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Sliding principal component 
and dynamic reward reinforcement 
learning based IIoT attack 
detection
Vijayan Ellappan 1, Anand Mahendran 2, Murali Subramanian 2, Jeevanandam Jotheeswaran 3, 
Adil O. Khadidos 4, Alaa O. Khadidos 5,6 & Shitharth Selvarajan 7,8*

The Internet of Things (IoT) involves the gathering of all those devices that connect to the Internet 
with the purpose of collecting and sharing data. The application of IoT in the different sectors, 
including health, industry has also picked up the threads to augment over the past few years. The IoT 
and, by integrity, the IIoT, are found to be highly susceptible to different types of threats and attacks 
owing to the networks nature that in turn leads to even poor outcomes (i.e., increasing error rate). 
Hence, it is critical to design attack detection systems that can provide the security of IIoT networks. 
To overcome this research work of IIoT attack detection in large amount of evolutions is failed to 
determine the certain attacks resulting in a minimum detection performance, reinforcement learning-
based attack detection method called sliding principal component and dynamic reward reinforcement 
learning (SPC–DRRL) for detecting various IIoT network attacks is introduced. In the first stage of this 
research methodology, preprocessing of raw TON_IoT dataset is performed by employing min–max 
normalization scaling function to obtain normalized values with same scale. Next, with the processed 
sample data as output, to extract data from multi-sources (i.e., different service profiles from the 
dataset), a robust log likelihood sliding principal component-based feature extraction algorithm is 
applied with an arbitrary size sliding window to extract computationally-efficient features. Finally, 
dynamic reward reinforcement learning-based IIoT attack detection model is presented to control the 
error rate involved in the design. Here, with the design of dynamic reward function and introducing 
incident repository that not only generates the reward function in an arbitrary fashion but also stores 
the action results in the incident repository for the next training, therefore reducing the attack 
detection error rate. Moreover, an IIoT attack detection system based on SPC–DRRL is constructed. 
Finally, we verify the algorithm on the ToN_IoT dataset of University of New South Wales Australia. 
The experimental results show that the IIoT attack detection time and overhead along with the error 
rate are reduced considerably with higher accuracy than that of traditional reinforcement learning 
methods.

The Industrial Internet of Things (IIoT) is an immense organization comprising of several perceptive associated 
instruments that recommend several dominances to intelligent computing in organizations, ranging between 
productions and services. With the fourth industrial insurgence, manufacturing and industrial techniques and 
viewpoints pick up the threads to be automated with modernized technology. Moreover, the Internet of Things 
(IoT) and communications between machines are consolidated to improve automation, enhance communica-
tions and evolve machines without the requirement for human interaction. Owing to the reason that tremendous 
sensors and devices are associated to generate several data, acquiring data in an accurate manner, processing 
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them and transmission of the respective data in a safe manner become analytic in IIoT platforms. With the 
emergence of IIoT, diversity and complications are said to persist as far as cyber-attacks are concerned, making 
the prevailing anomaly detection methods less efficient to function. An ensemble deep learning method called, 
deep long short-term memory (LSTM) and auto-encoder (AE) method was proposed in1 with the objective of 
identifying out-of-norm activities for cyber threat hunting in IIoT. Here, the LSTM was applied for creating 
past and present data for accessing normal data patterns and minimizing dimension via AE. Also, the issues 
concerning imbalanced nature of IIoT datasets were addressed, therefore improving accuracy, precision, recall 
and training time. However, it failed to focus on IIoT detection comprised attack detection time and overhead. 
To address on these two factors, in this work, normalized scaling is first performed with the raw dataset and 
then pertinent information among the processed input features with minimum informational loss is obtained 
via log likelihood sliding window and principal component functions. Deep learning and big data analytics 
have considerable prospective in crafting and evolving vigorous security methods for IIoT networks. In2, a novel 
hybrid deep random neural network (HDRaNN) for detecting cyber attack in IIoT was presented. Here, the 
deep random neural network was integrated with multilayer perceptron and dropout regularization with which 
16 distinct types of cyber attacks were detected, therefore improving precision, accuracy, recall and F1-score 
significantly. Though several performance factors like, precision, accuracy, recall and F1-score were improved. 
However, the error rate and overhead involved during detecting cyber attack in IIoT was not focused. To address 
on this issue, dynamic reward reinforcement learning-based IIoT attack detection model is designed. With this 
design mechanism, a dynamic reward function is introduced that according to the service profiles, detects the 
attack in a timely manner. Moreover, by storing the results in the incident repository, the overhead involved in 
detecting cyber attack will also be improved to a greater extent.

Several researchers are now concerned in including a pinnacle extent of security to IIoT. Machine learning 
(ML) methods were utilized for building a pinnacle extent of security potentialities on the basis of intrusion 
detection systems (IDSs). In3, ML methods were applied to realistic dataset called ToN-IoT from large-scale, 
heterogeneous IoT network and was tested in both binary and multi-class classification problems. In4, state-of-
the-art intrusion detection systems (IDS) were surveyed. In addition, hybrid IDS architecture was also introduced 
via machine learning method to focus on the accuracy aspect. However, this consistency also instigates IoT with 
a pervasive array of essential security threats that necessitates significant issues to be saturated. In5, deep learn-
ing (DL) driven software defined networking (SDN) enabled IDS was proposed with the objective of combating 
against cyber threats in IoT communications. The Industrial Internet of Things (IIoT), over the past few years 
have instigated a revolution both in the domain of production and manufacturing sectors by automating produc-
tion management with minimal human effort. In spite of sizeable amount of evolutions in IIoT attack detection. 
However, it failed to detect the certain attacks resulting in a low detection performance. To address on this aspect, 
a deep learning-based two level network intrusion detection system (DL-TL-NIDS) was presented in6 for IIoT 
environment. In7, two novel mechanisms for selecting adversarial samples to retrain a classifier was proposed 
based on two distinct factors, distance and probability distribution. The first one was based on the distance from 
cluster center and the second probability distribution was employed on the kernel learning for industrial IoT 
detection. One of the IIoT influencing evaluative security concerns is the false data injection attack. However, it 
failed to improve the precision. Here, the FDI attacks deceive the industrial manifestos by counterfeiting their 
sensor assessments. In8, a novel auto encoders (AE) method for detecting FDI attack was presented. Here, the 
association of data between time and space was utilized that in turn assisted in identifying falsified data. This 
paper proposes a computationally-efficient and robust reinforcement learning-based attack detection method 
called, sliding principal component and dynamic reward reinforcement learning (SPC–DRRL) to detecting IIoT 
attacks. It provides a solution towards detection of IIoT attacks. The IIoT detection time and accuracy improves 
by normalizing and scaling the raw data for obtaining computationally efficient features to be extracted. Secondly, 
it aims to decrease the IIoT attack detection error rate and overhead by not only putting the resultant samples in 
the incident repository but also introducing loss function via dynamic reward to therefore ensure robust attack 
detection. The main pertinent contributions of this article are summarized as follows.

