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White shark optimizer with optimal 
deep learning based effective 
unmanned aerial vehicles 
communication and scene 
classification
T. Nadana Ravishankar 1, M. Ramprasath 2, A. Daniel 3, Shitharth Selvarajan 4,5*, 
Priyanga Subbiah 6 & Balamurugan Balusamy 7

Unmanned aerial vehicles (UAVs) become a promising enabler for the next generation of wireless 
networks with the tremendous growth in electronics and communications. The application of UAV 
communications comprises messages relying on coverage extension for transmission networks 
after disasters, Internet of Things (IoT) devices, and dispatching distress messages from the device 
positioned within the coverage hole to the emergency centre. But there are some problems in 
enhancing UAV clustering and scene classification using deep learning approaches for enhancing 
performance. This article presents a new White Shark Optimizer with Optimal Deep Learning based 
Effective Unmanned Aerial Vehicles Communication and Scene Classification (WSOODL-UAVCSC) 
technique. UAV clustering and scene categorization present many deep learning challenges in 
disaster management: scene understanding complexity, data variability and abundance, visual 
data feature extraction, nonlinear and high-dimensional data, adaptability and generalization, 
real-time decision making, UAV clustering optimization, sparse and incomplete data. the need to 
handle complex, high-dimensional data, adapt to changing environments, and make quick, correct 
decisions in critical situations drives deep learning in UAV clustering and scene categorization. The 
purpose of the WSOODL-UAVCSC technique is to cluster the UAVs for effective communication and 
scene classification. The WSO algorithm is utilized for the optimization of the UAV clustering process 
and enables to accomplish effective communication and interaction in the network. With dynamic 
adjustment of the clustering, the WSO algorithm improves the performance and robustness of the 
UAV system. For the scene classification process, the WSOODL-UAVCSC technique involves capsule 
network (CapsNet) feature extraction, marine predators algorithm (MPA) based hyperparameter 
tuning, and echo state network (ESN) classification. A wide-ranging simulation analysis was 
conducted to validate the enriched performance of the WSOODL-UAVCSC approach. Extensive result 
analysis pointed out the enhanced performance of the WSOODL-UAVCSC method over other existing 
techniques. The WSOODL-UAVCSC method achieved an accuracy of 99.12%, precision of 97.45%, 
recall of 98.90%, and F1-score of 98.10% when compared to other existing techniques.

In the last few years, the technology of unmanned aerial vehicles (UAVs) has fascinated in extensive attention as 
a quickly emerging domain in intellectual research, civil utilization and military applications1. UAVs have the 
benefits of lower cost implementation, scalability smaller size, fast distribution, flexibility, simple access from 
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risky fields and so on. Nevertheless, because of the inadequate energies and computational powers of individual 
UAVs, it is not possible for ensuring the optimum operational condition at all times2, whereas strong connec-
tion among the various UAVs to procedure a cluster that could be utilized to achieve different tasks in superior 
surroundings and complexity3. Thus, it progressively becomes a significant form of present applications of UAVs 
in combat. The UAVs node’s superior mobility in FANET (Flying Ad Hoc Network) creates it better frequent 
for enter and exiting the networks, which can cause complications in the maintenance and establishment of the 
networks and build it challenging for controlling and managing the UAVs proficiently as their scale raised4. Sepa-
ration of the networks into clusters can support solving the above complications. The separation process is based 
on dissimilar factors and UAVs are separated into various cluster groups that could be in direct communication 
with one another and share resources and mediums within the nodes’ communication range5.

The great performance of the UAV is nominated as Cluster Head (CH) and the other UAVs in the groups are 
Cluster Members (CM) which can be based on various election considerations6. The CH nodes are accountable 
for inter-and intra-cluster information forwarded in the UAV networks, and then the nodes transmit packets to 
the CH, which transmits them to the BSs (Base Station) or nodes’ destination7. Thereby, the control packet will 
be decreased. Nevertheless, the transmission load of CH can be raised due to it requires to transfer of informa-
tion between management and also clusters CMs. Consequently, the separation of clusters and the collection of 
CHs, in addition to the effectiveness of cluster management schemes are crucial for achieving dependable com-
munication and enhancing the network’s performance in a hierarchical network. Once the aerial image scenes 
are obtained, it endures aerial image classification8. By the coverage of different earthed objects, the images are 
classified into subfields and several lands are covered with dissimilar semantic classes. Therefore, the classification 
of aerial images is a significant process for many real-time applications namely resource managing, metropolitan 
planning, RS and also computer cartography1. The deep Learning (DL) technique is extremely advantageous 
in the determination of traditional challenges namely Natural Language Processing (NLP), speech recognition, 
object detection and then a lot of these kinds of real-time applications. It is vastly more proficient than the stand-
ard processes and finally, it is also achieved with more consideration in industries and the scientific community9.

