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Abstract
Purpose This study examined the influence of dynamic apnoea training on splenic volume and haematological responses 
in non-breath-hold divers (BHD).
Methods Eight non-BHD performed ten maximal dynamic apnoeas, four times a week for  six weeks. Splenic volumes were 
assessed ultrasonically, and blood samples were drawn for full blood count analysis, erythropoietin, iron, ferritin, albumin, 
protein and osmolality at baseline, 24 h post the completion of each week’s training sessions and seven days post the com-
pletion of the training programme. Additionally, blood samples were drawn for haematology at 30, 90, and 180 min post 
session one, twelve and twenty-four.
Results Erythropoietin was only higher than baseline (6.62 ± 3.03 mlU/mL) post session one, at 90 (9.20 ± 1.88 mlU/
mL, p = 0.048) and 180 min (9.04 ± 2.35 mlU/mL, p = 0.046). Iron increased from baseline (18 ± 3 µmol/L) post week 
five (23 ± 2 µmol/L, p = 0.033) and six (21 ± 6 µmol/L; p = 0.041), whereas ferritin was observed to be lower than base-
line (111 ± 82 µg/L) post week five (95 ± 75 µg/L; p = 0.016), six (84 ± 74 µg/L; p = 0.012) and one week post-training 
(81 ± 63 µg/L; p = 0.008). Reticulocytes increased from baseline (57 ± 12 ×  109/L) post week one (72 ± 17 ×  109/L, p = 0.037) 
and six (71 ± 17 ×  109/L, p = 0.021) while no changes were recorded in erythrocytes (p = 0.336), haemoglobin (p = 0.124) 
and splenic volumes (p = 0.357).
Conclusions Six weeks of dynamic apnoeic training increase reticulocytes without altering mature erythrocyte concentra-
tion and splenic volume.
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Abbreviations
ANOVA  Analysis of variance
BHD  Breath-hold divers
CV  Coefficient of variation
EBHD  Elite breath-hold divers
EPO  Erythropoietin
ND  Non-divers

NO  Nitric oxide
ROS  Reactive oxygen species

Introduction

Competitive breath-holding is a popular sport with athletes 
competing for the longest apnoeic duration they can sustain 
in a static position or the maximal distance they can cover 
horizontally/vertically whilst holding their breath with or 
without fins. In humans, apnoeic capabilities are dictated 
by: bodily oxygen stores (Elia et al. 2019b), the rate of oxy-
gen conservation and utilisation (Costalat et al. 2017; Fer-
retti et al. 1991; Lemaitre et al. 2005, 2008), hypoxemic 
and hypercapnic tolerance (Bain et al. 2016; Taboni et al. 
2019; Willie et al. 2015), and training experience includ-
ing an individual’s psychological tolerance to the increasing 
urge to breathe (Delapille et al. 2001; Schagatay et al. 2000). 
Evidence suggests that elite breath-hold divers (EBHD) have 
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a greater oxygen storage capacity in both blood and skeletal 
muscle tissue (Elia et al. 2019b), a stronger diving reflex 
response (Costalat et al. 2017; Elia et al. 2020; Lemaitre 
et al. 2005, 2008), and a greater hypoxemic and hypercapnic 
tolerance compared with non-divers (ND) (Bain et al. 2016; 
Elia et al. 2020; Joulia et al. 2002; Willie et al. 2015). Col-
lectively, these physiological characteristics enable EBHD to 
suppress respiratory urges and sustain apnoeas for extended 
durations.

To date, there is an abundance of research that has inves-
tigated the physiological modifications (i.e. cardiovascular, 
splenic and haematological responses) during and/or post 
voluntary apnoeic epochs (Elia et al. 2019a, 2020; Palada 
et al. 2007; Schagatay et al. 2001, 2005). On the contrary, 
limited research exists that has assessed the longitudinal 
effects of apnoeic training (Bouten et al. 2019; Engan et al. 
2013; Joulia et al. 2003; Schagatay et al. 2000). Interestingly, 
static apnoea training (i.e. 2–8 weeks; 5–10 apnoeic bouts 
per day) has been documented to: (1) augment the mag-
nitude of the diving-reflex-induced bradycardial response 
(Schagatay et al. 2000), (2) expand splenic volume and 
(3) enhance resting reticulocyte (Engan et al. 2013) and 
haemoglobin concentrations (Bouten et al. 2019). In addi-
tion, Joulia et al. (2003) demonstrated that three months of 
simulated dynamic apnoea training (i.e. steady-state cycling 
combined with apnoeic epochs, three times per week) sig-
nificantly enhanced hypoxic and hypercapnic tolerance. This 
suggests that some of the physiological characteristics exhib-
ited by EBHD stem, at least in part, from a training-induced 
stimulus.