•	 A sliding principal component and dynamic reward reinforcement learning (SPC–DRRL) is introduced to 
reinforcement learning-based attack detection method to ensure security that in turn maximizes the number 
of correctly detectable classes in a timely manner.

•	 A log likelihood sliding principal component-based feature extraction algorithm for extracting data from 
multi-sources by using new feature extraction model.

•	 A dynamic reward reinforcement learning for controlling error rate by a novel IIoT attack detection model 
using dynamic reward function and introducing incident repository error rate.

•	 We perform various simulations using TON_IoT dataset to evaluate and validate the performance of the 
proposed method and compare it with the existing and state-of-the-art methods.

The rest of this article is organized as follows. Section “Related works” provides a summary of the relevant 
work carried out in the domain of IIoT attack detection. Section “ToN-IoT dataset description” provides the 
dataset description in use. In “Methodology” section the overall framework of the proposed method is presented. 
In “Simulation analysis” section both the qualitative and quantitative analysis for the proposed IIoT attack 
detection method is investigated. Also experimental results are presented in this section. Finally, “Conclusion” 
section concludes this article.
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Related works
The IIoT is influencing the IoT technology and utilizing IoT technology improves the network intelligence in 
optimization and automation of industrial processes. However, the utilization of the IoT though enhances con-
nectivity with corporate networks, but introduced the probability of cyber-attacks against these systems. In9, a 
novel machine learning algorithm was introduced to ease the class imbalance issue by measuring an optimized 
weight for each machine learning-based decision. With this, high detection rate and low false alarm rate were 
ensured. An elaborative study on federated deep learning methods for IIoT was investigated in10. Also a review of 
vulnerabilities concerning security and privacy were also discussed here. Malicious traffic identification employ-
ing deep learning mechanisms has made an appearance as a pivotal element of IDS. Recurrent neural network 
based IDS for binary and multiclass classification was designed in11 that in turn not only ensured precision but 
also ensured accuracy to a greater extent.

An extensive degree of data processing takes place at the cloud to execute different types of analytics in IIoT. 
To cope with the analytics utilizing such an enormous amount of IIoT data, several deep learning based analyti-
cal methods are employed. The learning process has to act in accordance with the reliability and trustworthy life 
cycle for critical analysis and decision making. In a similar manner, taking into consideration the susceptibilities 
in several aspects of an IIoT network are also not said to be avoided. A survey of machine and deep learning for 
attack detection in IIoT was investigated in12. A holistic present day IoT IDS and survey of materials, methods, 
validation techniques for constructing IIoT IDS was presented in13. In14, a comprehensive survey on threats 
concerning security and measures taken to handle the threats employing artificial intelligence based mechanisms 
were discussed. A reliable routing attack based IIoT attack detection mechanism was proposed in15 by intro-
ducing generative adversarial neural classifier. With this type of classifier ensures centralized attack detection. 
In16, a topological and flow feature-based deep learning method (GLD-Net) was proposed with the objective of 
extracting the topological features and also employed graph attention network (GAT) for obtaining correlations 
between non-Euclidean features. Owing to this the average detection accuracy was said to be improved. A novel 
anomaly-based intrusion detection employing convolutional neural network model was presented in17 that in 
turn created multiclass classification therefore ensuring high accuracy and precision. A two-phase anomaly 
detection model employing ensemble classification was proposed in18. Ensemble blending using random forest 
technique was employed for efficient prediction of class labels. Followed by which Adam optimizer was employed 
for ensuring accuracy prediction. Multilayer deep learning techniques were employed in19 for detecting botnet 
attacks in IIoT. A trust-based hybrid cooperative RPL protocol (THC-RPL) was presented in20 with the objec-
tive of detecting malicious Sybil nodes in routing protocol for low power and lossy protocol based IoT network. 
But, the storage cost was not improved. An Artifcial Intelligence-based Lightweight Blockchain Security Model 
(AILBSM) designed in21 to secure the privacy and security of IIoT systems by using AI mechanisms with simpli-
fied and improved security operations. However, the time consumption was not improved. In22, AI-based and 
device algorithms are also examined to attain a more effective IoT process namely AIoT, combined with Internet 
and artificial intelligence. But, minimize the reaction times and increased reliability. The intrusion detection 
system (IDS) was designed in21 to monitors the network events and filters the abnormal activities. In24, networks 
intrusion detection system (NIDS) method was developed into existing methods that mainly focus on identify 
the intrusions from datasets with aid of classification methods. Also, the improve the detection accuracy and 
predicted outcomes.

Motivation
The motivation of this proposed work is IIoT attack detection based reinforcement learning to assure the secu-
rities which turn better the number of correctly detectable classes. The IIoT attack detection in large amount 
of evolutions is failed to employ the certain attacks resulting in a lesser detection performance, reinforcement 
learning-based attack detection method determined for detecting different IIoT network attacks. At first, preproc-
essing is determine the normalized values with same scale. Next, with the processed sample data as output is to 
extract data from multi-sources. At last, IIoT attack detection model is performed to control error rate involved. 
Here, with reducing the attack detection error rate. To make industrial intrusion detection more advanced, a 
combination of the abovementioned industrial intrusion detection methods called, sliding principal component 
and dynamic reward reinforcement learning (SPC–DRRL) is proposed. Each method has its owing specific 
advantages and hence to safeguard the IIoT network from different attacks, sliding principal component-based 
feature extraction and dynamic reward reinforcement learning-based classification for detecting IIoT attack 
is presented. The elaborate description of the (SPC–DRRL) method is provided in the following subsections.

