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Movement variability during cumulative tackles

INTRODUCTION
Rugby league are physically demanding team sports characterised 
by a high frequency of tackle events [1]. As such, tackles result in 
considerable increases in total energy expenditure [2] and upper-body 
neuromuscular and perceptual fatigue [3]. Furthermore, tackles re-
quire high levels of physical fitness and a set of coordinated movement 
patterns [4]. Consequently, developing tackle and contact abilities 
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ABSTRACT: The aim of this study was to identify between-position (forwards vs. backs) differences in 
movement variability in cumulative tackle events training during both attacking and defensive roles. Eleven 
elite adolescent male rugby league players volunteered to participate in this study (mean  ±  SD, age; 
18.5 ± 0.5  years, height; 179.5 ± 5.0  cm, body mass; 88.3 ± 13.0  kg). Participants performed a drill 
encompassing four blocks of six tackling (i.e. tackling an opponent) and six tackled (i.e. being tackled by an 
opponent while carrying a ball) events (i.e. 48  total tackles) while wearing a micro-technological inertial 
measurement unit (WIMU, Realtrack Systems, Spain). The acceleration data were used to calculate sample 
entropy (SampEn) to analyse the movement variability during tackles performance. In tackling actions SampEn 
showed significant between-position differences in block 1 (p = 0.0001) and block 2 (p = 0.0003). Significant 
between-block differences were observed in backs (block 1 vs 3, p = 0,0021; and block 1 vs 4, p = 0,0001) 
but not in forwards. When being tackled, SampEn showed significant between-position differences in block 
1 (p = 0.0007) and block 3 (p = 0.0118). Significant between-block differences were only observed for backs 
in block 1 vs 4 (p = 0,0025). Movement variability shows a progressive reduction with cumulative tackle events, 
especially in backs and when in the defensive role (tackling). Forwards present lower movement variability 
values in all blocks, particularly in the first block, both in the attacking and defensive role. Entropy measures 
can be used by practitioners as an alternative tool to analyse the temporal structure of variability of tackle 
actions and quantify the load of these actions according to playing position.
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becomes an essential aspect of training prescription in the rugby 
codes [4]. Tackle actions are performed during both defensive and 
attacking phases of play [5], but defensive tackling may prove crucial 
in determining the match outcome if they are able to prevent the 
attacking team progressing towards their try line and scoring 
a try [6–8]. Therefore, it is important that defensive players are able 
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and, more recently, sample entropy (SampEn) and multiscale entro-
py (MSE) [27–32]. All of them, are mathematical algorithms to quan-
tify the amount of regularity and the unpredictability of fluctuations 
over time-series data. However, they can be considered particularly 
appropriate for the study of sports movements, although it appears 
that SampEn is more reliable for short data sets [33]. SampEn mea-
sures the probability that similar sequences of points in the time-se-
ries remain similar within a tolerance level when a point is added to 
the sequence, in a single time scale [34]. Furthermore, entropy pro-
vides researchers the ability to quantify complexity setting high reg-
ularity as low entropy and a very random movement as high entro-
py. Within the past 20 years, entropy analysis has gained popularity 
in movement sciences in sports to describe changes in postural con-
trol [35–38], assessment of running [39, 40], human walking 
data [41–43], tactical behaviour in soccer [44, 45], force produc-
tion [46–48] and as a measure of system complexity in sports [49]. 
Recently, it has also been validated for detecting increases in move-
ment variability in elite rugby players during resistance training when 
a ball is included [50, 51].

To our knowledge, no study has explored the movement variabil-
ity in tackle actions and its changes during repeated tackles. There-
fore, the aim of this study was to identify between-position (forwards 
vs. backs) differences in movement variability in cumulative tackles 
events training during both attacking and defensive roles.

MATERIALS AND METHODS 
Subjects
Eleven elite adolescent male rugby league players (mean ± SD, age; 
18.5  ±  0.5  years, height; 179.5  ±  5.0  cm, body mass; 
88.3 ± 13.0 kg) were recruited for this study, six forwards and five 
backs. All participants were selected from a single professional rug-
by league academy based in England. Prior to volunteering, the ex-
perimental protocol was explained to all participants both verbally 
and in writing, with a written statement of consent signed (in the 
case of minors, players provided assent and parents provided consent). 
The procedures complied with the Declaration of Helsinki (2013) 
and were approved by Leeds Beckett University Research Ethics 
Committee.