This article presents a new White Shark Optimizer with Optimal Deep Learning based Effective Unmanned 
Aerial Vehicles Communication and Scene Classification (WSOODL-UAVCSC) technique. The WSOODL-
UAVCSC technique involves two main components: UAV clustering and scene classification10. The WSO algo-
rithm is utilized for the optimization of the UAV clustering process enables to accomplish effective communica-
tion and interaction in the network. With dynamic adjustment of the clustering, the WSO algorithm improves 
the performance and robustness of the UAV system. For the scene classification process, the WSOODL-UAVCSC 
technique involves capsule network (CapsNet) feature extraction, marine predators algorithm (MPA) based 
hyperparameter tuning, and echo state network (ESN) classification. A wide-ranging simulation analysis was 
conducted to validate the enhanced performance of the WSOODL-UAVCSC method.

Unmanned Aerial Vehicles (UAVs) have experienced significant advancements in the fields of electronics and 
communications, rendering them a highly promising facilitator for the forthcoming era of wireless networks. 
Unmanned aerial vehicles (UAVs) have demonstrated their versatility and efficacy in a wide range of applications, 
encompassing intelligent systems such as communication and scene classification. Unmanned Aerial Vehicle 
(UAV) communication presents novel opportunities for entrepreneurs and innovators to investigate a diverse 
array of practical applications and transformative solutions11. The application of unmanned aerial vehicle (UAV) 
communications encompasses various scenarios, including the extension of coverage for transmission networks 
in the aftermath of disasters, facilitating communication for Internet of Things (IoT) devices, and enabling the 
transmission of distress messages from areas with limited coverage to emergency centers. Nevertheless, the task of 
improving the clustering of unmanned aerial vehicles (UAVs) and the classification of scenes using deep learning 
methods continues to pose a significant challenge, as the goal is to attain the highest level of performance. This 
article introduces a novel approach known as the White Shark Optimizer with Optimal Deep Learning-based 
Effective Unmanned Aerial Vehicles Communication and Scene Classification (WSOODL-UAVCSC) technique 
in response to the given context12. The main objective of the WSOODL-UAVCSC technique is to facilitate the 
clustering of Unmanned Aerial Vehicles (UAVs) in order to enhance communication efficiency and optimize 
scene classification. The WSOODL-UAVCSC technique comprises two primary constituents, namely UAV clus-
tering and scene classification13. The WSO algorithm is utilized in the UAV clustering procedure to optimize the 
configuration of UAV clusters and improve communication and interaction within the network.

The performance and robustness of the UAV system are significantly enhanced by the WSO algorithm through 
the dynamic adjustment of clustering14. The scene classification process implemented by the WSOODL-UAVCSC 
technique involves multiple stages, namely Capsule Network (CapsNet) feature extraction, hyperparameter 
optimization using the marine predators algorithm (MPA), and classification utilizing the echo state network 
(ESN)15. The utilization of sophisticated deep learning methodologies significantly enhances the precision and 
effectiveness of scene classification, thereby enabling unmanned aerial vehicles (UAVs) to make well-informed 
decisions by leveraging the acquired data. The efficacy of the WSOODL-UAVCSC methodology is verified by 
means of an extensive simulation analysis. The comprehensive analysis of results demonstrates the superior 
performance of the WSOODL-UAVCSC method in comparison to existing techniques for clustering Unmanned 
Aerial Vehicles (UAVs) and classifying scenes16. The implementation of the WSOODL-UAVCSC technique 
has the potential to revolutionize wireless communication networks by leveraging UAVs17. This advancement 
allows for enhanced data transmission, improved scene comprehension, and the facilitation of various innova-
tive applications. The results of this study present novel prospects for enhancing communication and scene 
classification using unmanned aerial vehicles (UAVs), thereby facilitating progress in the domain of intelligent 
systems and UAV technology.