ToN‑IoT dataset description
The TON_IoT datasets is considered to be one of the new generations of Industry 4.0/Internet of Things (IoT) and 
Industrial IoT (IIoT) datasets for validating the exactness and significance of distinct cyber security applications 
on the basis of artificial intelligence (AI), i.e., machine learning and deep learning algorithm. The datasets have 
been referred to as ‘ToN_IoT’ as they consist of heterogeneous data sources obtained from Telemetry datasets of 
IoT and IIoT sensors. The datasets were obtained from large-scale network created at the Cyber Range and IoT 
Labs, the School of Engineering and Information technology (SEIT), UNSW Canberra @ the Australian Defence 
Force Academy (ADFA). Moreover, seven profiles namely, IoT fridge activity including six features (i.e., date, 
time, fridge_temperature, temperature_condition, label_condition and type), IoT garage activity including six 
features (i.e., date, time, door_state, sphone_signals, label and type), IoT GPS_tracker activity including six fea-
tures (i.e., date, time, latitude, longitude, label and type), IoT Modbus activity including seven features (i.e., date, 
time, FC1_Read_Input_Register, FC2_Read_Discrete_Value, FC3_Read_Holding_Register, FC4_Read_Coil, 
label and type), IoT Motion_Light activity including six feuatres (i.e., date, time, motion_status, light_status, label 
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and type), IoT Thermostat activity including six features (i.e., date, time, current_temperature, thermostat_status, 
label and type) and IoT Weather activity including seven features (i.e., date, time, temperature, pressure, humidity, 
label and type) were included for validating and testing various attack detection in IIoT.

Methodology
The architecture of the proposed sliding principal component and dynamic reward reinforcement learning 
(SPC–DRRL) for detecting various IIoT network attacks method is depicted in Fig. 1, whereby there are three 
main phases, namely, the pre-processing phase, the feature selection phase, and the classification phases.

As shown in the above figure, in the pre-processing phase, we load the TON_IoT Dataset (training set, vali-
dation set, and testing sets). The feature values in the dataset are cleaned and normalized employing min–max 
normalization scaling-based preprocessing algorithm. In the feature extraction phase, the normalized and scaled 
training dataset is utilized to compute the dimensionality reduced features using the log likelihood sliding prin-
cipal component-based feature extraction algorithm. Finally, dynamic reward reinforcement learning-based 
IIoT attack detection model is designed using the ToN_IoT dataset. The building blocks of the proposed slid-
ing principal component and dynamic reward reinforcement learning (SPC–DRRL) for detecting various IIoT 
network attacks are explained in more detail in the next subsections.

Min–max normalization scaling based preprocessing
Data preprocessing remains the first step for attack detection in IIoT after the acquisition and loading of the 
TON_IoTdataset. Data preprocessing is very essential as it assists in discarding outliers and eliminating unneces-
sary attributes. It is calculated to transpose the raw network data stored in the form of vector to a format that is 
significant to utilization for further analysis. With the presence of seven distinct service profiles present in the 
dataset, seven different input vectors are formulated as given below (with different numbers of rows represented 
in the form of ‘ i ’ and columns represented in the form of ‘ j ’ for each vector).

(1)FV =







FV1IF1 FV1IF2 . . . FV1IFj
FV2IF1 FV2IF2 . . . FV2IFj
. . . . . . . . . . . .

FViIF1 FViIF2 . . . FViIFj






, where i = 59945, j = 7

(2)GD =







GD1IF1 GD1IF2 . . . GD1IFj
GD2IF1 GD2IF2 . . . GD2IFj
. . . . . . . . . . . .

GDiIF1 GDiIF2 . . . GDiIFj






, where i = 59588, j = 7

Figure 1.   Block diagram of sliding principal component and dynamic reward reinforcement learning (SPC–
DRRL).
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With the above input feature vector values, in our work min–max normalization scaling function is utilized 
to have all the feature vector values with a-like scale. Figure 2 shows the structure of min–max normalization 
scaling-based preprocessing model.

As illustrated in the above figure, let us consider training subset of input feature vector 
‘ A =

{(

FVi , FVj

)

,
(

GDi ,GDj

)

,
(

GTi ,GTj

)

,
(

MBi ,MBj
)

,
(

MLi ,MLj
)

,
(

TSi ,TSj
)

, and
(

Wi ,Wj

)}

 ’ respectively 
that are selected arbitrarily given dataset ‘ DS = (A,B) ’ with ‘ B ’ denoting the classifier output. Then, the min–max 
normalization scaling function normalizes the attributes or the vector feature values in the range of ‘ [0, 1] ’ as 
given below.

From the above Eq. (8), the normalized scaling results of each feature vector ‘ IFNS ’ is obtained based on 
the minimum ‘ Min(IFn) ’ and maximum ‘ Max(IFn) ’ values of the feature vector of concern. This min–max 

(3)GT =







GT1IF1 GT1IF2 . . . GT1IFj
GT2IF1 GT2IF2 . . . GT2IFj
. . . . . . . . . . . .

GTiIF1 GTiIF2 . . . GTiIFj






, where i = 58961, j = 7

(4)MB =







MB1IF1 MB1IF2 . . . MB1IFj
MB2IF1 MB2IF2 . . . MB2IFj
. . . . . . . . . . . .

MBiIF1 MBiIF2 . . . MBiIFj






, where i = 51107, j = 9

(5)ML =







ML1IF1 ML1IF2 . . . ML1IFj
ML2IF1 ML2IF2 . . . ML2IFj
. . . . . . . . . . . .

MLiIF1 MLiIF2 . . . MLiIFj






, where i = 59489, j = 7

(6)TS =







TS1IF1 TS1IF2 . . . TS1IFj
TS2IF1 TS2IF2 . . . TS2IFj
. . . . . . . . . . . .

TSiIF1 TSiIF2 . . . TSiIFj






, where i = 52775, j = 7

(7)W =







W1IF1 W1IF2 . . . W1IFj
W2IF1 W2IF2 . . . W2IFj
. . . . . . . . . . . .

WiIF1 WiIF2 . . . WiIFj






, where i = 59261, j = 8

(8)NIF = (A− B)
IFn −Min(IFn)

Max(IFn)−Min(IFn)

Figure 2.   Structure of min–max normalization scaling-based preprocessing.
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normalization scaling function acts as a protecting mechanism by eliminating the values of each feature within 
an explicit range. The pseudo code representation of min–max normalization scaling-based Preprocessing is 
given below.

In Algorithm 1, describe the aim of discarding outliers and eliminating unnecessary attributes. At first, the raw 
dataset is modeled into distinct vectors. Initialize the seven distinct service profiles perform the dataset and seven 
different input vectors. After that for each vector, min–max normalization scaling function is applied to obtain 
the normalized values in the range ‘ [0, 1] ’ so that all the values of the attributes or features possess same scale. 
The normalized scaling results of each feature vector are obtained based on the minimum and maximum values 
of the feature vector of concern. This min–max normalization scaling function acts as a protecting mechanism 
by eliminating the values of each feature within an explicit range. This in turn makes further processing simpler 
both in terms of time and accuracy.

