcomes including BMI among the sample. Independent 

t-tests and One-Way ANOVAs assessed for differences in proximity and weather conditions for visits 

by venue, type of session (pool or gym which includes timetabled sessions) undertaken and 

meteorological season. As data were only available for the date each participant visited from LLGA all 

other days of the year were extrapolated and categorised as days of non-attendance to provide a binary 

outcome of attend or not attend on a given day this included the weather for each day. For each 

participant, the number of days “available” for return visits was defined as the number of days remaining 

in the study year after the first visit. Once data for weather and environmental variables were extracted 

for each day of the year this resulted in a dataset of 744,468 days available for return leisure centre 

visits. Regression models are based on fairly strict parametric assumptions, and research has shown 

they do not often work well for complex multivariable data sets (51). However, examining such 

interactions requires powerful data and an ability to model complex interactions between a large number 

of potential predictor variables or covariates. Regression models are based on fairly strict assumptions 

with respect to the linearity in parameters and often do not work well for complex multivariable data sets 

(51). Consequently, we applied a machine learning technique - random forest - to analyse possible 

effects of weather and demographic models on the leisure centre attendance. The random forest focus 

on three aspects: the probability that a person will return (i.e., go more than once to a LLGA venue), 

the number of such return visits, and the probability that a person will go to a leisure centre on a 

particular day. We focus on the key environmental determinants such as distance to leisure centre, 

weather and month and then explore any differences by age group and gender in likelihood of 

attendance. Although flexible, random forest does not produce easily interpretable linear coefficients or 

p-values. Instead we report the relative importance of the variables, their effect on Mean Squared Error 

(MSE), and prediction accuracy. To illustrate the effect size, we show what would happen to the sample, 

if the relevant covariates such as age, gender, ethnicity, employment status, happiness for all the people 

in the sample were to change to the level of interest (for example, incrementally changing the distance 

to the nearest facility from 300m to 15km) from while keeping the rest as is, other things being equal. 

In addition to this, we fitted generalised linear models to obtain effect estimates [95% confidence 

intervals]. Given the data size, most effects, even when very small in size, would have been expected 

to be found highly statistically significant. Analyses were carried out in R.  

 

  



   
 

9 
 

3. Results 

 
3.1 Descriptive statistics  

The following analyses are based on 19,142 participants attending a LLGA session between 1st April 

2015 and 31st March 2016. Table 1 shows that 59.3% of participants were female and the average age 

was 39 (±15.6) years. Of participants providing data, more than three quarters were from a white British 

ethnic background and 61% lived in a postcode that was not classified as deprived. Over 60% were in 

paid employment, 28.7% were educated to degree level or higher and 58.2% were married or 

cohabiting.   

Table 1. Demographic Characteristics of LLGA Participants 

DEMOGRAPHICS PROPORTION NUMBER 

Gender (n=19,142)   
     Female 59.3% 11,352 
     Male 40.5% 7,749 
     Prefer not to say 0.2% 41 
   
Age (n=19,142)   
     15-24 19.3% 3,703 
     25-34 26.9% 5,142 
     35-44 22.6% 4,334 
     45-54 12.7% 2,435 
     55-64 10.2% 1,948 
     65+ 8.3% 1,580 
   
Area-level deprivation (n=5,280)   
     Not Deprived Area 61.0% 3,219 
     Top 3% Most Deprived Areas in Leeds 23.5% 1,240 
     4-10% Most Deprived Areas in Leeds 10.0% 526 
     11-20% Most Deprived Areas in Leeds 5.6% 295 
   
Ethnicity (n=5,280)   
     White British 76.1% 4,017 
     Asian/Asian British 6.9% 363 
     Black/Black British 5.1% 269 
     Other 11.9% 631 
   
Employment Status (n=5,280)   
     Full-Time Paid Employment 40.0% 2,114 
     Part-Time Paid Employment 20.2% 1,066 
     Unemployed 16.7% 884 
     Student 9.9% 524 
     Retired 7.9% 418 
     Other 5.2% 274 
   
Academic (n=5,280)   
     No Qualifications 16.2% 854 
     GCSE/O Level Grade A*- C 28.8% 1,521 
     A Levels/Diploma in HE 26.4% 1,392 
     First Degree (BSc, BA) 21.5% 1,134 
     Higher Degree (MSc, PhD) 7.2% 379 
   