Design and Methodology
Participants performed a drill encompassing 48 one-on-one tackles 
divided into 24 tackling (i.e. tackling an opponent) and 24 tackled 
(i.e. being tackled by an opponent while carrying a ball) events. These 
drills were structured in four blocks, and each block consisted of six 
tackling and six tackled activities in random order. The players 
started in front of each other, when the coach marked the start, the 
players crossed two meters in the opposite direction and then changed 
direction to execute the tackle at the central point (Fig. 1). The play-
ers were divided by positions (e.g., forwards or backs), so that they 
were always paired with a player of their same position. The ex-
perimental protocol began with a standardised 10-minute warm-up. 

to maintain the intensity and technique during defensive tackles. 
Tackle characteristics are different between playing positions, with 
forwards being involved in more tackles than backs during a match, 
with the highest frequency recorded for hit-up forwards group (i.e., 
35 to 48) compared to the outside backs group (i.e., 23 to 32) [9–11]. 
Thus, players have different collision-profiles and require different 
collision training to adequately prepare for the physical-technical 
characteristics of competitions [12–14].

To adequately prepare for the physical-technical characteristics 
of competitions, microtechnology is used to study match demands 
to inform training. Research on the use of microtechnology to quan-
tify external loads in team sports has grown exponentially in the last 
years [3, 15, 16]. However, most of the research has focused on 
global positioning system (GPS) derived variables (e.g. distance, 
high-speed running, accelerations, and decelerations), with limited 
focus on collisions (e.g., the tackle) [17]. Some micro-technology 
devices contain multiple components such as accelerometers or gy-
roscopes, which may provide valuable information related to human 
movement, with application to the tackle [17]. For instance, accel-
erometer-derived metrics can be used to quantify the number and 
magnitude of collision events [12, 15, 16]. In the existing literature, 
tackle analyses have typically quantified the magnitude of these 
events and potential changes in technique [4, 6, 12, 18]. Also, the 
most demanding passages of rugby league match-play involve cu-
mulative tackles and collisions with short recovery between ef-
forts [19]. At the elite level, rugby league players can often be ex-
posed to between 29 and 74 collisions (i.e., tackles and carries) per 
game [11, 19], or to more than 3 collisions per minute [20]. As 
such, cumulative tackles events may deteriorate tackle technique 
and efficiency over time by affecting its movement variability, espe-
cially when a player is required to make repeated tackles with their 
non-dominant side [21, 22], although to date limited research ex-
ists in this area.

Movement variability can be defined as a certain amount of change 
during athletic performance (e.g. a tackle) and perceived as a key 
element for identifying the amount of perturbation (incidents that 
change a system state from a stable to an unstable situation or vice 
versa) in a specific sporting action [23–25]. Therefore, human move-
ment variability can provide an additional tool for quantifying the 
tackle demands of team sports. Human movement analysis has 
evolved to assess the variability of a measure by targeting the detec-
tion of changes in fluctuations and spatiotemporal characteristics of 
its outcomes. Linear analyses of human movement have several 
recognised limitations, mainly in determining the degree of complex-
ity and the time–dependent structure of a time series [26]. These 
limitations can be complemented by using non-linear analyses, such 
as measures of entropy. The advantages on this method lie in the 
additional information on the way in which the levels of a biological 
system are related, and the organization of athlete’s movement from 
a dynamical system perspective [27]. Currently, the most common-
ly used methods for biological data are approximate entropy (ApEn) 
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Participants were instructed and encouraged to tackle with maximum 
effort. During tackling actions, participants alternated between shoul-
ders (i.e. three tackles using the dominant shoulder and three tack-
les using the non-dominants shoulder) within each block. Ninety 
seconds of passive recovery was prescribed between each block. 
Professional coaches directed the sessions to ensure session safety 
and ecological validity. The prescribed 48 collisions account for more 
than the match demands reported for professional rugby league [52] 
and rugby union [53], to induce a greater level of tackle induced 
fatigue. A total of 528 tackles were analysed (288 for forwards and 
240 for backs).