Log likelihood sliding principal component‑based feature extraction
Once the raw IIoT dataset are processed or preprocessed step has been carried out, the second step in IIoT attack 
detection is the relevant feature extraction. Feature extraction is considered as yet another important process 
in IIoT attack detection because not all the features are required for IIoT attack detection. By performing fea-
ture extraction not only the feature dimensionality reduction is said to be achieved but also extracts pertinent 
information among the raw input features with minimum informational loss too. IoT data related to industrial 
applications has the characteristics consisting of both normal and seven attacks, multi-sources (i.e., obtained from 
seven distinct service profiles), conventional feature extraction models are inadequate of encountering real-time 
demands. To address on this aspect, a Log Likelihood sliding principal component-based feature extraction is 
designed. Here, by employing the log likelihood ratio for the corresponding sliding window, principal compo-
nents are extracted. This is owing to the reason that the dataset employed in our work possesses different service 
profiles and also relevant feature for each service profile differs. Figure 3 shows the structure of Log Likelihood 
sliding principal component-based feature extraction model.

As illustrated in the above figure, the log likelihood sliding principal component-based feature extraction 
model extracts features on the basis of statistical functions. It identifies the eigen vectors possessing highest eigen 
values in the progressive covariance matrix with arbitrary length sliding window. The arbitrary length sliding 
window will remain in the fixed length state until a new service profile is detected or the current service profile 
is terminated. After the end of service profile is detected, the window will either sequentially dilates, discarding 
all the reorganized features or it will sequentially dilates, continuing from its reorganized feature size. In both 
cases features or attributes in charge for the current change point are discarded. The remaining extracted features 
called as principal components that reduce dimensionality without losing much information. Let us consider the 
processed IoT data points be ‘ NIFi = {NIF1i ,NIF2i . . . ,NIFMi} ’ and put these vectors into matrix. Then, the pro-
cessed IoT data points are centered in such a manner so as to subtract off the mean of each column as given below.

From the above Eq. (9), the mean value ‘ µ ’, is subtracted from each attribute ‘ NIFi,a ’ and storing the result 
as ‘ NIFi,b ’. Let us further assume that an arbitrary process ‘ NIF ’ is sampled at a fixed time interval ‘ t ’ forming 
a sequential observation ‘ NIF(t) ’. Upon successful completion of iteration decision is made to infer whether 
or not there is a transformation in process (i.e., transformation between distinct service profiles) evolving in a 
change point. The test for change at time ‘ t0 ’ from observations ‘ Oi ’ and ‘ Ok ’ is based on log likelihood ratio as 
given below.

(9)NIFi,b = NIFi,a − µ

Input: Dataset ‘ ’, IoT Features ‘ = 1, 2, …, ’

Output:  Processed IoT data ‘ ’

1: Initialize  Fridge Vector  ‘’, Garage door Vector ‘ ’, GPS Tracker Vector ‘ ’, Modbus Vector ‘ ’, 
Motion Light Vector ‘ ’, Thermostat Vector ‘ ’, Weather Vector ‘ ’

2: Begin

3: For each Dataset ‘ ’ with IoT Features ‘ ’ and network samples ‘ ’ 

4: Formulate feature vectors ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’ and ‘ ’ as given in (1), (2), (3), (4), (5), (6) 
and (7)

5: Evaluate Min-Max Normalization Scaling function as given in (8)

6: Return normalized values ‘ ’

7: End for 

8: End 

Algorithm 1.   Min-Max Normalization Scaling
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Next, according to the transformation, the progressive covariance matrix is evaluated as given below.

With the above progressive covariance matrix results ‘ Cov(n) ’, the eigen vector ‘ V  ’ and eigen value results 
‘ D ’ are obtained as given below.

Finally, the eigen values less than ‘ η ’ is rejected whereas the other features are selected, therefore minimizing 
the dimension of data. The pseudo code representation of log likelihood sliding principal component-based 
feature extraction is given below.

From Algorithm 2, the log likelihood sliding principal component-based feature extraction algorithm rep-
resent with normalized and scaled results provided as input, the objective remains the extracted computation-
ally-efficient features. With this objective, transformation between service profiles is performed using the log 
likelihood ratio. Next, for each service profiles progressive covariance matrix is formulated. Finally, with the 
progressive covariance results, pertinent features were extracted in a computationally efficient manner.

Dynamic reward reinforcement learning‑based IIoT attack detection
In the open network environment, industrial control systems face huge security risks and is hence said to be 
highly susceptible to network attacks. The prevailing attack detection methods of industrial control networks 
have the issue of a modest and flexible detection in the presence of distinct service profiles. To address on this 
aspect, in this work a dynamic reward reinforcement learning-based IIoT attack detection model is presented 
and builds a learning framework with continuous learning potentiality. The dynamic reward reinforcement 
learning-based IIoT attack detection is specifically composed of two elements, an agent and environment. Here, 
the agent constantly communicates with the environment, produces an action via the ‘ Q ’ function, then performs 
the action and enters a new environment. The dynamic reward reinforcement learning-based IIoT attack detec-
tion model will reward the agent on the basis of the actions carried out by the agent. The agent makes decisions 
by maximizing rewards in a dynamic fashion. Figure 4 shows the structure of dynamic reward reinforcement 
learning-based IIoT attack detection model.

From the above figure, ‘ CE ’ refers to the current environment, ‘ NE ’ refers to the next environment, ‘ Act ’ 
denotes the action performed under the current environment via ‘ Q ’ function and ‘ DRew ’ denotes the dynamic 
reward gained by performing action under the current environment respectively. Here, the action selection is 
done according to greedy strategy, which refers to how likely the current sampling is to make decisions based on 

(10)NIFn =

n
∑

i=1

nif i = ln
Probθ1(Oi)

Probθ0(Oi)

(11)Cov(n) =
1

n

n
∑

i=1

NIFi(NIF)
T
i

Covi−1

|Covi−1|

(12)V−1CovV = D

Figure 3.   Structure of log likelihood sliding principal component-based feature extraction.
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the dynamic reward via ‘ Q ’ function generated by current training network. To start with the dynamic reward 
is formulated as given below.

From the above Eq. (13), dynamic reward ‘ DRew ’ is measured based on the agents reward upon success-
ful detecting of attack ‘ Rew[AD] ’, agents reward when attacker is attacked ‘ Rew[AA] ’ with respect to the total 
numbers of attacks ‘ No_of [A] ’ in a simulation settings. Next, the loss function ‘ Loss(θ) ’ of dynamic reward 
reinforcement learning-based IIoT attack detection model referring to the timing different between current 
network value and target network value is mathematically formulated as given below.

