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Abstract—This article considers the deterministic optimal 

control problem of profit maximization for inventory replenished 

at a variable rate and depleted by demand which is assumed to 

vary with price and stock availability. Optimal policies for the 

inventor,  product order rate and price are derived using the 

maximum principle.  Bounds on the maximum price possible are 

also derived. 

Keywords—Optimal Control, Hamiltonian, costate variable, 

maximum principle, bang-bang control 

I. INTRODUCTION  

The main premise of this article is that the demand for a 
particular product may increase linearly as more stock on 
display becomes available. This  idea was first suggested by 
Wolfe [1]. Optimal ordering strategies adopting the Economic 
Order Quantity (EOQ) were addressed by Baker and Urban [2], 
Urban [3-4] and Gerchak and Wang [5]. In addition to the  
inventory we introduce demand dependence on the price of the 
product in a convex manner. A linear price dependence was 
investigated by Jørgensen and Kort [6]. Our objective is to 
maximize the net profit from selling the product incorporating 
holding and ordering costs over a finite horizon. A similar 
objective in an infinite horizon setting was used by 
Khmelnitsky and Gerchak [7] who excluded demand price 
dependence.   

II. THE OPTIMAL CONTROL MODEL 

A. Model definition 

The demand for an item is a function of the inventory in 
stock at time t, x(t), and the price, p. Specifically, the demand 
rate, d(x,p), is given by 

                            
2)(),( pbaxpxd                         (1) 

where a is a suitable growth parameter and b is the maximum 

product price possible, bp  . The demand rate will increase 

as x increases, 0
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
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d
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d
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x = 0 or  p = b, 0),(),0(  bxdpd . As price increases, 

the demand rate will decline with the available stock, 

0
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The inventory evolves according to the differential equation 
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where u is the order (replenishment) rate, Uu 0  and 

bp 0  and 0)0( xx  . 

The objective is to select an order and pricing policy so as to 
maximize the net profit over a horizon T: 

                        















T

pu
dtcuhxpxpdmax

0
,

),(                (3) 

where c is the unit order cost and h is the unit holding cost, 
c<b. 

B. The costate variable and the Hamiltonian function 

The Hamiltonian is defined as    
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where is the costate variable measuring the shadow price  of 
the inventory variable, x (Chiang [8]). The maximum principle 
conditions are 
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



u

H
 and 0





p

H
 optimality conditions      (5) 
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The maximum principle conditions (5) are necessary but not 
sufficient for maximizing the Hamiltonian. Arrow’s sufficiency 
theorem must be applied to the Hamiltonian to ensure 
sufficiency by proving the concavity of the Hamiltonian 
(Kamien and Schwartz [9]). 

C. Solution to the optimal control problem  

The optimality condition, 0




u

H
, cannot be strictly applied 

because the Hamiltonian is linear in u. Since c
u





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H
, 

this is a case of bang-bang control insofar as the optimal 
ordering policy is concerned. We have then for the optimal 

ordering policy, 
*u : 
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The second optimality condition, 0




p

H
, yields the 

optimal pricing policy 

                                    
3
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b
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From (6) we have  

                           
2))(( pbpah                       (10) 

The price, p, must be by definition non-negative. This leads to 
the identification of four distinct regions A, B, C, and D: 
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The Hamiltonian in this region is given by 
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which is linear in x for a given and automatically concave. 
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Here the Hamiltonian is given by 
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which is linear in x for a given and automatically concave. 

Region C 
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Here the Hamiltonian is given by 
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which is also linear in x for a given and automatically 
concave. 

Region D 

hUxUubpb    ,,  ,  , **
 

The Hamiltonian is given by 

Uchxpux )(),,,(  H  

again linear in x for a given and automatically concave. 

If the shadow price is negative it is not profitable to replenish 

the stock )0( * u and the price is set to 0 )0( * p  in order 

to get rid of the stock. If the shadow price reaches positive 
values but remains below the unit order cost, c, it is still not 
profitable to replenish but the price can be set at some low 
value to get rid of the remaining stock. Maximum order rates 
and variable pricing are applied when the shadow price 
exceeds the unit order cost but remains below the maximum 
possible price, b. As soon as the shadow price attains b, the 
price is set at its maximum, b, and maximum order rates are 
applied. 