Marital Status (n=5,280)   
     Married 39.7% 2,097 
     Single 32.5% 1,716 
     Cohabiting  18.5% 977 
     Divorced/Separated 4.0% 213 
     Other 5.3% 277 
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3.2 Lifestyle practices and environmental data 

At baseline, 86.7% of participants were not achieving the physical activity guidelines, 81.6% ate <5 

portions of fruit and vegetables each day, 16.1% were current smokers and 45.5% presented hazardous 

or harmful alcohol use (Table 2). In addition, 54.5% of participants reported an unhealthy weight 

category; the average BMI was 26.4 (±5.88), and 17.1% had been clinically diagnosed with a long-term 

condition. Asthma, depression and diabetes accounted for 68% of the long-term conditions. 

 

Table 2. Lifestyle practices undertaken by participants 

LIFESTYLE PRACTICE PROPORTION NUMBER 

HEPA Category (n=12,541)   
     Inactive (<30 mins MVPA/week) 44.9% 5,633 
     Insufficiently Active (30–149 mins MVPA/week) 41.3% 5,244 
     Achieve Physical Activity Guidelines 13.3% 1,664 
   
Daily Fruit & Vegetable Consumption (n=5,280)   
     None 7.8% 411 
     1-4 Portions 73.8% 3,898 
     5 or More Portions 18.4% 971 
   
Current Smoking Status (n=5,280)   
     Never Smoked 58.4% 3,081 
     Former Smoker 25.5% 1,349 
     Current Smoker 16.1% 850 
   
Weekly Alcohol Consumption (n=5,280)   
     Don’t Drink Alcohol 21.4% 1,130 
     Drink Alcohol Responsibly 33.1% 1,746 
     Excessive Consumption 45.5% 2,404 
   
Weight Category (n=3,840)   
     Underweight 2.7% 105 
     Healthy Weight 45.3% 1,741 
     Overweight 29.6% 1,136 
     Obese 22.3% 858 
   
Diagnosed with A Long-Term Condition (n=5,280)   
     No 82.9% 4,379 
     Yes 17.1% 901 

HEPA = Health enhancing physical activity 

 

Table 3 shows the summary data for each visit within the study time frame. It shows the venues 

attended, the mode of activity undertaken and the meteorological season the visit took place. For each 

of these, it describes the average distance of each session attended from the participant’s residential 

postcode, and the average temperature, wind speed and rainfall on the day of attendance. The 

attendance figures for the fifteen different venues varied considerably, with venue one having more 

than twice as many visits as any other centre. The average distance from residential postcodes also 

showed sizable variation by centre with figures ranging from around 2.5km to around 6km. The type of 

session attended by participants at each visit showed swimming to be more popular compared to gym 

sessions. The average distance from participants residential postcodes was significantly higher for 

swimming compared to gym sessions (p<0.001). Also, swimming was attended when the daily 
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temperature was significantly higher (p<0.001), and wind speed (p<0.001) and rainfall (p<0.001) were 

significantly lower. In relation to the meteorological season in which attendance took place, the summer 

months - when the average temperature was highest and average rainfall lowest - generated the most 

visits. In addition, there was a significant difference in the average distance from participants residential 

postcode to the venue the visit took place (p<0.001). Post hoc analyses showed that Spring and 

Summer seasons generated visits with significantly shorter average distances compared to Winter 

(p<0.001) and Autumn (p<0.001) seasons.  

 

Table 3. Weather and distance from residential postcode by venue, activity mode and season 

 NUMBER OF 
VISITS 

AVG DIST 
(meters) 

AVG TEMP 
(c) 

AVG WIND  
(mph) 

AVG RAIN  
(mm) 

Total 159,086 3,787.6 10.66 4.10 0.79 
      

Venue      
   Venue 1 32,181 3,150.9 10.89 4.06 0.76 
   Venue 2 14,494 4,893.9 10.77 3.99 0.79 
   Venue 3 13,082 2,624.0 10.75 4.06 0.73 
   Venue 4 12,342 3,812.5 10.49 4.24 0.86 
   Venue 5 12,232 4,454.2 10.52 4.19 0.84 
   Venue 6 12,297 2,719.4 10.89 4.07 0.77 
   Venue 7 10,684 5,473.0 10.48 4.11 0.83 
   Venue 8 10,068 4,729.8 10.38 4.17 0.81 
   Venue 9 9,272 3,015.8 10.71 4.08 0.78 
   Venue 10 7,481 4,083.6 10.51 4.14 0.82 
   Venue 11 6,694 3,483.5 10.51 4.13 0.77 
   Venue 12 6,422 2,569.3 10.46 4.13 0.78 
   Venue 13 6,140 3,593.6 10.52 4.11 0.79 
   Venue 14 4,600 6,044.6 10.42 4.19 0.84 
   Venue 15 1,097 6,091.1 10.90 4.07 0.89 