(13)DRew = FE

[

Rew[AD]+ Rew[AA]

No_of [A]

]

Input: Dataset ‘ ’, IoT Features ‘ = 1, 2, …, ’

Output: Computationally-efficient feature extraction

1: Initialize ‘ ’ Processed IoT data points ‘ = { 1 , 2 …, }’, ‘ = 0.01’

2: Initialize  Fridge Vector ‘ ’, Garage door Vector ‘ ’, GPS Tracker Vector ‘ ’, Modbus Vector ‘ ’, 
Motion Light Vector ‘ ’, Thermostat Vector ‘ ’, Weather Vector ‘ ’

3: Begin

4: For each Dataset ‘ ’ with IoT Features ‘ ’ 

5: Put Processed IoT data points ‘ = { 1 , 2 …, }’ into matrix with size ‘ ∗ ’

6: Center the processed IoT data points as given in (9) 

7: Measure log likelihood ratio as given in (10) //for evaluating transformation between service profiles

8: Evaluate progressive covariance matrix as given in (11)

9: Evaluate eigen vector ‘ ’ and eigen value results ‘ ’ as given in (12)

10: Return features extracted ‘ ’

11: End for 

12: End 

Algorithm 2.   Log Likelihood Sliding Principal Component-based Feature Extraction

Figure 4.   Structure of dynamic reward reinforcement learning-based IIoT attack detection.
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From the above Eq. (14), the loss function results ‘ Loss(θ) ’ is obtained based on the result of restoring the 
placement of the action ‘ Act ’ in ‘ Q

(

CE,Act, θTV
)

 ’ with the Dynamic Reward ‘ DRew ’ respectively (i.e., ‘ θCV ’ 
denoting the current parameter value and ‘ θTV ’ denoting the target parameter value). Finally, the network traffic 
is specifically split into normal and attack detection. Hence, there exist only two actions ‘ Act ’ in the dynamic 
reward reinforcement learning-based IIoT attack detection model. The mathematical formula of the action is 
represented as given below.

Based on the above resultant values from ‘ Act ’, the dynamic reward reinforcement learning-based IIoT attack 
detection model passes the network traffic to proceed with communication is the action is normal. On contrary, 
if the network traffic is malicious, dynamic reward reinforcement learning-based IIoT attack detection model will 
intercept the data and notes the attack type. Moreover, the resultant samples (i.e., attack or normal) are put into 
the incident repository for the next training. The pseudo code representation of Dynamic Reward Reinforcement 
Learning-based IIoT attack detection is given below.

In Algorithm 3, describe the dynamic reward reinforcement learning-based IIoT attack detection algorithm 
with extracted features as input, dynamic reward is initially formulated. Followed by which, loss function is gen-
erated based on the difference between the current network value and target network value. Finally, the action 
is evaluated for detecting either the presence or absence of attack in IIoT network. Upon the presence of attack 
or if the resultant value of the action is ‘ 1 ’, conditional checking is made for each service profiles. For example 
in case of service profile (IoT Fridge activity), with the condition of temperature associated to the network, on 
the basis of threshold value (i.e., between 1.5 and 3.8—Ddos attack, between 3.9 and 5—backdoor, between 5.2 
and 8—injection, between 8.2 and 12—password, between 12.2 and 15—ransomware, between 15.2 and 17—xss) 
different types of attacks are detected. With this the IIoT attack detection overhead and error rate are said to be 
reduced significantly.

(14)Loss(θ) = E
[(

G
(

CE,Act,DRew, θCV
)

− Q
(

CE,Act, θTV
))]

(15)Act =

{

0, normal
1, attack detection

Input: Dataset ‘ ’, IoT Features ‘ = 1, 2, …, ’

Output: Robust IIoT attack detection 

1: Initialize features extracted ‘ ’, current environment ‘ ’, next environment ‘ ’, ‘ [ ]’, ‘
[ ]’, 

2: Initialize  Fridge Vector ‘ ’, Garage door Vector ‘ ’, GPS Tracker Vector ‘ ’, Modbus Vector ‘
’, Motion Light Vector ‘ ’, Thermostat Vector ‘ ’, Weather Vector ‘ ’

3: Begin 

4: For each Dataset ‘ ’ with IoT Features ‘ ’ and features extracted ‘ ’

5: Estimate dynamic reward as given in (13) 

6: Evaluate the loss function as given in (14)

7: Generate action based on dynamic reward as given in (15)

8: If ‘ = 0’

9: Then traffic is normal

10: Proceed with further processing

11: Else

12: Detection of attack

13: Go to step 5

14: End if

15: End for

16: End 

Algorithm 3.   Dynamic Reward Reinforcement Learning-based IIoT attack detection
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Simulation analysis
In this section, experiment is performed to validate the efficiency of the sliding principal component and dynamic 
reward reinforcement learning (SPC–DRRL) for detecting various IIoT network attacks using the experiment 
data that are available and accessible online from ToN_IoT dataset. Simulations are performed on a computer 
with an Intel(R) Core(TM) i5-7200 CPU @2.50GHz and 8.00GB of RAM. Comparative analysis is made with 
the two existing methods, Deep LSTM AE1, HDRaNN2 and state-of-the-art method, machine learning3 in terms 
of IIoT attack detection time, IIoT attack detection accuracy, IIoT attack detection overhead and IIoT attack 
detection error rate in Python high-level programming language.

Qualitative analysis of SPC–DRRL
In this section the qualitative analysis of SPC–DRRL is discussed in detail. With the ToN_IoT dataset obtained 
as input, 20 network samples from service profile—IoT_Fridge is used for simulation as given below in Table 1.

With the above network samples obtained as input, first, seven different input vectors are formulated (with 
different numbers of rows represented in the form of ‘ i ’ and columns represented in the form of ‘ j ’ for each 
vector). In this work for performing simulation, the input vector for service profile—IoT_Fridge is formulated 
as given below.