To the best of our knowledge there are no reports address-
ing the longitudinal effects of dynamic apnoea training on 
erythrocyte concentrations. Acute bouts of dynamic apnoeas 
are associated with a stronger hypoxemic stress and a greater 
post-apnoeic erythropoietic release compared with static 
apnoeas (Barlow et al. 2018; Elia et al. 2019a; Overgaard 
et al. 2006). Therefore, since the degree of hypoxemia is 
directly proportional to the magnitude of EPO release and 
erythropoiesis (Eckardt et al. 1989; Elia et al. 2019a; Elliott 
2008; Jelkmann 2011; Knaupp et al. 1992), it is tempting 
to contemplate that a training protocol comprising a series 
of dynamic, rather than static apnoeas, would serve as a 
stronger stimulus for erythrocyte neoformation. Accord-
ingly, the present study will aim to provide a novel insight 
to the effect of a six-week dynamic apnoea training protocol 
on erythrocyte concentrations.

The splenic responses to apnoeic conditions in both 
trained and untrained breath-hold divers have been exam-
ined extensively in the literature (Elia et al. 2020; Palada 
et al. 2007; Schagatay et al. 2001, 2005). Conversely, the 
longitudinal effects of apnoeic training on splenic volume 
have received limited attention (Bouten et al. 2019; Engan 
et al. 2013). Current evidence signifies that apnoeic training 

periods lasting more than two weeks are necessary to elicit 
splenic volume gains (Bouten et al. 2019; Engan et al. 2013). 
Specifically, Bouten et al. (2019) reported splenic volume 
gains following four (+ 20%; 47  mL) and eight  weeks 
(+ 24%; 58 mL) of static apnoeic training (i.e. five apnoeic 
bouts per day) compared to baseline. In addition, Rodriguez 
et al. (2015) reported significant increases (+ 40%; 77 mL) 
in basal splenic volumes following six weeks of trekking at 
high-altitude. These studies signified that repeated hypox-
emic exposures and prolonged hypoxic exposures prompt 
splenic expansion. Although the underlining mechanisms 
that dictate splenic volume are still under debate, it is rea-
sonable to conjecture that hypoxia/hypoxemia may serve a 
key role in regulating this. Consequently, a dynamic apnoea 
training protocol, which facilitates a greater hypoxemic 
stress than static apnoeas, may provide a stronger stimulus 
for splenic growth.

Accordingly, the aims of the present study were to pro-
vide a novel insight to the erythropoietic effects of a six-
week dynamic apnoea training program by assessing a com-
prehensive panel of haematological markers (i.e. full blood 
count analysis, EPO, iron, ferritin and plasma osmolality, 
protein and albumin), and to investigate whether such regi-
men is capable of inducing splenic growth. We hypothesised 
that six weeks of dynamic apnoea training performed by ND 
will upregulate resting erythrocyte concentrations and will 
induce splenic volume expansion.

Materials and methods

Participants

Eight male participants volunteered for this study (height, 
178 ± 1 cm; body mass, 76 ± 5 kg; age, 24 ± 4 years). Par-
ticipants were healthy, non-smoking, physically active (i.e. 
accumulated at a minimum 30 min of moderate intensity 
of physical activity per day [activities included walking, 
jogging, futsal and rugby], and did not participate in any 
competitive form of sport) and provided written informed 
consent prior to participating in the study. The study was 
granted ethical approval by the Leeds Beckett University 
ethics committee (Ethical Approval Number 36538) and all 
experimental procedures were conducted in accordance with 
the Declaration of Helsinki.

Experimental protocol

The present study was divided into four parts (i.e. part 1, 
Preliminary Measurements [Week 1]; part 2, Familiarisa-
tion [Week 1]; part 3, Training Program [Weeks 2–8]; part 
4, Control Protocol [Week 9]) which were all completed 
within nine weeks (Fig. 1). No iron supplementation was 
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used by any of the participants for three months prior to, and 
during the study. Additionally, participants were instructed 
to maintain a consistent diet throughout the study. During 
each testing day participants reported at Leeds Beckett Uni-
versity after a 12 h fast and abstinence from caffeine and 
alcohol containing beverages. In addition, participants were 
instructed to refrain from physical activity for 24 h prior to 
and during each testing day.