The impetus behind the creation of the White Shark Optimizer with Optimal Deep Learning based Effec-
tive Unmanned Aerial Vehicles Communication and Scene Classification (WSOODL-UAVCSC) method arises 
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from the increasing potential of Unmanned Aerial Vehicles (UAVs) within the realm of wireless networks and 
intelligent systems. Unmanned aerial vehicles (UAVs) have emerged as multifunctional instruments for a wide 
range of applications, encompassing communication and scene classification18. This development has created 
prospects for inventive and transformative solutions. The utilization of Unmanned Aerial Vehicle (UAV) com-
munication presents notable benefits, including the expansion of transmission network coverage in the aftermath 
of disasters, the facilitation of communication for Internet of Things (IoT) devices, and the prompt dispatching 
of distress messages from areas lacking coverage to emergency centers. Nevertheless, there exist certain obstacles 
when it comes to improving the efficacy of UAV clustering and scene classification through the utilization of 
deep learning methodologies in order to attain the most optimal results19.

The WSOODL-UAVCSC technique has been developed to tackle these challenges through the introduc-
tion of a novel optimization approach that utilizes the White Shark Optimizer (WSO) for UAV clustering. The 
primary objective of the technique is to enhance performance and robustness within the network by effectively 
clustering UAVs, thereby improving communication and interaction20. The methodology comprises of two pri-
mary elements: Unmanned Aerial Vehicle (UAV) clustering and scene classification. The utilization of the WSO 
algorithm is employed to optimize the process of clustering Unmanned Aerial Vehicles (UAVs), with the aim of 
dynamically adjusting the clustering in order to enhance the overall performance of the system. Furthermore, the 
process of scene classification integrates sophisticated deep learning methodologies, including Capsule Network 
(CapsNet) for feature extraction, hyperparameter optimization through the marine predators algorithm (MPA), 
and classification utilizing the echo state network (ESN). The conducted simulation analysis serves to validate 
the performance of the WSOODL-UAVCSC approach, showcasing its enhanced capabilities in comparison 
to current techniques21. The integration of WSO optimization, feature extraction based on deep learning, and 
advanced classification techniques yields enhanced outcomes in tasks related to clustering and classification of 
UAVs and scenes. The primary objective of the WSOODL-UAVCSC technique is to leverage the capabilities of 
unmanned aerial vehicles (UAVs) in wireless networks and intelligent systems through the optimization of UAV 
clustering and scene classification procedures22. The proposed approach aims to enhance the performance and 
efficiency of unmanned aerial vehicle (UAV) communication applications, thereby creating opportunities for 
diverse real-world applications and novel solutions.

Due to advances in electronics and communications, UAVs may enable the next generation of wireless net-
works. Intelligent systems use UAVs for scene classification and communication. UAV communication enables 
coverage extension for transmission networks after disasters, Internet of Things (IoT) devices, and sending 
distress messages from devices in coverage holes to emergency centers. Using deep learning to improve UAV 
clustering and scene classification is difficult. The White Shark Optimizer with Optimal Deep Learning based 
Effective Unmanned Aerial Vehicles Communication and Scene Classification (WSOODL-UAVCSC) solves these 
issues23. The WSOODL-UAVCSC method clusters UAVs for communication and scene classification. It includes 
UAV clustering and scene categorization. The White Shark Optimizer (WSO) method optimizes UAV clustering 
for network efficiency. WSO dynamically adjusts clustering to improve UAV system performance and reliability. 
WSOODL-UAVCSC scene classification requires numerous phases. First, CapsNet extracts scene features. The 
marine predators algorithm (MPA) optimizes CapsNet performance by modifying hyperparameters. Finally, the 
echo state network (ESN) classifies scenes. A comprehensive simulation investigation validates the proposed 
approach. The analysis shows that WSOODL-UAVCSC outperforms other methods24. The research addresses 
UAV clustering and scene classification difficulties utilizing deep learning for effective communication and scene 
analysis. The WSOODL-UAVCSC algorithm improves UAV clustering and scene classification performance.

Outcomes of the proposed methodology
The WSOODL-UAVCSC disaster management UAV clustering and scene categorization method delivers numer-
ous major results:

1.	 Complex scene interpretation, data variability, feature extraction from visual data, high-dimensional and 
nonlinear data, adaptability, real-time decision-making, clustering optimization, and sparse or partial data 
in UAV clustering and scene classification are addressed.