      
Session Type      
   Swimming 84,327 3,969.6 10.75 4.07 0.77 
   Gym  73,144 3,542.8 10.53 4.15 0.80 

      
Season      
   Spring 39,039 3,685.5 8.82 4.13 0.73 
   Summer 42,170 3,738.6 15.63 3.54 0.65 
   Autumn 38,516 3,841.3 11.15 3.53 1.00 
   Winter 39,361 3,888.9 6.67 5.25 0.78 

 

3.3 Exploring the relative importance and associations between attendance, sociodemographic, lifestyle 

practices, and environmental determinants  

The full range of sociodemographic and lifestyle practice variables was available for the smaller subset 

of the dataset (n=3,621). We transformed these data to days visited the leisure centre and no visit of 

the leisure centre which resulted in a total 744,468 days available for return leisure centre visits. Overall, 

15,067 leisure centre visits were made, translating to an average 7.4 visits per year. A total of 37.3% 

only went once (the full distribution of the number of visits per person in the sample is shown in 

supplementary materials Figure S1). This section assesses the probability that a person will return (i.e., 

go more than once), the number of such return visits and the probability that a person will go to a leisure 

centre on a particular day. We focus on the key environmental determinants such as distance to leisure 
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centre, weather and month and then explore differences by age group and gender in likelihood of 

attendance. 

 

First, a random forest model was applied to predict the probability of at least one follow-up visit from a 

range of sociodemographic, lifestyle practices, and environmental variables. It was found that the 

distance to the leisure centre from home was the single most influential variable (Figure 2; Panel 2A). 

This means that the distance to the public health intervention, i.e. the leisure centre, had the greatest 

influence on whether a person who went to the leisure centre once, returned. The changes in expected 

probability of at least one return visit for the observed sample was conditional on the distance to the 

leisure centre (Figure 2; Panel 2B). Interestingly, distance to the leisure centre only seems to have an 

effect after about 5km where all or most groups showed a declining trend. When we explored 

differences by age, gender, and socioeconomic status, distance seemed to have almost no influence 

on 65+ year old men. In other analyses which are shown in supplementary materials Figure S2 there 

was little difference by deprivation and distance to the leisure centre. 
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Figure 2. Panel 2A shows the relative importance of sociodemographic, lifestyle practices, and environmental variables on the day of the first visit on the 

probability of return visits. Panel 2B shows the expected probability of a return to the leisure centre for the observed sample conditional on the distance to the 

leisure centre by gender (black = women, red = men) and age (symbol: Ο [15 to <25 years]; △ [25 to <35 years]; + [35 to <45 years]; x [45 to <55 years]; ◇ [55 

to < 65 years]; ▽ [65 years and above]). The histogram in grey shows the current distribution of leisure centre distances for the sample. 

Panel 2A Panel 2B 
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Figure 3 (Panel 3A) shows the relative significance of variables when predicting the number of return 

visits. Age group was the single most substantial predictor. In order to assess the size of the effect of 

distance to the leisure centre on the expected number of visits per year, we have used the random 

forest model to predict the expected number of visits per year if the entire sample was living within a 

certain distance from a leisure centre. We varied this distance from 300m to 15,000m and recorded the 

minimum and maximum predicted number of visits per year over that range. The results stratified by 

age and gender are shown in Figure 3 (Panel 3B).  For distance to the leisure centre, the difference 

between the estimates for 300m and 15,000m was about 7-10 visits per year, this equates to 

approximately 1 extra visit every 6 weeks. For example, as shown in Figure 3B, for the younger groups, 

the variations in the distance to leisure centre can increase number of visits from approximately 10 to 

15 while for the 45-55 years women it can go from approximately 20-30. Other things being equal, men 

tended to have more return visits than women, and older people tended to have more return visits than 

younger people. 
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Figure 3. Panel 3A shows the relative significance of variables when predicting the number of return visits. Panel 3B highlights the range of expected number 

of return visits per year for men (red) and women (black) by age group (years) as the distance to the leisure centre varies from 300m to 15,000m. 