Preliminary measures

Following arrival at the laboratory (~ 25 °C), the partici-
pant’s anthropometric measurements including stature and 
weight were assessed (Seca, Vogel & Halke, Hamburg, Ger-
many). Thereafter, they underwent a 20 min supine resting 
period following which baseline splenic volumes were then 
quantified using a non-invasive ultrasonic portable device 
(MindRay DP-50, Shenzhen Mindray Bio-Medical Electron-
ics Co., Ltd., Shenzhen, China) using a technique described 
in detail elsewhere (Elia et al. 2019a, 2020). Briefly, partici-
pants were seated vertically while the site for spleen meas-
urements was identified from the dorsal side. Three meas-
urements of each triaxial measurement point of the spleen’s 
maximal length (L), thickness (T) and width (W) were 

determined (coefficient of variation [CV] ~ 6%), with the 
mean for each point being used to calculate splenic volume 
through the use of the Pilström formula (Lπ[WT − T2]/3). 
Thereafter three whole blood samples were drawn from a 
suitable vein in the antecubital fossa of the participant’s arm 
(median cubital vein and basilic vein) to assess circulating 
serum concentrations of EPO, iron, ferritin, osmolality, albu-
min, protein (2 × 6 mL; BD Vacutainer, 367954, Plymouth, 
UK) and for a full blood count analysis (i.e. reticulocytes, 
erythrocytes, haemoglobin, haematocrit, mean cell vol-
ume, mean cell haemoglobin and red blood cell distribution 
width) (4 mL; BD Vacutainer, K2E EDTA, BD, Plymouth, 
UK) to be performed.

Familiarisation session

Within 24 h of completing the preliminary measures par-
ticipants reported at the Leeds Beckett University swim-
ming facilities (~ 28 °C) and a familiarisation session was 
performed. Participants were introduced to the dynamic 
apnoea technique (horizontal underwater breast-stroke 
swimming) and were familiarised to the trial conditions and 
requirements.

Fig. 1  Schematic representation depicting the data collection time points and the six-week apnoeic training protocol
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Dynamic apnoea training program

The program required participants to attend once a day for 
four consecutive training sessions per week, for a total of 
ix weeks (totalling 24 training sessions) with each session 
approximately lasting ~ 50 min (Fig. 1). Each training ses-
sion commenced with four repetitions of 40 m breast-stroke, 
serving as a warm-up, with a progression in the number of 
strokes per breath every two weeks (Fig. 1). Each repetition 
was separated by a 2 min resting period whereby the partici-
pants were allowed to relax and breathe normally. Follow-
ing completion of the warm-up regime, the dynamic apnoea 
protocol was initiated.

Dynamic apnoea protocol

Participants performed ten supervised maximal dynamic 
apnoeas with each repetition being separated by a 2 min rest 
period, during which time they were allowed to relax and 
breathe normally whilst remaining immersed in water. Par-
ticipants were instructed to hold their breath without prior 
hyperventilation or lung packing, after a deep but not maxi-
mal inspiration. A one minute warning was provided prior 
to commencing each apnoea, participants received a nose 
clip 30 s prior to the apnoea (i.e. to reduce any oxygen or 
water inspiration or oxygen loss) and a 10 s countdown was 
provided prior to immersing in water and commencing each 
maximal attempt. During each maximal apnoeic attempt, 
the time and distance covered was recorded to quantify any 
changes in performance.

At completion of sessions one (week 1), twelve (week 3) 
and twenty-four (week 6) a catheter was placed on a suit-
able vein of the antecubital fossa area of the participant’s 
arm and one 6 mL whole blood sample was drawn at 30, 90 
and 180 min (totalling three 6 mL samples; BD Vacutainer, 
367954, Plymouth, UK) post the last apnoea to assess for 
the level of circulating concentrations of EPO, iron, ferri-
tin, osmolality, albumin and protein. Additionally, 24 h post 
the completion of each week’s training protocol and one 
week post the six-week training program the participant’s 
splenic volumes were quantified, and blood samples were 
drawn for haematology replicating the preliminary session 
measurements.

Control protocol

To control for any possible effects of the warm-up proto-
col on the circulating serum EPO concentration, seven out 
of the eight participants repeated the week 5–6 warm-up 
protocol—as this was the highest warm-up intensity uti-
lised in the present training program. At completion of the 

control protocol one 6 mL blood sample was drawn at 30, 
90, 180 min and 24 h (totalling four 6 mL samples; BD 
Vacutainer, 367954, Plymouth, UK) post the last repetition 
to assess for the concentration of circulating EPO.

Blood sample treatment and analysis

Samples for EPO, iron, ferritin, osmolality, albumin and 
protein were gently inverted, allowed to coagulate at room 
temperature for 20 min, and centrifuged (ALC Multispeed 
Refrigerated centrifuge, PK131R, London, United King-
dom) at 4000 rpm for 10 min at 4 °C. Samples were then 
aliquoted into Eppendorf tubes and stored at − 80 °C until 
subsequent analysis. Serum EPO concentrations were quan-
tified using an enzyme-linked immunosorbent assay analysis 
(R&D systems, Quantikine IVD ELISA, Human Erythro-
poietin, DEP00, sensitivity 0.6 mIU/mL; CV ~ 3.6%), serum 
ferritin concentrations were assessed through the use of a 
two-site immunoenzymatic sandwich assay (UniCel Sxl 
800 Access Immunoassay System, Beckman Coulter, Lon-
don, UK; CV ~ 10%), the phenanthroline method was used 
to determine serum iron concentrations (AU5800 Series 
Chemistry Analyzers, Beckman Coulter, London, UK; 
CV ~ 2.2%), serum albumin was assessed through the bro-
mocresol green method (AU5800 Series Chemistry Analyz-
ers, Beckman Coulter, London, UK; CV ~ 2.1%), serum total 
protein was evaluated through the biuret method (AU5800 
Series Chemistry Analyzers, Beckman Coulter, London, 
UK; CV ~ 1.5%) and serum osmolality was quantified by a 
standard freezing point depression technique (3320 Single-
Sample Micro Osmometer, Advanced Instruments, Nor-
wood, USA; CV ~ 0.6%). For a full blood count analysis, 
samples were gently inverted and were analysed within 6 h 
of collection (Advia 2120i Haematology System, Siemens 
Healthcare, Surrey, UK; intra-assay variability ~ 5%).