2.	 It optimizes UAV clustering and network connectivity via the White Shark Optimizer (WSO) method. Also 
employed are CapsNet feature extraction, MPA-based hyperparameter tuning, and ESN scene categorization.

3.	 Numerous simulations proved WSOODL-UAVCSC works. It outperforms existing approaches in accuracy, 
precision, recall, and F1-score.

4.	 The WSOODL-UAVCSC method had 99.12% accuracy, 97.45% precision, 98.90% recall, and 98.10% F1-score. 
These measurements show disaster management UAV clustering and scene categorization methodology’s 
reliability and efficacy.

Organization of paper
The rest of the paper is structured in the following manner. Section "Related works" e presents a comprehensive 
examination of the relevant literature and the methodology utilized in this research endeavor. In Section "Pro-
posed methodology", a comprehensive overview of the workflow utilized in the proposed study is provided, along 
with a detailed explanation of pertinent concepts. The fourth section of the paper is dedicated to the Simulation 
Setup and Parameters, Performance Metrics, and the comparative analysis of the results obtained. And, finally 
section "The shot vector is pushed towards  and the Long vector is pushed towards  by the squashing function." 
concludes the paper with future scope.
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Related works
Pustokhina et al.,25 (2021) presented a new energy-effective cluster-based UAV with a DL-based scene classifica-
tion (SC) approach. Primarily, the UAVs were clustered utilizing the T2FL approach because of RE, UAV degree, 
and distance to adjacent UAVs. Afterwards, the selected CHs transfer the captured images to BSs. Second, the 
DL method-based ResNet_50 system can be exploited for SC. For tuning the hyper-parameters of the ResNet_50 
approach, a water wave optimizer (WWO) system can be employed. Finally, the KELM technique was utilized for 
performing the SC method. Rajagopal et al.26, (2020) presented a novel multi-objective PSO (MOPSO) approach 
for developing recent DCNNs (Deep Convolutional Neural Networks) in SC, which creates the non-dominant 
solution. This process assists to attain a tradeoff between the inference latency and classification performance, 
called multi objective convolutional neural network (MOCNN).

Li et al.,27 (2018), discussed a new super pixel-based feature was presented in this case to distinguish UAV 
images. Based on the presented feature, a scene detection approach of the BoW method for aerial imaging was 
planned. The presented super-pixel-based feature which employs landform data introduces top-task super-pixel 
extraction of landforms to bottom-task expression of feature vectors. Guo et al.,28 (2021), presented an enhanced 
approach to deep reinforcement learning for unmanned aerial vehicle (UAV) navigation in environments char-
acterized by high levels of dynamism. The proposed methodology demonstrates a higher level of convergence 
and effectiveness.

Uthayan et al.,29 (2022) presented a novel DL-enabled aerial SC approach for UAV-aided MEC methods. 
The projected method allows the UAVs for capturing aerial images that are transferred to MEC for more pro-
cessing. A shuffled Shepherd Optimizer (SSO) system was carried out for accomplishing this and to define the 
hyper-parameters of the CapsNet approach. At last, the BPNN classification approach was executed to define 
the suitable classes of aerial imagery. Li and Zhou30 (2021), the authors deal with scene detection by learning 
the representation of features automatically in big image instances. Primarily, the authors present a novel system 
for scene detection using trained a slight-weight CNN (Convolutional Neural Network) which completely takes 
minimal complex and better network structure and is trainable in the approach of end-to-end. Secondarily, the 
authors present to use of a salient region-based technique for extracting the local feature representation of certain 
scene areas directly in the convolutional layer dependent upon the self-selection process, and all the layers apply 
a linear function with an end-to-end approach.

Xia et al.,31 (2021), a novel lightweight method dependent upon VGG16 was presented for extracting vari-
ous features of RSI by 5 convolutional elements. This method utilizes depthwise separable convolutional for 
reducing the network limitations. The pooling layer was added for solving the inherent non-adaptive issue of 
convolutional networks. The global average-pooling layer can be employed to sum the data for making an input 
spatial transformation further stable.

Ming et al.,32 (2021), for scene categorization in UAV remote sensing photos, the research suggested an 
unsupervised self-adaptive deep learning classification network. Both the Attention U-Net and the Mask RCNN 
performed well in classification when it came to describing finer details. Classification networks based on unsu-
pervised adaptive learning are used both for classification and Sample retrieval strategy that automatically adjusts 
to homology and reliability.