Panel 3A Panel 3B 
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We also assessed the effect of environmental conditions such as weather (temperature, rainfall and 

wind speed), month of the year, and the type of day (weekday/weekend) on whether or not a visit was 

made on a particular day. The random forest model which did not include weather information had a 

better model fit than the one with, therefore this is presented. It showed that month was the most 

significant predictor of attendance (Figure 4; Panel 4A). Specifically, as shown in Figure 4, Panel 4B 

the summer months were more popular than the winter months.  There were again few differences by 

area-level-deprivation. 
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Figure 4. Panel 4A shows the relative importance of sociodemographic, lifestyle practices, and environmental variables on whether or not a visit was made on 

a particular day. Panel 4B highlights the effect of calendar month on the probability of a visit by age group. 

Panel 4A Panel 4B 
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4. Discussion 

This unique longitudinal study investigated the influence of sociodemographic, lifestyle practices, and 

environmental variables on attendance at a city-wide physical activity intervention over one year. This 

is one of the first studies to explore the influence of environmental determinants such as proximity to 

intervention, weather, and month of year on attendance. We extend evidence by using a large 

longitudinal sample of participants who registered individual visits to intervention leisure centres over a 

full year resulting in 744,468 possible days available for return leisure centre visits. Our findings show 

that wider determinants of attendance such as distance to leisure centre and month of year were 

important in predicting attendance. We assessed the probability that a person will return (i.e. go more 

than once), the number of such return visits, and the probability that a person will go to a leisure centre 

on a particular day. Specifically, we found that the distance to the leisure centre from home was the 

single most influential determinant in predicting whether a person who went to the leisure centre once, 

will go back. However, age group was the single most substantial predictor of the number of return visits 

and other factors such as employment status and level of happiness were also important. While 

distance to the leisure centre was slightly less important, the difference between the estimates for 300m 

and 15,000m was still about 7-10 visits per year. This equates to approximately 1 extra visit every 6 

weeks. Finally, month of the year was the most important determinant on whether or not a visit was 

made on a particular day accordingly lifestyle practices such as physically activity were also important.  

 

The findings of this longitudinal study which tracked attendance over a year clearly highlight the 

importance of wider determinants in predicting attendance at a public health intervention for physical 

activity. Our study adds an important contribution to current evidence which was found little support for 

the environmental determinants of attendance and physical activity behaviour (28). While previous 

research often investigates what physical facilities are available within neighbourhoods, they seldom 

have data on actual use of such facilities (52-54), fewer still have this data available longitudinally. 

Monitoring attendance over a year, we showed that proximity to leisure centre from home was the most 

important determinant in determining if a person who went to the leisure centre once, will go back. While 

most evidence on environmental determinants is inconsistent, our findings support previous evidence 

which have shown that wider determinants such as weather or proximity to facilities influence 

attendance at public health interventions (20-22, 28, 30, 32, 55). For example, a recent review showed 

that the availability of physical activity equipment was convincingly associated with vigorous physical 

activity and connectivity of trails with active commuting (28) while other evidence from 14 cities in ten 

countries on five continents has shown that design of urban environments has the potential to contribute 

substantially to physical activity (30). 

 

Little if any evidence has considered if proximity predicts attendance and how this may vary by 

demographic variables such as age. Our study shows that proximity (distance via road network) to the 
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leisure centre effects whether individuals return, but only from 5km, and this effect was not evident in 

older men. For instance, distance to the leisure centre only seemed to have an effect after about 5km 

and had almost no influence on 65+ year old men. While we cannot say specifically, based on previous 

evidence, we can speculate this could relate to this group’s preparedness to navigate distance or could 

refer to activities they have always done, established patterns of physical activity or a place of social 

networks (56). Similarly, the summer months were more popular than the winter months. Examining the 

interaction between individual sociodemographic determinants such as age or socioeconomic status 

alongside wider determinants such as proximity to leisure centres will be an important direction for 

future research to enable a better understanding of what environmental determinants are important for 

specific population groups. For example, previous research has shown that favourable physical activity 

environments were associated with reduced obesity risk but only among those most affluent populations 

(57). In contrast, this study showed few differences by socioeconomic status but showed differences in 

attendance for physical activity by age group. Such variance in findings between studies could be due 

to a range of factors such as the difference between population groups studied and measures included 

but serve to highlight the importance of exploring the interaction between individual and environmental 

determinants of health. 