Participants wore a micro-technology inertial measurement unit 
(WIMU, Realtrack Systems, Almeria, Spain), which was tightly fit-
ted to the athletes upper back with a specialised vest to minimise 
incidental unit movement and enhance reliability [17]. The micro-
technology units contain a 10 Hz Galileo GPS positioning device, 
a 3D accelerometer; 100G recording at 1000 Hz, a 3D gyroscope 

recording at 1000 Hz. The devices were calibrated prior to their 
placement. This was done with a self-calibration system that incor-
porates each device in the internal configuration of the boot. During 
self-calibration, three aspects were taken into account: (i) leaving the 
device immobile for 30 s; (ii) placing it in a flat area; and (iii) no 
magnetic devices around it [54]. These devices have reported good 
results in accuracy and reliability of his different sensors in previous 
studies [54–58].

The raw acceleration signal was extracted from each device (from 
fig 1B to 1D), and processed using a summation of vectors (AcelT) 
in three axes, mediolateral (x), anteroposterior (y) and vertical (z) 
calculated according to Gómez-Carmona et al. (2018) [56]. AcelT 
indicates only the acceleration, in g-force values, recorded by the 3D 
accelerometers that make up the inertial device with a sample fre-
quency of 1000 Hz, all without the application of a calculation to 
modify the raw data from the signal. Therefore, if accelerometers re-
corded the AcelT variable in a reliable form, all variables calculated 
using accelerometers would be reliable [56]. To obtain a clean ac-
celeration signal, an optimum filter process related to the different 
sample frequencies was applied [56].

Two of the most widely used and successful entropy estimators 
are Approximate Entropy (ApEn) and Sample Entropy (SampEn) [31]. 
ApEn quantifies the similarity probability of patterns of length m and 
m + 1. SampEn is a similar statistic, and it also measures the prob-
ability of subsequences being close at two lengths m and m + 1. 
However, SampEn does not include self–comparisons and exhibits 
greater consistency than ApEn [31]. For this reason, we used Sam-
pEn for the current study. Mathematical equation of SampEn 
is [34, 59]:

1) Form m-vectors, X(1) to X(N-m+1) defined by:

2) Define for each i, for i = 1, N-m, let

3) Similarly, define for each i, for i = 1, N-m, let

4) After define:

5) Finally:

FIG. 1. One-on-one tackles. Players started in front of each other, 
when the coach marked the start the players crossed two meters 
in the opposite direction (A) and then changed direction (B) to 
execute the tackle at the central point (C, D).
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The (AcelT) signal was cut separating each collision, obtaining 
48 signals for each subject and device. Sample entropy (SampEn) 
for each signal were calculated. Entropy was done according to Gold-
berger et al. [60] and through dedicated routines programmed in 
Matlab®(The MathWorks, Massachusetts, USA). We used the tem-
plate length m of 2, and the tolerance criterion of 0.20 in the 
analyses.

Statistical Analysis
Descriptive analyses are reported as mean ± standard deviations. 
Data normality and homogeneity was assessed using Shapiro-Wilk 
and Levene tests, respectively. Data analyses were conducted using 
PASW Statistics 21 (SPSS, Inc., Chicago, IL, USA). Independent 
sample T-tests were used to evaluate differences in SampEn between 
positions in each block, one for attacking and other for defensive 
roles. Four linear mixed-effects models were used to model the main 
and interactive effects between blocks for dependent variables 

TABLE 1. Means (± SD) of Sample Entropy values between-
position (forwards vs. backs) during both attacking and defensive 
role.

Backs Forwards

Block 1
Tackling 0.085 ± 0.012 0.067 ± 0.013

Tackled 0.085 ± 0.010 0.069 ± 0.014

Block 2
Tackling 0.079 ± 0.006 0.066 ± 0.008

Tackled 0.077 ± 0.011 0.073 ± 0.011

Block 3
Tackling 0.072 ± 0.008 0.066 ± 0.007

Tackled 0.081 ± 0.006 0.069 ± 0.009

Block 4
Tackling 0.069 ± 0.008 0.063 ± 0.006

Tackled 0.071 ± 0.011 0.065 ± 0.014

FIG. 2. Raw data of acceleration signal of one tackle, mean over blocks and 95% confidence interval for one player in each condition. 
Back tackling, back tackled, forward tackling and forward tackled.