Nilakshi and Bhogeswar33 (2021), the study presented a novel methodology for feature selection in aerial 
scene classification, utilizing mutual information as the basis for efficient transfer learning. The presented study 
introduced an innovative approach for feature selection, utilizing mutual information as the primary criterion 
and enhanced transfer learning in the domain of aerial scene classification.

Yu et al.,34 (2021), presented on development of a guidance algorithm based on deep reinforcement learn-
ing, specifically designed for collision avoidance in fixed-wing unmanned aerial vehicles (UAVs). The research 
does not address aspects related to communication or scene classification. This paper introduced a computa-
tional guidance method for collision avoidance in limited airspace for multiple fixed-wing UAVs, utilizing deep 
reinforcement learning techniques. The algorithm under consideration demonstrated a high level of efficacy 
in mitigating the likelihood of collisions among multiple unmanned aerial vehicles (UAVs), even when the 
number of aircraft involved is substantial. The application of deep reinforcement learning in the context of col-
lision avoidance. The presented study aims to explore an extension of the actor-critic model within the context 
of reinforcement learning.
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Paper Methodology Contribution

Sarfraz, Ahmed, Dakhan50 (2022)

The suggested approach for ensemble learn-
ing, which utilises multiple objective particle 
swarm optimisation, demonstrates enhance-
ments in subject-independent emotion 
identification based on EEG data

The present study introduces a novel ensem-
ble learning approach that demonstrates 
superior recognition performance compared 
to previous methodologies

Omurkanova51 (2022)

This study presented a novel computer-based 
diagnostic model for the diagnosis of brain 
tumours. The model incorporates textural 
feature extraction algorithms, convolutional 
neural network features, and optimization 
algorithms. The accuracy rate of the model 
is 98.22%

The present study introduced a novel 
computer-based hybrid diagnostic model 
and employs optimisation methods for the 
purpose of feature selection

Mohammad-Hossein, Nadimi-Shahraki 
et al.52 (2022)

This work presented a novel approach, 
namely the Enhanced Whale Optimisation 
method (E-WOA), for the purpose of medi-
cal feature selection. The proposed method 
is applied to a case study involving the iden-
tification of relevant features in the context 
of COVID-19. The E-WOA algorithm has 
superior performance compared to other 
variations and exhibits efficiency in the selec-
tion of effective characteristics

The present study introduced an improved 
version of the whale optimisation algorithm, 
referred to as the enhanced whale optimisa-
tion algorithm (E-WOA). Specifically, a 
binary variant of the E-WOA, known as 
the binary enhanced whale optimization 
algorithm (BE-WOA), is proposed for the 
purpose of medical feature selection

Kappelhof et al.53 (2021)

This study presented an innovative evolution-
ary algorithm designed for the purpose of 
reliably predicting unfavourable outcomes 
following endovascular treatment for acute 
ischemic stroke, specifically focusing on the 
application of fuzzy decision trees

This work introduced a fuzzy decision tree-
based evolutionary method to consistently 
predict poor outcomes after endovascular 
treatment for acute ischemic stroke

Javier, Enrique, et al. (2021)

The practical application of robust multi-
modal registration of fluorescein angiography 
(FA) and optical coherence tomography angi-
ography (OCTA) images has garnered grow-
ing attention. The simultaneous examination 
of fundus autofluorescence (FA) and optical 
coherence tomography angiography (OCTA) 
pictures provide shared and supplementary 
visual data that can be utilised in the diagno-
sis and classification of retinal diseases

Clinical practice increasingly seeks robust 
multimodal registration of fluorescein and 
OCTA pictures. Combining FA and OCTA 
images gives complementing visual informa-
tion for detecting and grading retinal diseases

Yu et al.35 (2020)
Utilized reinforcement learning to address 
collision avoidance and optimal trajectory 
planning in UAV communication networks

Introduced a reinforcement learning method-
ology for collision avoidance and trajectory 
planning in UAV communication networks

Oualid and Deok36 (2021)
Employed actor-critic-based reinforcement 
learning for autonomous navigation and 
collision prevention in unfamiliar outdoor 
settings

Developed a system enabling autonomous 
navigation and collision prevention in unfa-
miliar outdoor settings using reinforcement 
learning techniques