FV =

































































1556245200 25− Apr − 19 19 : 20 : 00 11.55 high 1
1556245200 25− Apr − 19 19 : 20 : 00 13.4 high 1
1556245205 25− Apr − 19 19 : 20 : 05 1.75 low 1
1556459978 28− Apr − 19 06 : 59 : 38 3.2 low 1
1556459983 28− Apr − 19 06 : 59 : 43 4 low 1
1556459988 28− Apr − 19 06 : 59 : 48 4.65 low 1
1556209441 25− Apr − 19 09 : 24 : 01 8.65 high 1
1556209442 25− Apr − 19 09 : 24 : 02 9.1 high 1
1556209442 25− Apr − 19 09 : 24 : 02 11.55 high 1
1554061012 31−Mar − 19 12 : 36 : 52 13.1 high 0
1554061013 31−Mar − 19 12 : 36 : 53 8.65 high 0
1554061014 31−Mar − 19 12 : 36 : 54 2 low 0
1556327188 26− Apr − 19 18 : 06 : 28 4.95 low 1
1556327189 26− Apr − 19 18 : 06 : 29 13.25 high 1
1556327189 26− Apr − 19 18 : 06 : 29 3 low 1
1556448879 28− Apr − 19 03 : 54 : 39 4 low 1
1556448884 28− Apr − 19 03 : 54 : 44 1 low 1
1556448889 28− Apr − 19 03 : 54 : 49 7.7 high 1
1556367221 27− Apr − 19 05 : 13 : 41 4.05 low 1
1556367225 27− Apr − 19 13 : 3 : 45 2.75 low 1
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






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
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


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

Table 1.   Network samples from IoT_Fridge service profile [ToN_IoT dataset].

ts Date Time Fridge_temperature Temp_condition Label Type

1556245200 25-Apr-19 19:20:00 11.55 high 1 ddos

1556245200 25-Apr-19 19:20:00 13.4 high 1 ddos

1556245205 25-Apr-19 19:20:05 1.75 low 1 ddos

1556459978 28-Apr-19 06:59:38 3.2 low 1 backdoor

1556459983 28-Apr-19 06:59:43 4 low 1 backdoor

1556459988 28-Apr-19 06:59:48 4.65 low 1 backdoor

1556209441 25-Apr-19 09:24:01 8.65 high 1 injection

1556209442 25-Apr-19 09:24:02 9.1 high 1 injection

1556209442 25-Apr-19 09:24:02 11.55 high 1 injection

1554061012 31-Mar-19 12:36:52 13.1 high 0 normal

1554061013 31-Mar-19 12:36:53 8.65 high 0 normal

1554061014 31-Mar-19 12:36:54 2 low 0 normal

1556327188 26-Apr-19 18:06:28 4.95 low 1 password

1556327189 26-Apr-19 18:06:29 13.25 high 1 password

1556327189 26-Apr-19 18:06:29 3 low 1 password

1556448879 28-Apr-19 03:54:39 4 low 1 ransomware

1556448884 28-Apr-19 03:54:44 1 low 1 ransomware

1556448889 28-Apr-19 03:54:49 7.7 high 1 ransomware

1556367221 27-Apr-19 05:13:41 4.05 low 1 xss

1556367225 27-Apr-19 05:13:45 2.75 Low 1 xss
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In a similar manner matrix vector representations are formulated for IoT garage activity, IoT GPS_tracker 
activity, IoT Modbus activity including, IoT Motion_Light, IoT Thermostat activity and IoT Weather activity 
separately. For performing simulations, the service profile corresponding to IoT_Fridge is analyzed. With the 
above matrix representation, by applying min–max normalization scaling function, the maximum values (i.e., 
from fridge_temperature) are scaled and the resultant matrix is obtained as given below.

The processed IoT data points are centered in such a manner so as to subtract off the mean of each column, 
therefore making a smooth transformation between service profiles, modeling according to distinct service 
profiles. Followed by which the test from observations ‘ Oi ’ and ‘ Ok ’ is based on log likelihood ratio is formulated 
as given below for IoT_Fridge service profile. In a similar manner for distinct service profiles, based on log likeli-
hood ratio results are obtained. Then, the progressive covariance matrix is formulated. Then, with the progressive 
covariance matrix results, the covariance matrix results in negative representation are considered as less than ‘ η ’ 
and hence is rejected. The final extracted features are listed (for service profile: IoT_Fridge). Table 2 provides the 
results of log likelihood ratio, progressive covariance matrix and finally the extracted features.

Finally, based on the conditions, the detection of IIoT attack or not are evaluated according to the results in 
the action ‘ Act ’. Also, dynamic rewards are provided by the agent. If ‘ Act = 0 ’, then, normal traffic [fridge_tem-
perature, temp_condition, label]: 13.1, high, 0; 8.65, high, 0; 2, low, 0 and the other network samples (as given 
below) are attack instances. Table 3 clearly explains the result attack instances and normal instances.

NIF =
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1556245200 25− Apr − 19 19 : 20 : 00 11.55 high 1
1556245205 25− Apr − 19 19 : 20 : 05 1.75 low 1
1556459978 28− Apr − 19 06 : 59 : 38 3.2 low 1
1556459983 28− Apr − 19 06 : 59 : 43 4 low 1
1556459988 28− Apr − 19 06 : 59 : 48 4.65 low 1
1556209441 25− Apr − 19 09 : 24 : 01 8.65 high 1
1556209442 25− Apr − 19 09 : 24 : 02 9.1 high 1
1554061012 31−Mar − 19 12 : 36 : 52 13.1 high 0
1554061013 31−Mar − 19 12 : 36 : 53 8.65 high 0
1554061014 31−Mar − 19 12 : 36 : 54 2 low 0
1556327188 26− Apr − 19 18 : 06 : 28 4.95 low 1
1556327189 26− Apr − 19 18 : 06 : 29 3 low 1
1556448879 28− Apr − 19 03 : 54 : 39 4 low 1
1556448884 28− Apr − 19 03 : 54 : 44 1 low 1
1556448889 28− Apr − 19 03 : 54 : 49 7.7 high 1
1556367221 27− Apr − 19 05 : 13 : 41 4.05 low 1
1556367225 27− Apr − 19 13 : 3 : 45 2.75 low 1
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11.55 high 1
1.75 low 1
3.2 low 1
4 low 1

4.65 low 1
8.65 high 1
9.1 high 1
13.1 high 0
8.65 high 0
2 low 0

4.95 low 1
3 low 1
4 low 1
1 low 1
7.7 high 1
4.05 low 1
2.75 low 1
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Table 2.   Tabulation results of log likelihood ratio, progressive covariance matrix and finally the extracted 
features.

Results of log likelihood ratio Results of progressive covariance matrix Features extracted

1

O1 = [ts];O2 = [date];O3 = [time];

O4 =
[

fridge_temperature
]

;

O5 =
[

tempreature_condition
]

;O6 = [label]

Cov(O1){w.r.to2} = −49.619,Cov(O2){w.r.to3} = −3.436,Cov(O3){w.r.to4}

= −2.087,Cov(O4){w.r.to5} = 3.135,Cov(O5){w.r.to6}

= 2.155,Cov(O6) = 2.155

O4 =
[

fridge_temperature
]

;

O5 =
[

tempreature_condition
]

;

O6 = [label]
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Quantitative analysis of SPC–DRRL
In this section, the quantitative analysis of sliding principal component and dynamic reward reinforcement 
Learning (SPC–DRRL) method is validated in terms of four metrics, namely, IIoT attack detection time, IIoT 
attack detection accuracy, IIoT attack detection overhead and IIoT attack detection error rate. To perform fair 
comparison similar numbers of network samples are utilized for validation using the four methods, SPC–DRRL, 
Deep LSTM AE1, HDRaNN2 and state-of-the-art method, Machine Learning3 respectively.