Biology of Sport, Vol. 40 No1, 2023   165

Movement variability during cumulative tackles

FIG. 3. Movement variability when tackling for backs and forwards. (A). Standardised Cohen’s differences between blocks. Error bars 
indicate uncertainty in true mean changes with 90% confidence intervals. VL: Very Large; L: Large; M: Moderate; S: Small. (B). 
SampEn (mean ± SD) and T-test analysis between positions within each block. (C, E). Box-and-Whisker-Plots in each block for backs 
and forwards respectively. (D, F). Average and standard deviation in all defensive tackles for backs and forwards respectively. The 
significant differences were shown as * p < 0.05.
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FIG. 4. Movement variability when being tackled for backs and forwards. (A). Standardised Cohen’s differences between blocks. Error bars 
indicate uncertainty in true mean changes with 90% confidence intervals. VL: Very Large; L: Large; M: Moderate; S: Small. (B). SampEn 
(mean ± SD) and T-test analysis between positions within each block. (C, E). Box and whisker plots in each block for backs and forwards 
respectively. (D, F). Average and standard deviation in all attacking tackles for backs and forwards respectively. The significant differences 
were shown as * p < 0.05.
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(SampEn) divided between-position and attacking and defensive role 
(forwards attacking, forwards defensive, backs attacking and backs 
defensive). The `ID´ of the player was treated as the fixed effect, 
whereas the random effect was `block´ for all analyses.

The comparisons were also assessed via standardised mean dif-
ferences (Cohen´s d) and respective 90% confidence intervals. 
Thresholds for effect sizes statistics were < 0.20, trivial; 0.20–0.59, 
small; 0.6–1.19, moderate; 1.20–1.99, large; and > 2.0, very 
large [61]. For all statistical tests, a p < 0.05 was considered sta-
tistically significant.

Within-block acceleration variability was analysed using coeffi-
cient of variation expressed as a percentage of the mean accelera-
tion signal (CV%) and was represented using box and whisker plots. 
The box and whisker plots display the first and third quartiles as the 
ends of the box, the maximum and minimum as the whiskers and 
the median and average as a vertical bar and + symbol respective-
ly in the interior of each box.

RESULTS 
The average and standard deviation of SampEn values for tackling 
and tackled for forwards and backs in each block are shown in Table 1. 
Moreover, raw data (acceleration signal) of one tackle are shown as 
example in figure 2.

Tackling:
The duration of tackling in milliseconds (mean  ±  SD) was 
3775.42 ± 312.88 ms for forwards and 3863.47 ± 403.21 ms 
for backs. Figure 3 shows movement variability when tackling for 
backs and forwards. Standardised mean differences (Cohen´s d) and 
linear mixed-effects model with interactive effects between blocks 
for dependent variables (SampEn) divided into two positional groups 
(backs and forwards) for tackling is shown in Figure 3A. In backs, 
significant differences were observed in block 1 vs 3 (p = 0.0021) 
(ES = -0.560) and in block 1 vs 4 (p = 0.0001) (ES = -1.550), 
but not in block 1 vs 2 (p = 0.2002) (ES = -1.210). No significant 
differences were observed in any of the studied block comparisons 
in forwards (block 1 vs 2, p = 0.8290, ES = -0.060; block 1 vs 3, 
p = 0.6102, ES = -0.140; block 1 vs 4, p = 0.1155, ES = -0.450). 
Figure 3B shows SampEN (mean ± SD) and T-test analysis for dif-
ferences between positions within each block. Significant between-
position differences were observed in block 1  (p = 0.0001) 
(ES = 1.44) and block 2 (p = 0.0003) (ES = 1.88) but not in 
blocks 3 and 4 (p = 0.1664, ES = 0.92 and p = 0.0899, ES = 0.87, 
respectively). Also, backs showed lower movement variability in all 
tackles compared with block 1. In contrast, forwards only showed 
a clear decrease in the last tackles of the last blocks (Fig. 3D, 3F).

Within block variability when tackling was higher for forwards (CV; 
18.7% block 1; 11.63% block 2; 11.06% block 3; 9.11% block 4) 
vs (14.23% block 1; 7.56% block 2; 10.60% block 3; 12.01% block 
4) for backs. Also, box and whisker plots showed more variability with-
in blocks for forwards than backs except in the last block (Fig. 3C, 3E).