Chao et al.37 (2020)
Proposed the LwH algorithm integrating 
deep reinforcement learning for UAV naviga-
tion in complex environments with sparse 
rewards

Introduced the LwH algorithm, utilizing deep 
reinforcement learning and assistance from 
non-experts for UAV navigation in sparse 
reward environments

Chi et al.38 (2020)
Presented a decentralized deep reinforcement 
learning framework for efficient multi-UAV 
navigation and energy minimization

Introduced a decentralized deep reinforce-
ment learning framework for multi-UAV 
navigation and energy management, outper-
forming existing approaches

Carlos et al.39 (2019)
Explored deep learning models for object 
classification and reinforcement learning 
techniques for UAVs in indoor environments 
with obstructions

Investigated deep learning for object classifi-
cation and reinforcement learning for UAVs, 
validating efficacy in indoor environments 
with obstacles

Hang et al.40 (2020)
Proposed the UC-DDPG algorithm based 
on deep reinforcement learning to optimize 
energy efficiency and fairness in 3D UAV 
control within wireless systems

Introduced the UC-DDPG algorithm for 
energy-efficient and fair 3D UAV control, 
showing superior performance compared to 
alternative scheduling methods

Sana et al.41 (2021)
Explored machine learning solutions for 
UAV communication and resource manage-
ment, without a focus on deep learning or 
scene classification

Investigated machine learning-based 
solutions for air-to-air, air-to-ground, and 
ground-to-air UAV communication and 
resource management

Jiseon et al.42 (2021)
Utilized deep reinforcement learning for 
precise target tracking and management of 
multiple UAVs, ensuring high accuracy and 
low runtime costs

Employed deep reinforcement learning 
for precise target tracking and multi-UAV 
control, achieving high accuracy with low 
runtime costs

Chao et al.,43 (2022)
Explored deep reinforcement learning for 
collision-free flocking of fixed-wing UAVs, 
excluding communication and scene clas-
sification aspects

Developed the MA2D3QN algorithm for 
collision-free flocking in fixed-wing UAVs, 
demonstrating scalability and adaptability in 
simulation environments

Omar et al.17 (2021)
Investigated the use of UAVs for emergency 
and rescue operations, focusing on guidance 
without delving into communication or scene 
classification

Studied the utilization of UAVs for emergency 
vehicle guidance and intervention strategies 
in rescue operations

The research uncovered numerous cutting-edge methods, including unmanned aerial vehicles (UAVs), deep 
learning, scene classification, and reinforcement learning, among others. However, a significant technical void 
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exists in the integration of multiple methods to comprehensively address complex real-world circumstances. 
Although a number of studies have focused on features such as energy-efficient clustering, scene classification, 
and collision avoidance, there has been surprisingly little research into comprehensive solutions that incorpo-
rate all of these elements. The lack of cohesive frameworks that integrate advanced approaches for tasks such as 
autonomous navigation, communication optimisation, and dynamic scene interpretation is one of the obstacles 
that must be surmounted in order to achieve efficient and adaptable UAV operations. In addition, standardised 
evaluation criteria and benchmark datasets are still required to facilitate the effective comparison and validation 
of proposed approaches, despite the progress made in certain fields.

To bridge this technical chasm, a concerted effort towards the development of integrated, multifaceted solu-
tions that capitalise on the strengths of each approach is required. These solutions must efficiently manage the 
complexities of UAV applications in the actual world.A variety of innovative methodologies involving UAVs, deep 
learning, scene classification, and reinforcement learning emerged from the research survey. However, a signifi-
cant technical void exists in the integration of these approaches to comprehensively address complex real-world 
scenarios. Despite the fact that a number of studies have focused on particular aspects such as energy-efficient 
aggregation, scene classification, and collision avoidance, there has been limited investigation into holistic solu-
tions that combine these elements. The absence of cohesive frameworks integrating advanced techniques for 
tasks such as autonomous navigation, communication optimisation, and dynamic scene comprehension is a 
barrier to achieving seamless and adaptable UAV operations. In addition, despite the progress made in individual 
disciplines, there is a need for more standardised evaluation metrics and benchmark datasets to facilitate the 
comparison and validation of proposed methodologies. Closing this technical gap requires a concerted effort to 
develop integrated, multi-faceted solutions that leverage the assets of each approach to effectively address the 
complexities of UAV applications in the real world.