Statistical analysis

All data were statistically analysed using the IBM SPSS 
statistics software version 21. Due to technical difficulties, 
week five’s full blood count samples were not analysed. The 
Shapiro–Wilk test was used to assess whether data were 
normally distributed (p < 0.05). Sphericity was assessed 
using Mauchly’s test of sphericity; where the assumption 
of sphericity was violated, the Greenhouse–Geisser correc-
tion was applied. Repeated measures ANOVA with post hoc 
Bonferroni contrast comparisons were used to assess for dif-
ferences between resting baseline measurements and other 
collection time points for distance covered, apnoeic dura-
tion, EPO, iron, ferritin, reticulocytes, reticulocyte absolute 
count, erythrocytes, haemoglobin, haematocrit, osmolal-
ity, albumin and protein. Friedman test was used to assess 
the differences within resting baseline measurements and 
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other collection time points for mean cell volume, mean cell 
haemoglobin and red blood cell distribution width. Where 
appropriate, partial eta square (η2) and power (β) were also 
presented. Data are reported as means ± SD and signifi-
cance was accepted at p < 0.05 and p = 0.000 was reported 
as p < 0.001. GraphPad Prism version 7.0c was used to con-
struct figures and Word 2016 was used for constructing sche-
matic representations and tables.

Results

No differences in serum EPO concentrations were observed 
from baseline (6.14 ± 2.10 mlU/mL) at 30 min (5.85 ± 2.96 
mlU/mL), 1  h and 30  min (5.25 ± 2.54 mlU/mL), 3  h 
(5.87 ± 1.96 mlU/mL) and 24  h (6.04 ± 1.98 mlU/mL) 
post the control protocol (p = 0.251, η2 = 0.208, β = 0.240) 
(Fig. 2).

Performance parameters

Mean underwater distance covered and dynamic apnoea time 
increased from week one to week six by 48% (p = 0.004, 
η2 = 0.618, β = 0.929) and 52% (p = 0.010, η2 = 0.508, 
β = 0.996), respectively (Table 1).

Erythropoietin

Mean post-apnoeic EPO concentrations were signifi-
cantly different from baseline post session one (p = 0.019, 

η2 = 0.335, β = 0.774), but not sessions twelve (p = 0.209, 
η2 = 0.187, β = 0.248) or twenty-four (p = 0.433, η2 = 0.084, 
β = 0.123) (Fig. 3a). Specifically, EPO was 39% higher 
than baseline (6.62 ± 3.03 mlU/mL) post session one at 
90 min (9.20 ± 1.88 mlU/mL, p = 0.048) and 37% higher 
at 180 min post-apnoeas (9.04 ± 2.35 mlU/mL, p = 0.046), 
but were not different at 30 min post-apnoeas (8.46 ± 2.21 
mlU/mL, p = 0.109) (Fig. 3a). Mean post-apnoeic EPO con-
centrations were not different when compared between ses-
sions (p = 0.774, η2 = 0.021, β = 0.086). When post-apnoeic 
EPO concentrations were expressed as a delta percentage 
change from baseline, significance was denoted post-ses-
sion one (30 min, + 69%; 90 min, + 72%; 180 min, + 68%; 
p = 0.033) with a trend being observed post-session twelve 
(30 min, + 80%; 90 min, + 64%; 180 min, + 68%; p = 0.067) 
but not twenty-four (30  min, + 52%; 90  min, + 58%; 
180 min, + 63%; p = 0.160).