Region D is ruled out as part of the optimal policy because the 
inventory and the shadow price grow linearly in time, both 
starting from positive values, hence the transversality condition 
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(7) cannot be met. As such none of the other three regions are 
accessible from D. 

Region B must be the terminal region as it is the only one for 
which the transversality condition is met. The transitions 

BCA   and BAC   are both precluded by the 

continuity property of the costate variable. It remains to 
investigate whether region B is accessible from the other two 
adjacent regions,  A and C. 

:BA    

In region A,  the solution to  2abh  is 
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where 1k  is the integration constant. If region B is to be 

reached the  costate variable must be constantly increasing in 

time as the inventory declines exponentially )~)((
2tabetx 

 

as no ordering is taking place. An increase is possible only if 
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the following condition must be met: 
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In other words, the maximum price, b, must be bounded from 

above to allow the shadow price to rise to 
2

b
 .  

 :BB   

In this region 
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a
h . The explicit solution to 

the equation with integration constant, 2k ,  is realised by 

separation of variables and subsequent partial fraction 
expansion of the integrand: 
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Applying boundary condition (7),  we get the full solution in 
region B: 
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For negative values of the costate variable condition (12) 

ensures that the terminal value, 0)( T  will be reached. 

For positive values of the costate variable the following 
condition must be held 

                                
3

1

2

2

3










a

h
cb                                (14) 

:BC   

The system of the state equations in region C 
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possesses a unique equilibrium: 
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Throughout region C, c , hence the following condition 

must be met for the saddle costate equilibrium value to exist: 
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The Jacobian  matrix possesses two real eigenvalues, equal of 

opposite sign, 3
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2
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3

1

2
1 )4(,)4( ahah   . The 

equilibrium is a saddle point, hence it is unstable. The 

perturbations ),(  from the equilibrium ),( x obey 
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Figure 1. Saddle point ),( x  is at the origin of the () axes. 

When   , 0  and the costate variable keeps 

increasing. For the region B to be accessible from region C,  
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III. IMPLEMENTATION OF THE CONTROL POLICIES 

Initial inventory starts in region A 

If the inventory falls in region A and 
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takes place (u = 0) and the price, p, is set to 0 to allow the 

inventory to decline exponentially whilst simultaneously the 
shadow price begins to rise as profit losses are reduced. At 

time, 1t , the inventory crosses over to region B, where the 

shadow price is 
2
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b
 .  1  can be explicitly calculated 

from (13) by setting the variable 
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bz    and solving 

for 1 : 

                                       

564

3
arctan

)4(

3

42

469

23

2
ln

)4(

1

22

3

1

2

22

22

3

1

2

1




































































bb

b

ah

bb

bb

b

b

ah

T

 

Initial inventory in region B 

 If the maximum price, b, obeys the condition (12) then the 
costate value is in negative territory and will increase towards 
the 0 terminal value. If on the other hand, b obeys condition 
(16) the costate value is in positive territory and will decline 
towards the 0 terminal state. 

Initial inventory in region C 

If the inventory falls in region C, ordering is carried out at 
maximum rate (u = U) whilst the shadow price begins to drop. 

At time, 2t , the inventory crosses over to region B, where 

the shadow price is c2 . 2  can be explicitly calculated 

again from (13) by setting the variable cbz   and solving 

for 2 : 
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IV. DISCUSSION 

In this work we have formulated an optimal inventory 
control problem and outlined its full solution when the demand 
is simultaneously  both stock and price dependent and the order 
rate as well as the price are bounded. It was found that the 
maximum price, b, must fall outside the range 

 



 )(
3

)(
3

1

t
U

h
t  

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES 
DOI: 10.46300/9101.2021.15.22 Volume 15, 2021

E-ISSN: 1998-0140 169



































 3

1

3

1

2

2

3
,

2

a

h
c

a

h
 if maximum profit is to be 

feasible. This enables the inventory planner to set in advance a 
maximum price in terms of the three key parameters; the 
intrinsic demand growth rate, a, the unit holding cost, h, and 
the unit order cost, c and set the pricing and ordering strategies 
according to which region the inventory happens to be in. 
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