 

In addition to environmental determinants, other factors including employment status and levels of 

physical activity at baseline were important in predicting attendance. Social stigma (16), a lack of 

flexibility in opening hours (17) and irregular working hours (18, 19) have previously been highlighted 

as influencing adherence at public health interventions. Positive relationships between levels of physical 

activity and happiness have been previously reported in the literature (58-60) however, less literature 

has examined associations with attendance at a public health intervention. In addition to this, it is 

important to consider that there are many determinants not captured within this study which may be 

associated with attendance including aspects like instructor characteristics, social support, self-efficacy 

and perceived behavioural control (61). While it is not possible to capture every influence on level of 

attendance this study still makes an important contribution to evidence. This study raises important 

questions and has implications for both the management of people who don’t attend interventions and 

the effectiveness of existing strategies that aim to increase attendance. Our study details participants 

engagement patterns within a universal, free-at-the-point-of-access, physical activity intervention. 

Results are therefore important for both public health and physical activity providers. The findings 

present evidence that both environmental and socio-demographic factors drive attendance and these 

factors should be taken into account in the future development of interventions in similar settings. 

 

This study is strengthened by the use of a large sample size at a city-wide intervention which uses 

complex models to account for the complex nature of the data (51). Second, from a geospatial 

perspective, the inclusion of data on actual use of facilities and not just assuming that individuals use 

their nearest leisure centre, is a major strength; in this we add significantly to current evidence in health 
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geography (62). Third, we examine attendance across the whole year which means our results are not 

subject to the effects of seasonality (15, 21). This research provides valuable routes to investigate the 

motives, determinants, and behaviours of attendees with the aspiration of securing detailed insights 

into the characteristics that support their PA preferences. In doing so, this allows future research to 

initiate dialogue with such groups to provide detailed insights to shape intervention delivery and design 

(63). Despite these strengths, this study uses self-reported data for lifestyle practices which is subject 

to recall bias. In addition, despite being city-wide the results presented here may not be generalisable 

to other cultures and contexts and should be interpreted with this in mind. While attendance data is 

longitudinal we only have lifestyle practices at baseline and do not have data relating to a participants 

work address which could be equally important contributing determinant of attendance. Moreover, this 

study is limited by a lack of follow up on how people in this dataset changed home residential address 

during the study period. Our sample was primarily white British and we only have lifestyle practice data 

on a smaller sample of our larger sample. It is also likely that many of the participants will have 

undertaken some form of exercise or physical activity outside of the recorded leisure centre visits which 

may limit the generalisability of the findings. However, the machine learning techniques used, factoring 

in people’s baseline physical activity levels, in some part accounted for some of the variation. In 

addition, what sessions were available, where, and at what time at this free city wide intervention varied 

considerably by leisure centre due to opening times and differing policies.  

 

5. Conclusions 

In summary, we investigated the influence of a participant's proximity to a leisure centres, environmental 

determinants such as weather, and lifestyle practices on attendance at a city-wide physical activity 

intervention over one year. This study contributes to the limited research available on associations 

between environmental influences on public health intervention attendance. It goes beyond much 

research which rarely has data on actual use of such facilities over time. Triangulation between 

residential address, data on the geospatial location of facility used over time, and levels of physical 

activity at baseline make this a unique contribution to evidence. Public health interventions should 

consider the wider determinants influencing attendance beyond lifestyle and sociodemographic 

characteristics such a consideration takes on added importance in the emergence of systems-based 

approaches to physical activity promotion.     
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Figure S1. Distribution of the number of visits per person in the sample. 
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Figure S2. The expected probability of a return to the leisure centre for the observed sample conditional 

on the distance to the leisure centre by deprivation level (0= 3% most deprived; 1=10% most deprived; 

2=20% most deprived; and 3= not deprived). The histogram in grey shows the current distribution of 

leisure centre distances for the sample.  
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Figure S3. Distance to the leisure centre (m) by deprivation class (0= 3% most deprived; 1=10% most 

deprived; 2=20% most deprived; and 3= not deprived). 

 

 

 