Iron

Mean post-apnoeic iron concentration was significantly 
different from baseline during session one (p = 0.003, 
η2 = 0.486, β = 0.940). Iron increased by 21% from base-
line (18 ± 3 µmol/L) at 30 min (21 ± 2 µmol/L, p = 0.032) 
and 17% higher at 90  min (20 ± 3  µmol/L, p = 0.014), 
but no difference was observed at 180 min post-apnoeas 
(18 ± 4 µmol/L, p = 1) (Fig. 3b). Conversely, iron concen-
trations during the twelth (p = 0.345, η2 = 0.143, β = 0.269) 
and twenty-fourth session (p = 0.997, η2 = 0.002, β = 0.052) 
were not different from baseline, and there was no between-
session difference in post-apnoea iron concentrations 
(p = 0.221, η2 = 0.138, β = 0.313) (Fig. 3b). In addition, mean 
post-apnoeic iron concentrations were significantly different 
from baseline (p = 0.033, η2 = 0.383, β = 0.667), 24 h post 
week four (− 16%, p = 0.048), five (+ 36%, p = 0.033) and 
six (+ 20%, p = 0.041) (Table 2).

Ferritin

Mean post-apnoeic ferritin concentration was significantly 
different from baseline post session twenty-four (p = 0.003, 
η2 = 0.614, β = 0.946) but not post session one (p = 0.129, 
η2 = 0.232, β = 0.463) and twelve (p = 0.70, η2 = 0.280, 
β = 0.576) (Fig. 3c). During session twenty-four, ferri-
tin was lower than baseline (111 ± 82 µg/L) by 24% at 

Fig. 2  Mean (± SD) EPO (mlU/mL) concentrations from baseline to 
24 h post the control protocol

Table 1  Mean (± SD) dynamic 
apnoea performance parameters 
during the six-week training 
program

*Denotes significance (p < 0.05) from week one

Parameters Weeks

1 2 3 4 5 6

Distance (m) 25 ± 10 29 ± 10 32 ± 9* 32 ± 8* 36 ± 8* 37 ± 7*
Time (s) 29 ± 11 32 ± 9 39 ± 7* 36 ± 9 41 ± 7* 44 ± 7*
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90 min (76 ± 65 µg/L, p = 0.035) and 29% at 180 min 
post-apnoeas (80 ± 67  µg/L, p = 0.033) but no differ-
ence was revealed at 30 min post-apnoeas (85 ± 78 µg/L, 
p = 0.100) (Fig. 3c). Moreover, no significant differences 
were observed when post-training ferritin concentrations 
were compared between sessions (p = 0.769, η2 = 0.025, 
β = 0.087) (Fig. 3c). In addition, mean ferritin was sig-
nificantly reduced from baseline (p = 0.001, η2 = 0.505, 
β = 0.973), 24 h post week five (− 10%; p = 0.016), six 

(− 22%; p = 0.012) and one week post the completion 
of the six-week training program (− 20%; p = 0.008) 
(Table 2).

Protein, albumin and osmolality

Mean post-apnoeic protein (Fig. 3d), albumin (Fig. 3e) 
and osmolality concentrations (Fig. 3f) were not different 
from baseline during sessions one, twelve and twenty-four 
(p = 0.083) or when compared between sessions (p = 0.53) 

Fig. 3  Haematological indices from baseline to 180 min post apnoeas during session one, twelve and twenty-four. Significance from baseline for 
session one is denoted as *(p < 0.05) and for session twenty-four is denoted as ***(p < 0.05)
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(Fig. 3). Similarly, protein, albumin and osmolality con-
centrations were not different from baseline during the 
six-week training protocol (p = 0.187) (Table 2).

Full blood count analysis

Reticulocyte concentrations significantly increased from 
baseline 24 h post week six (+ 28%; p = 0.020), with con-
centrations being restored to baseline one week post the 
completion of the six-week training program (p = 0.023, 
η2 = 0.284, β = 0.824) (Table 2). In addition, reticulocyte 
absolute count increased significantly from baseline 24 h 
post week one (+ 26%, p = 0.037) and week six (+ 24%, 
p = 0.021) (p = 0.018, η2 = 0.295, β = 0.847) (Table 2). There 
were no main effects of the six-week dynamic apnoea train-
ing program on mean erythrocyte (p = 0.336, η2 = 0.144, 
β = 0.411) and haemoglobin concentrations (p = 0.124, 
η2 = 0.204, β = 0.606) or haematocrit (p = 0.237, η2 = 0.167, 
β = 0.486), mean cell volume (χ2[6] = 9.337, p = 0.156), 
mean cell haemoglobin (χ2[6] = 6.910, p = 0.329) and red 
blood cell distribution width (χ2[6] = 2.563, p = 0.861) at the 
different time points from baseline (Table 2).

Splenic volume

There was no effect of the six-week training intervention on 
resting splenic volumes during, and one week after the com-
pletion of training (p = 0.357, η2 = 0.140, β = 0.273) (Fig. 4).

Discussion

The present study examined the effect of a six-week dynamic 
apnoea training program on erythrocyte concentration and 
splenic volume. The primary findings signify that six weeks 
of dynamic apnoea training (1) improves apnoeic perfor-
mance, (2) increases reticulocytes, (3) but does not enhance 
mature erythrocyte concentration or splenic volume. Col-
lectively, the present study demonstrates that six weeks of 
dynamic apnoea training activates the process of erythro-
poiesis, but does not facilitate splenic volume expansion.