Proposed methodology
In this article, we have focused on the development of the WSOODL-UAVCSC for effective transmission and 
scene classification in the UAV network. The major aim of the WSOODL-UAVCSC technique is to cluster the 
UAVs for efficient communication and scene classification. The WSOODL-UAVCSC technique involves two main 
components: UAV clustering and scene classification. Figure 1 depicts the overall procedure of the WSOODL-
UAVCSC method. The WSOODL-UAVCSC methodology is a comprehensive framework that has been developed 
to tackle the issues associated with communication and scene classification in Unmanned Aerial Vehicle (UAV) 
systems. This methodology takes a multi-faceted approach to address these challenges. The present methodol-
ogy incorporates a range of sophisticated methodologies and algorithms in order to optimise the effectiveness 
of unmanned aerial vehicle (UAV) networks during disaster response situations.

Figure 1.   Overall process of WSOODL-UAVCSC methodology.
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The WSOODL-UAVCSC framework encompasses a series of distinct stages:
The methodology commences with the application of the White Shark Optimizer (WSO) algorithm, which 

facilitates the optimisation of Unmanned Aerial Vehicles (UAVs) clustering. The technique exhibits dynamic 
properties by adapting the clustering process to optimise communication and interaction within the network. 
The objective is to optimise performance and resilience, which are of utmost importance in situations of cata-
strophic events.

The WSOODL-UAVCSC framework utilises Capsule Networks (CapsNet) for the purpose of feature extrac-
tion. This is subsequently followed by the application of the Marine Predators Algorithm (MPA) to perform 
hyperparameter tuning. Finally, the Echo State Network (ESN) is employed for scene categorization. The objective 
of this multi-layered deep learning methodology is to effectively categorise situations that have been recorded by 
unmanned aerial vehicles (UAVs), which is a crucial component in the field of disaster management.

System model
Phase I: clustering process using the WSO algorithm
The WSO algorithm is utilized for the optimization of the UAV clustering process and enables to accomplish 
effective communication and interaction in the network. With dynamic adjustment of the clustering, the WSO 
algorithm improves the performance and robustness of the UAV system.

The maximum speed of a UAV reaches up to 30m/s . All the UAV devices are based on the location‐aware 
module which enables the routing technique to be an efficient and precise function. Generally, position data 
was obtained from the alternate system. In this work, GPS and inertial measurement units are provided for the 
deployment and motion sensing of UAVs. Every UAV is aware of its BSs and neighbours’ location. All UAVs are 
equipped with short and long-range wireless transmissions. For intra‐transmission, short-range wireless trans-
mission is applied with the peers in the cluster. For inter‐cluster transmission, long-range wireless transmission 
is applied with its BSs and other CHs.

Design of WSO algorithm
WSO is a metaheuristic optimization approach affected by the attributes of white sharks namely their sense of 
smell while foraging and navigating and their exceptional hearing44. The steps for the WSO algorithm are given 
as follows:

Movement speed toward prey. Once a white shark identifies the prey position based on the waves generated 
by the activities of the target:

In Eq. (1), the index i(i = 1, 2, . . . , n) formulates the white shark command in the population of size n, s sig-
nifies the speed, p shows the current location vector of ith white sharks, Pgbest shows the high strategic standing 
vector, Pbest indicates the present optimum location obtained so far, c1 and c2 are two random numbers between 
[0, 1], p1, p2 , and u are evaluated by using Eqs. (2), (3), and (4):

The movement towards optimal prey: once they smell the fragrance of the target or see the prey movement or 
they presumably identify the waves caused by the prey movement, white sharks continuously travel towards the 
prey. The prey either leaves or escapes its position to find food. But still, there is the fragrance in that location. 
Consequently, the position was updated by the white shark:

In Eq. (5), a and b represent a 1D binary vector,high and low denotes the upper and lower random search 
bounds,  f  refers to the frequency of the wave movement, and mv can be defined as follows:

Let a0 and a1 be the two constant parameters.
The movement towards the white shark: The formula for this phase is provided as follows:

(1)si(t + 1) = u[si(t)+ ρ1 · c1(PGbest(t)− Pi(t))+ ρ2 · c2(Pibest(t)− Pi(t))]

(2)ρ1 = ρmax + (ρmax − ρmin)e
−(4t/tmax)

2

(3)ρ2 = ρmax + (ρmax − ρmin)e
−(4t/tmax)

2

(4)u =
2

∣

∣

∣
2− τ −

√
τ 2 − 4τ
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∣
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(5)Pi(t + 1) = {Pi(t)¬⊕ P0 + high · a+ low · b; rand < mPi(t)+ si(t)/f ; rand ≥ m
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∣
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∣
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∣
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∣

∣
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(8)Pi(t + 1) = {PGbest(t)+ r1 · D · sgn(r2 − 0.5); r3 < ssPi(t); otherwise
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where r1, r2 , and r3 represent the random value ranges within [0, 1] , and D shows the distance between the targets 
and the sharks.