Performance analysis of IIoT attack detection time
In this section the performance analysis of IIoT attack detection time is discussed. The time taken in detection 
IIoT attack remains the most significance performance metrics as early the attack detection more is the overall 
network is said to be. The mathematical representation of IIoT attack detection time is given below.

From the above Eq. (16), the IIoT attack detection time ‘ ADTIIoT ’ is obtained on the basis of network samples 
‘ NSi ’ involved in the simulation and the actual time consumed in attack detection ‘ Time[AD] ’. It is measured 
in terms of milliseconds (ms). Table 4 lists the IIoT attack detection time results obtained using the proposed 
SPC–DRRL and two existing methods, methods, Deep LSTM AE1, HDRaNN2 and the state-of-the-art method, 
Machine learning2 respectively.

Figure 5 given above shows the graphical portrayal of IIoT attack detection time using the four methods, 
SPC–DRRL,1–3. From the figure it is inferred that the attack detection time increases with the number of network 
samples. This is because of the reason that with larger number of network samples placed in the IIoT network, 
the time involved in detecting the attack also increases. So a direct proportionality is observed between the x 
and y axis. However, with simulations conducted using 2500 numbers of network samples, construct a reliable 
attack detection system, the time consumed in detecting correct attack for a particular network sample being 
‘0.35ms’, the overall attack detection time using SPC–DRRL was 875ms, the time consumed in detecting cor-
rect attack for a particular network sample being ‘0.49ms’, the overall attack detection time using1 was 1225ms, 
the time consumed in detecting correct attack for a particular network sample being ‘0.54ms’, the overall attack 
detection time using2 was 1350ms and finally observed to be 1625ms using2. From this result it is inferred that 
the attack detection time in detecting different IIoT attacks using SPC–DRRL is better than when compared 

(16)ADTIIoT =

n
∑

i=1

NSi ∗ Time[AD]

Table 3.   Results of the action.

S. no. Attack instances Normal instances

1 Attack(instances) =
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4 low 1
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8.65 high 1
9.1 high 1
4.95 low 1
3 low 1
4 low 1
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7.7 high 1
4.05 low 1
2.75 low 1
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Normal(instances) =

[

13.1 high 0
8.65 high 0
2 low 0

]

Table 4.   Tabulation of IIoT Attack detection time.

Network samples

IIoT attack detection time (ms)

SPC–DRRL Deep LSTM AE HDRaNN Machine learning

2500 875 1225 1350 1625

5000 935 1285 1415 1735

7500 985 1315 1535 1855

10,000 1055 1385 1725 2055

12,500 1135 1455 1835 2135

15,000 1245 1585 1955 2285

17,500 1355 1725 2055 2455

20,000 1525 1835 2155 2585

22,500 1785 2055 2355 2635

25,000 2035 2255 2585 2755
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to1–3. The improvement is due to the application of log likelihood sliding principal component-based feature 
extraction algorithm in SPC–DRRL method. By applying this algorithm, initially, the normalized and scaled 
results were provided as input. Second, transformation between service profiles was performed employing the 
log likelihood ratio and finally, for each service profiles progressive covariance matrix is formulated. With this 
function, pertinent and essential features were extracted, therefore reducing the dimensionality and the attack 
detection time using SPC–DRRL by 21% compared to1, 33% compared to2 and 42% compared to3 respectively.

Performance analysis of IIoT attack detection accuracy
In this section the performance analysis of IIoT attack detection accuracy is evaluated. The efficiency of the 
method is said to be validated based on the accurate attack detection being made by the method being designed. 
The mathematical representation of IIoT attack detection accuracy is given below.

From the above Eq. (17), the IIoT attack detection accuracy ‘ ADAIIoT ’ is measured based on the network 
samples ‘ NSi ’ involved in the simulation and the network samples accurately detected ‘ NSAD ’. It is measured 
in terms of percentage (%). Table 5 lists the IIoT attack detection accuracy results obtained using the proposed 
SPC–DRRL and two existing methods, methods, Deep LSTM AE1, HDRaNN2 and the state-of-the-art method, 
Machine learning2 respectively.

Figure 6 given above graphically compares the proposed SPC–DRR1–3 on TON_IoT dataset in terms of attack 
detection accuracy. In figure, X coordinates indicates network samples and Y coordinates indicates the measure 
of attack detection accuracy. The network samples is defined as the IoT features of different services profiles 
and used for experimental purpose so that attack detection made by network in terms of attack detection accu-
racy be measured. The reported result from figure shows that the proposed SPC–DRRL method outperforms 
other methods1–3 compared from 7%, 9% and 12% in term of attack detection accuracy. This is evident from 

(17)ADAIIoT =

n
∑

i=1

NSAD

NSi

Figure 5.   Comparative analysis of IIoT attack detection time.

Table 5.   Tabulation of IIoT Attack detection accuracy.

Network samples

IIoT attack detection accuracy (%)

SPC–DRRL Deep LSTM AE HDRaNN Machine learning

2500 97.4 96.2 95.4 92.2

5000 96.35 92.35 90.25 89

7500 96 92 91 88.35

10,000 94.25 90.15 89 86

12,500 94.15 89.35 87 85

15,000 93.55 87 85 84

17,500 92.15 85.25 84.35 83.15

20,000 92 83 82 80

22,500 91.85 81 80 78.35

25,000 91 80 78 76
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the simulation with 25000 network samples involved in attack detection system and ‘2435’ number of network 
samples were correctly detected by the network using SPC–DRRL method, ‘2405’ number of network samples 
were detected by the network using1, ‘23805’ number of network samples were detected by the network using2 
and ‘2305’ number of network samples were detected by the network using2. It is because SPC–DRRL method 
utilizes min–max normalization scaling function that eliminates the values of each feature within an explicit 
range, therefore ensuring attack detection accuracy into SPC–DRRL method.