Table 2  Mean (± SD) haematological concentrations during the eight-week period

Data are presented as mean ± SD
*Denotes significance (p < 0.05) from baseline

Variable Baseline Weeks

1 2 3 4 5 6 One week post

Iron (µmol/L) 18 ± 3 17 ± 3 17 ± 1 19 ± 4 15 ± 3* 23 ± 2* 21 ± 6* 17 ± 6
Ferritin (µg/L) 111 ± 82 112 ± 80 101 ± 71 100 ± 68 101 ± 73 95 ± 75* 84 ± 74* 81 ± 63*
Osmolality (osmol/kg) 292 ± 6 292 ± 7 291 ± 4 288 ± 5 290 ± 4 292 ± 6 293 ± 7 290 ± 6
Albumin (g/L) 45 ± 6 43 ± 7 45 ± 9 41 ± 6 40 ± 10 46 ± 5 46 ± 4 44 ± 5
Protein (g/L) 71 ± 7 67 ± 9 70 ± 13 66 ± 5 63 ± 14 72 ± 5 73 ± 3 71 ± 5
Reticulocytes (%) 1.16 ± 0.18 1.38 ± 0.23 1.13 ± 0.21 1.31 ± 0.15 1.28 ± 0.17 – 1.49 ± 0.33* 1.14 ± 0.31
Reticulocyte absolute count  (109/L) 57 ± 12 72 ± 17* 56 ± 9 65 ± 5 63 ± 9 – 71 ± 17* 56 ± 18
Erythrocytes  (1012/L) 5.02 ± 0.32 4.90 ± 0.33 5.01 ± 0.49 4.88 ± 0.32 5.07 ± 0.43 – 4.93 ± 0.26 4.97 ± 0.33
Haemoglobin (g/dL) 152 ± 8 148 ± 5 150 ± 8 146 ± 8 150 ± 8 – 150 ± 6 148 ± 9
Haematocrit (%) 45 ± 2 44 ± 2 45 ± 2 44 ± 2 46 ± 4 – 44 ± 1 44 ± 2
Mean cell volume (fl) 87 ± 3 89 ± 4 90 ± 5 90 ± 4 90 ± 3 – 89 ± 4 89 ± 3
Mean cell haemoglobin (pg) 30 ± 2 30 ± 2 30 ± 2 30 ± 2 30 ± 2 – 31 ± 2 30 ± 2
Red blood cell distribution width (%) 13.2 ± 0.5 13.2 ± 0.6 13.1 ± 0.6 13.2 ± 0.8 12.9 ± 0.2 – 12.9 ± 0.4 13.0 ± 0.4

Fig. 4  Mean (± SD) splenic volumes during the eight-week period
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Acute post‑apnoeic responses

To the best of our knowledge, this is the first study to assess 
the effect of ten repeated maximal dynamic apnoeas on 
EPO concentration acutely and following repetitive daily 
exposures. Our findings revealed significant increases in 
EPO following session one, but not post session twelve 
or twenty-four. These increases are likely caused by the 
apnoea-induced hypoxemia and not due to haemoconcentra-
tion (Cahan et al. 1992; Klausen et al. 1996), since no differ-
ences were detected in serum osmolality, albumin or protein 
concentrations from baseline. Therefore, our study demon-
strates that, at least in non-BHDs, ten maximal dynamic 
apnoeic repetitions are effective in acutely upregulating 
systemic EPO concentration. However, somewhat counter-
intuitively, post-apnoeic EPO concentration was not different 
to baseline with training, despite significant improvements 
in apnoeic performance. This novel observation might sug-
gest that apnoeic training, similarly to endurance-type exer-
cise training, may attenuate the reduction of renal vascular 
blood flow (Armstrong and Laughlin 1984; Chen et al. 2001, 
1999; De Moraes et al. 2004; DiCarlo and Bishop 1990; 
DiCarlo et al. 1997; Moyna and Thompson 2004; Mueller 
et al. 1998; Musch et al. 1991; Yen et al. 1995), subsequently 
suppressing the release of EPO in response to an acute bout 
of repeated dynamic apnoeas. However, further research 
is necessary to determine the extent to which our findings 
are the result of a training-induced adaptation of the renal 
vasculature.