No differences were observed in dominant vs. non-dominant shoul-
der neither in forwards (p = 0.067) nor in backs (p = 0.345).

Tackled:
The duration of tackled in milliseconds (mean  ±  SD) was 
3775.02 ± 390.33 ms for forwards and 3970.27 ± 376.07 for 
backs. Figure 4 shows movement variability when being tackled 
for backs and forwards. Standardised mean differences (Cohen´s 
d) and linear mixed-effects model with interactive effects between 
blocks for dependent variables (SampEn) divided into two posi-
tional groups (backs and forwards) for tackled are shown in Fig-
ure 4A. In backs, significant differences were observed in block 1 
vs 4  (p = 0.0025) (ES =  -1.340), but not in block 1 vs 2 
(p = 0.0756) (ES = -0.770) or block 1 vs 3 (p = 0.2321) 
(ES = -0.430). No significant differences were observed in any of 
the studied block comparisons in forwards (block 1  vs 2, 
p = 0.2779, ES = 0.270; block 1 vs 3, p = 0.8949, ES = -0.030; 
block 1 vs 4, p = 0.1830, ES = -0.300). Figure 4B shows Sam-
pEN (mean ± SD) and T-test analysis for differences between 
positions within each block. Significant between-position differ-
ences were observed in block 1 (p = 0.0007) (ES = 1.28) and 
block 3 (p = 0.0118) (ES = 1.56) but not in blocks 2 and 4 
(p = 0.3939, ES = 0.36 and p = 0.2132, ES = 0.47, respec-
tively). Also, backs showed higher movement variability in all tack-
les compared with block 1, in contrast forwards only showed 
a clearly decrease in the last tackles of the last block (Fig. 4D, 4F).

Within block variability when being tackled showed higher levels 
of variability for forwards (CV; 20.16% block 1; 14.63% block 2; 
12.97% block 3; 20.72% block 4) than for backs (11.71% block 1; 
14.61% block 2; 7.90% block 3; 15.14% block 4). Also, box and 
whisker plots show a higher within-block variability in forwards than 
in backs except in block 2 (Fig. 4C, 4E).

No differences were observed in dominant vs. non-dominant shoul-
der neither in forwards (p = 0.482) nor in backs (p = 0.695).

DISCUSSION 
This study aimed to identify changes in movement variability between 
positions (forwards vs. backs) in cumulative tackles events training 
during both attacking and defensive roles in rugby league. To our 
knowledge, this is the first study to analyse movement variability in 
tackling actions. The main findings are that movement variability is 
progressively reduced with cumulative tackle events over blocks (i.e. 
six tackling and six tackled), especially for backs and defensive 
tackles. Overall, forwards present the lower movement variability in 
all blocks than backs. Previous research suggests that movement 
variability might be reduced by different factors; on the one hand as 
a function of practice or experience [51, 62], and on the other hand 
because of aging [27], disease [27], injury [63] or fatigue [64]. 
Therefore, since forwards perform more collisions during the course 
of a match [12] this might suggest that forwards adjust better to 
tackle actions.
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In the current study, it appears that forwards maintain their lev-
els of movement variability without significant changes during cu-
mulative tackle events. In contrast, backs present higher levels of 
movement variability in block 1 and suffer significant decreases 
with cumulative tackle events. In such a manner, when the inter-
actions among elements in the system worsen, the movement vari-
ability could be reduced affecting locomotor outputs [27]. Gabbett 
and Ryan (2009) [18] found that the greatest improvements in 
tackling technique occurred in the players with the lowest initial 
technical tackling ability. This behaviour has also been found in 
the present study, since the players who presented higher initials 
levels of movement variability showed the greatest decreases in 
movement variability. Thus, the between-position differences ob-
served in movement variability initial values and its behaviour dur-
ing cumulative tackle events are probably associated with specif-
ic positional requirements [12].