Performance analysis of IIoT attack detection error rate
The third parameter of significance is the error involved during the IIoT attack detection. This is because using 
this parameter also the significance of the proposed method are also said to be validated. Lower the error rate 
more significant is the proposed method said to be. The IIoT attack detection error rate is mathematically rep-
resented as given below

From the above Eq. (18), the IIoT attack detection error rate ‘ ADERIIoT ’ is measured based on the network 
samples considered for simulation purpose ‘ NSi ’ and the network samples wrongly detected ‘ NSWD ’ with attacks 
though found to be not. It is measured in terms of percentage (%). Table 6 given below provides the IIoT attack 
detection error rate using the proposed SPC–DRRL and two existing methods, methods, Deep LSTM AE1, 
HDRaNN2 and the state-of-the-art method, Machine learning respectively.

Figure given above shows the impact of IIoT attack detection error rate for different numbers of network 
samples ranging between 2500 and 25,000 obtained at different time intervals. From the figure it is inferred 
that the attack detection error rate is directly proportional to the number of network samples considered for 
simulation. This is because of the reason that with different number of network samples obtained over a period 
of time in IIoT, an increasing trend is said to be observed when evaluating attack detection error rate. However, 

(18)ADERIIoT =

n
∑

i=1

NSWD

NSi
∗ 100

Figure 6.   Comparative analysis of IIoT attack detection accuracy.

Table 6.   Tabulation of IIoT attack error rate.

Network samples

IIoT attack error rate (%)

SPC–DRRL Deep LSTM AE HDRaNN Machine learning

2500 1.4 1.8 2.12 2.4

5000 1.6 2.2 2.45 2.65

7500 1.8 2.35 3 3.35

10,000 2.2 2.75 3.35 4.15

12,500 2.35 3 3.85 4.55

15,000 2.55 3.25 4 5

17,500 2.8 3.55 4.15 5.35

20,000 3.1 4 4.35 5.85

22,500 3.35 4.25 4.85 6

25,000 3.85 4.45 5 6.35
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with the simulations conducted using 2500 network samples and the network samples wrongly predicted using 
SPC–DRRL1, 2 being ‘35’, ‘45’, ‘53’ and ‘60’, the overall attack detection error rate were observed to be ‘1.4%’, ‘1.8%’, 
‘2.12%’ and ‘2.4%’ respectively. From these results it is inferred that the attack detection error rate is lesser using 
SPC–DRRL when compared to1–3. The results behind is due to the application of Dynamic Reward Reinforce-
ment Learning-based IIoT attack detection model. By applying this model, incident repository is employed 
that stores the intermediate and final action results. Therefore by looking into this incident repository, network 
samples being attack are discarded during further processing and only the network samples to be of genuine is 
considered for further processing. With these factors, the IIoT attack detection error rate using SPC–DRRL is 
said to be reduced by 21% compared to1, 33% compared to2 and 45% compared to3 respectively.

Performance analysis of IIoT attack detection overhead
Finally, in this section IIoT attack detection overhead is discussed. A small portion of overhead is said to be 
equipped while performing the attack detection process and this is said to be IIoT attack detection overhead. 
The mathematical formulate of IIoT attack detection overhead is given as below.

From the above Eq. (19), the IIoT attack detection overhead is measured ‘ ADOIIoT ’ based on the network 
samples ‘ NSi ’ and the memory consumed ‘ Mem[Act] ’ in detecting attack. It is measured in terms of kilobyte 
(KB). Table 7 given below list the IIoT attack detection overhead using the proposed SPC–DRRL and two existing 
methods, methods, Deep LSTM AE, HDRaNNand the state-of-the-art method, Machine learning respectively.

Finally, Fig. 7 given above illustrates the IIoT attack detection overhead with respect to 25,000 distinct 
network samples conducted with an average of 10 simulation runs using SPC–DRRL1–3. Figure 8 represents 
the comparative analysis of IIoT attack detection overhead. The attack detection overhead is also found to be 
increasing with the increasing numbers of network samples. This is obviously due to the reason that with the 

(19)ADOIIoT =

n
∑

i=1

NSi ∗Mem[Act]

Table 7.   Tabulation of IIoT attack detection overhead.

Network samples

IIoT attack detection overhead (KB)

SPC–DRRL Deep LSTM AE HDRaNN Machine learning

2500 625 775 975 1125

5000 675 825 1025 1185

7500 735 955 1135 1235

10,000 825 1035 1255 1315

12,500 1035 1155 1455 1535

15,000 1125 1355 1835 2035

17,500 1315 1525 2055 2155

20,000 1435 1735 2135 2535

22,500 1525 1955 2255 2725

25,000 1825 2035 2435 2915

Figure 7.   Comparative analysis of IIoT attack detection error rate.
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increase in the network sample size results in congestion and also the action results that has to be stored in the 
incident repository also gets increased. This in turn would increase the attack detection overhead also. However, 
the comparative analysis showed betterment when applied with SPC–DRRL upon comparison to1–3. The reason 
was owing to the application of Dynamic Reward Reinforcement Learning-based IIoT attack detection algorithm. 
By applying this algorithm, employing the dynamic reward function and application of its results for obtaining 
the loss function results in the minimization of memory involved during the overall evaluation of action results. 
This in turn reduced the memory involved in attack detection also using SPC–DRRL method by 17% compared 
to1, 33% compared to2 and 41% compared to3 respectively.

Conclusion
In many IIoT attack detection systems, the similarity scores at a fine grained manner are usually utilized. In 
compared to most of the prevailing IIoT attack detection methods, a novel sliding principal component and 
dynamic reward reinforcement learning (SPC–DRRL) using deep reinforcement learning based on network 
samples is proposed to improve the detection accuracy in addition to minimizing the time and error rate is 
proposed in this article. The main innovation of our method is obtaining a measure for different service profiles 
(i.e., involving different activities) by proposing log likelihood sliding principal component-based feature extrac-
tion algorithm. Specifically, an input feature vector matrix is first created and measured using the log likelihood 
ratio to measure the likelihood of obtaining the principal component in a specific sliding window. Here, each 
service profiles are said to be performed in each sliding window. Second, the Dynamic Reward Reinforcement 
Learning-based IIoT attack detection is presented to provide detection of IIoT attacks via incident repository 
and generate attack detection results. In addition, along with the experiments, an empirical evaluation of our 
method with the aid of discussion was performed to compare to the traditional and state-of-the-art methods 
using the ToN_IoT dataset. The limitations of the proposed methods are IIoT systems frequently on exclusive 
technologies and protocols, making it complex for several systems to converse. Limit the scalability and flexibility 
of IIoT systems and improve the cost of implementing and maintaining IIoT systems.The observed numerical 
results have confirmed that the proposed SPC–DRRL method outperforms well by achieving a higher attack 
detection accuracy, minimum overhead and error rate than the other state-of-the-art methods.

Data availability
The data that support the findings of this study are available from the corresponding author, upon reasonable 
request.
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