Serum iron was markedly elevated at 30 min (+ 21%) and 
90 min (+ 17%) post the last apnoeic bout following ses-
sion one. Our findings are in agreement with earlier studies 
that reported similar acute increases in iron concentrations 
following exercise interventions (Peeling et al. 2009a, b, c, 
2014; Schumacher et al. 2002). The transient increases in 
iron may reflect haemolysis, a process whereby an erythro-
cyte’s membrane is damaged, causing it to release iron and 
its associated haemoglobin into the extracellular fluid—con-
sequently reducing its lifespan (Buchman et al. 1998; Peel-
ing et al. 2009a, c; Selby and Eichner 1986; Smith 1995; 
Telford et al. 2003). Oxidative stress has been documented 
to incite haemolysis and to dictate the magnitude of this 
response in a dose-dependent manner; with considerable 
evidence indicating that oxidative damage may be the pri-
mary mechanism by which erythrocytes age (Clark 1988; 
Mohanty et al. 2014; Pigeolet and Remacle 1991; Seppi 
et al. 1991; Smith 1995; Telford et al. 2003). Interestingly, 
repeated maximal apnoeic epochs have been evidenced to 
upregulate the production of reactive oxygen species (ROS) 
(Joulia et al. 2002, 2003) and aggravate systemic oxidative 
stress levels (Rousseau et al. 2006; Sureda et al. 2004, 2015). 
Therefore, the presently recorded marked increases in cir-
culating iron concentrations following session one may be 

indicative of an oxidative stress-induced haemolysis (Rear-
don and Allen 2009; Reeder and Wilson 2005; Schümann 
et al. 2005). In contrast, no changes were observed in iron 
following session twelve and twenty-four. Considering that 
long-term apnoeic training lowers post-apnoeic oxidative 
stress (Joulia et al. 2003; Sureda et al. 2015), it is tempt-
ing to speculate that the lack of iron changes following ses-
sion twelve and twenty-four may, at least in part, relate to 
a training-induced adaptation that lowers the degree of oxi-
dative stress-induced haemolysis. Howbeit, it is imperative 
that additional research is conducted to fully elucidate the 
underlining mechanisms that dictated the presently recorded 
iron fluctuations.

Week‑by‑week responses

This is the first study to examine erythropoietic markers 
across an apnoeic training program. Reticulocyte concen-
tration was significantly elevated (+ 26%) 24 h post week 
one Although our findings testify to an augmented eryth-
ropoietic process (Guyton and Hall 2006; Mairbaurl and 
Weber 2012), similarly to Engan et al. (2013), we failed to 
record any increases in resting erythrocyte and haemoglobin 
concentrations. Considering that apnoea-induced oxidative 
stress may activate haemolysis, we propose that the reticu-
locyte increases recorded 24 h post-week one may be a com-
pensatory response to replenish damaged/old erythrocytes 
and restore or sustain normal erythrocyte concentration.

Iron concentration was markedly reduced (− 16%) 24 h 
post week four. These results were likely caused by the 
apnoeic intervention and not due to diurnal variations, as 
samples were collected at similar timepoints across the train-
ing program. In addition, since no changes were denoted 
in serum protein, albumin and osmolality concentrations, 
the reduction in iron did not stem from haemoconcentra-
tion or plasma volume fluctuations. Our observations are 
in agreement with studies that examined iron concentra-
tions 24 h following walking (Terink et al. 2018), mara-
thon (Roecker et al. 2005) and ultramarathon (Chiu et al. 
2015) interventions. However, the physiological relevance 
of these reductions is presently unclear. There is evidence 
suggesting that iron is implicated in the generation of ROS 
via the Fenton reaction (Bystrom et al. 2014; Reeder and 
Wilson 2005), with a number of studies denoting significant 
increases in oxidative stress and inflammatory responses fol-
lowing excessive iron supplementation (Reardon and Allen 
2009; Reeder and Wilson 2005; Schümann et al. 2005). 
Thus, a reduction in serum iron may be indicative of a bod-
ily response to lower the generation ROS (Liu et al. 2006). 
On the other hand, a reduction in iron may be indicative of 
an augmented erythropoietic process. During erythropoie-
sis, iron demand increases by the bone marrow in order to 
synthesize heme (Bunn 2013; Muckenthaler et al. 2017; 
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Semenza and Wang 1992). This necessitates an increase in 
intestinal iron uptake and serum iron binding capacity, as 
well as enhanced mobilization of iron from internal stores 
(e.g. ferritin) (Muckenthaler et al. 2017). The availability of 
sufficient amounts of iron is of critical importance for nor-
mal and stress-induced erythropoiesis. Thus, the reductions 
in iron concentration may be indicative of an increased iron 
uptake by the bone marrow in response to erythropoiesis. 
However, further research is required to unveil the physi-
ological relevance of these reductions and to ascertain or 
refute this hypothesis.