Cummins & Orr (2015) [12] showed that both forwards and 
backs experienced more collision events in defence than attack. 
Consequently, the principal focus of the tackle task should be set 
on defensive tackles because these may prove crucial in determin-
ing match outcomes [6]. Running speed is progressively reduced 
when players (especially backs) are required to perform a high 
number of collisions per minute [20]. The present study shows 
a similar behaviour in movement variability, especially in tackling 
actions. The major difference was produced between block 1 and 
4 with a small decrease in movement variability in forwards and 
large changes with significant differences in backs (Fig. 3A). This 
highlights that the decrease in movement variability in backs is 
due to the fact that the majority of the tackles are below the aver-
age of the entropy values of block 1 (Fig. 3D). However, and in for-
wards only, the last tackles in blocks 3 and 4 are below the aver-
age of block 1 (Fig. 3F). Also, a clear association between the 
decrease in movement variability and an increase in the number 
of contact effort in defensive actions exists (Fig. 3B). In this sense, 
if movement variability is low it might harm a player’s tackling abil-
ity, and in turn potentially increase the risk of injury [63], so 
a change in the structure of the task could be suggested. The at-
tacking play of hit ups and the ability to tolerate physical collisions 
is important for rugby league players [12]. Similar to tackling ac-
tions, when participants were being tackled both positional groups 
showed a progressive reduction in movement variability. However, 
the last block was only significantly different in backs (Fig. 4A).

Understanding the tackle characteristics and quantifying its load 
should be an essential part of load monitoring in rugby and could be 
associated with tackle performance [4]. Current tackle analysis us-
ing microtechnology is limited to counting the number of tackle events 
and their magnitude. Until now, the most widely used tool is an al-
gorithm designed specifically for rugby league, which quantifies col-
lision counts [65]. This algorithm is sensitive to detect 97.6% of col-
lision events during professional rugby league match-play [65]. 
However, Glazier & Davids (2009) [66] state that it is the structure, 

rather than the magnitude, of variability is important in uncovering 
the functionality of this ubiquitous feature of human motor behav-
iour. Moreover, Wu et al. (2014) [67] suggested that the temporal 
structure of motor output variability can explain differences in how 
individuals adapt to different types of dynamics. The differences found 
between backs and forwards in entropy calculated from accelerom-
eters in our study reflects the different forms of adaptation to the en-
vironment derived from the specificity of the training by positions in 
the same team and probably should be taken into account to plan 
the training. Thus, entropy could be a good alternative tool to anal-
yse the temporal structure of variability in tackle actions and to un-
derstand the differences in locomotor outputs between position when 
performing multiple collisions training.

Futures studies should focus on analysing changes in movement 
variability during open tasks with decision-making components and 
during match play and if it is associated with match-play tackling 
performance. Furthermore, commercially available accelerometers 
usually sample at a frequency of 100 Hz [17], so the validity of tri-
axial accelerometers sampling at 100 Hz for calculating entropy in 
short actions like a tackles frequencies should be assessed to fully 
understand if this analysis can be extended to other commercially 
available devices.

Limitations
The current study was performed on a single professional rugby 
league academy squad and during a single standardised training 
session with controlled tackling and tackled movements. While the 
number of tackles analysed was 528, more than the match demands 
reported for professional rugby league [52], the tackle was per-
formed in a controlled setting and may not fully represent real 
match conditions. Studying the tackle in controlled settings how-
ever, allows for experiential and explorative study designs, which 
offers deeper insight into the demands and patterns of the move-
ment [68]. Also, when considering the findings between positions, 
it is worth noting that tackle event occurred within the same posi-
tion i.e. forwards competed against forwards, and back competed 
against backs. As such, how tackle variability may behave when 
a forward competes against a back (on attack and defence) is not 
known, and a potential avenue for future research. Also, the par-
ticipants were elite adolescent male rugby league players, so the 
findings of this study can be useful for researchers and practitioners 
working at the elite level.

CONCLUSIONS 
To our knowledge, this is the first study to use entropy analysis to 
quantify the changes in movement variability in cumulative tackle 
events in elite rugby players. In conclusion, movement variability is 
progressively reduced with cumulative tackle events, especially in 
backs and in the defensive role. Forwards present lower movement 
variability values in all blocks, particularly in the first block, both in 
the attacking and defensive role.
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Practical Implications
(1)	Entropy measures can be used by practitioners as an alternative 

tool to analyse the temporal structure of variability of tackle ac-
tions and to quantify the load of these actions by positions.

(2)	Movement variability analysis can help to maintain the optimal 
complexity in repetitive tackle tasks between positions.

(3)	Practitioners should modify the contact tasks between positions 
to adjust the complexity of the task to the different requirements 
of each position and difference collisions-profiles to optimize the 
training process.
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