Twenty-four hours post week five and six, we recorded 
an increase in iron (+ 36% and + 20%, respectively) and a 
concomitant reduction in ferritin (− 10% and − 22%, respec-
tively) concentration. The marked increases in iron concen-
tration following week six may testify to an enhanced mobi-
lisation of iron from internal stores. Ferritin is the primary 
iron storage protein, thus serving as a marker of systemic 
iron deposits (Major et al. 1997; Muckenthaler et al. 2017; 
Skikne and Cook 1992). As a labile form of iron storage, 
ferritin makes its stored iron easily accessible during high 
iron demands (Brugnara et al. 1994a, b; Major et al. 1997). 
Thus, the observed reductions in ferritin concentration fol-
lowing week six may be indicative of a bodily response to 
an enhanced iron demand by the bone marrow, increasing 
the iron availability in response to an augmented erythro-
poietic process. These fluctuations in iron and ferritin con-
centrations may suggest that the undulations in EPO (i.e. 
mean increases of up to 2.21 mlU/mL) observed post session 
twenty-four, although not statistically significant, may be of 
physiological significance. Indeed, this hypothesis may par-
tially be supported by the significant increases in reticulo-
cyte count (+ 24%) recorded 24 h post week six. Hence, col-
lectively our novel findings entail that six weeks of dynamic 
apnoeic training are effective in inciting erythropoiesis.

Erythrocytes remained unchanged throughout the six 
week training period. Although our study was associated 
with an increased reticulocyte concentration, the lack of an 
increase in the erythrocytes and haemoglobin concentra-
tions suggests that longer training periods (e.g. > 6 weeks) 
and/or greater apnoeic repetitions (e.g. > 10 repetitions) 
may be necessary for the full cycle of erythropoiesis to be 
completed. Moreover, one week post the completion of the 
training period ferritin was the only marker that was not 
restored to pre-training values, thus providing further evi-
dence to support that longer apnoeic training periods maybe 
necessary to elicit any significant increases in erythrocytes. 
Accordingly, future research should investigate the efficacy 
of longer training durations (e.g. 8–12 weeks) to unveil 
whether the presently augmented erythropoietic markers 
translate into new erythrocytes. Additionally, in the present 
study we did not record any changes in serum osmolality, 
protein and albumin concentrations, suggesting that our 

findings were not influenced by blood and plasma volume 
changes. Future research should seek to also examine total 
haemoglobin mass to fully elucidate the erythropoietic 
effects of apnoeic training.

The present study demonstrated that six weeks of dynamic 
apnoea training were not effective in evoking splenic growth 
(Fig. 3). Our findings are in agreement with Engan et al. 
(2013, but are contrary to Bouten et al. (2019) who observed 
splenic volume gains following eight weeks of static apnoeic 
training. The underlining mechanisms that dictate splenic 
volume are currently unclear, however it may be governed 
by a complex interplay between genetic predispositions and 
prolonged exposures to hypoxic/hypoxemic conditions (Rod-
riguez et al. 2015; Ilardo et al. 2018; Bouten et al. 2019). 
However, since neither us nor Bouten et al. (2019) evalu-
ated the end-apnoeic arterial oxygen saturation levels dur-
ing the training period, we are currently unable to provide 
further reasoning to our current findings. Nevertheless, our 
study may suggest that longer apnoeic training interventions 
(e.g. > 6 weeks) and/or further training sessions (e.g. daily) 
may be necessary to facilitate splenic growth.

Methodological considerations

Our study has a number of methodological considerations. 
Firstly, although we instructed our participants to maintain 
a consistent diet throughout the study, we did not evaluate 
their daily food intake. However, our participants’ iron and 
ferritin concentrations followed a similar fluctuation trend 
across the training regimen, which conjointly suggest that 
our findings stemmed from the prescribed training interven-
tion rather from sudden shifts towards iron-rich/deficient 
diets. Secondly, although we did not recruit a control group, 
we did implement several precautionary measures to control 
against any possible confounders on haematology, includ-
ing, (i) all blood samples being collected at similar time-
points across the study’s duration, (ii) assessing markers of 
hydration status, plasma and blood volume, (iii) instructing 
participants to maintain a consistent diet and (iv) to refrain 
from any other physical activities during the time course of 
the study.

Limitations

In this study, we did not evaluate the magnitude of the 
hypoxemic stress in terms of arterial oxygen saturation. 
It is well accepted that hypoxemia is a potent stimulus for 
erythropoiesis (Eckardt et al. 1989), while recent evidence 
suggest that it may also promote splenic growth (Rodri-
guez et al. 2015). It may well be that our study exposed our 
participants to a lower hypoxemic stress than other studies 
(Rodriguez et al. 2015; Bouten et al. 2019). If this was so, 
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it would mean that, in non-divers, we do not need a very 
strong hypoxemic stimulus to induce erythropoiesis. On the 
other hand, this might further explain the lack of changes in 
splenic volume in our study. A measure of arterial oxygen 
saturation would have opened the way to further reasoning 
about our findings.

Conclusion

In conclusion, this is the first study to investigate the effi-
cacy of a six-week dynamic apnoea training on haemato-
logical indices and splenic volumes. This study highlighted 
that dynamic apnoeic training increases reticulocyte con-
centrations without altering mature erythrocytes or splenic 
volume.
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