Fish school behaviours: this phase was modelled by Eq. (9):

Process involved in clustering technique
The WSOODL-UAVCSC method measures a fitness function by adding various parameters. The WSOODL-
UAVCSC technique is developed with the existence of four fitness parameters such as UAV nodes, average 
distance of UAVs for CHs enclosed by the sensing range, distance in CH to sink, and energy efficiency of cluster 
node density45. The data on fitness parameter was shown as follows:

Energy efficiency: The CH performs diverse activities namely sense, gathered, aggregation, data broadcast, 
etc.; thus, when compared to other nodes, CH intakes a considerable amount of energy. Next, it is essential to 
determine an FF that shared the load amongst UAVs from the network:

In Eq. (10), CHopt indicates the optimal percentage of CHs, Re , Aνge , and ni indicate the node RE , the average 
energy of the network, and the overall amount of nodes in UAV, correspondingly.

Cluster node density: the cost is a key parameter for the higher energy efficacy of the network During intra‐
cluster transmission. As soon as the cost function of the cluster was defined, then the deployment of network 
energy becomes larger as follows:

where n
(

CHj

)

 indicates the quantity of UAVs from the range of 
(

CHj

)

 the 
(

CHj

)

 . The value of objective function 
f2 is better than the effective selection of CH and exploited from the energy deduction.

The average distance of UAV to the CHs within the sensing range: In intra-cluster transmission, UAV trans-
mits data to the CH. The energy of UAV reduces, once the CH is far away from the CM; there is a deployment 
of low energy afterwards the CHs is nearer to the member UAV nodes,

In Eq. (12), nsr and dist (CH , i) show the amount of CH from the sensing sequence of the cluster and UAVs 
from the sensing range and Euclidean distance in nodes. Therefore, the value of f3 is minimal; but, the intra‐
cluster transmission energy can be declined.

Distance from CH to BS: The distance between CHs and BSs takes a crucial function as if the CHS is distant 
from the sink and quickly exploits energy as follows:

In Eq. (13), dist(BS, cH) shows the Euclidean distance between CHi and BS . Minimizing the f4 objective func-
tion displays that the CHs are not far from BSs. Once the f1, f2, f3 , and f4 parameter functions are calculated, then 
the objective function is called FF and evaluated by Eq. (14):

where α,β , γ , and δ correspondingly indicate the weight coefficient for f1, f2, f3 , and f4 FF parameters, The weight 
coefficient ranges between [ 0, 1].

Architecture and working
Phase II: scene classification process
For the scene classification process, the WSOODL-UAVCSC technique involves CapsNet feature extraction, 
marine predators algorithm (MPA) based hyperparameter tuning, and ESN classification.

CapsNet feature extraction
The CapsNet model is used for extracting features from the images. CapsNet (the capsule network) uses vec-
tor‐wise” encoding, where items are encoded by capsules (collections of neurons). It assists to fix the location of 

(9)Pi(t + 1) =
Pi(t)+ Pi(t + 1)

2 · rand

Re = e(ni)

Aνge =
1

n

∑n

i=0
e(ni)
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Avge
=

CHopt ∗ e(ni)
1
n�

n
i=0e(ni)

∀CHopt = 5%ofn, e(n) = 0.5Jor1.25Jor1.75J
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(
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(
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1

nsτ
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(13)f4 =
1
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∑CH

i=0
dist(BS,CHi)∀dist(BS,CHi) = 1to70m,CH = 1to15

(14)F = MaximizeFitness = α ∗ f1 + β ∗ f2 + γ ∗
1

f3
+ δ ∗

1
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objects and manage the relationship between them46. It resolves the problems of information loss caused by the 
pooling layer in CNN namely scale, location, size, and rotation.

A capsule is composed of a matrix or pose vector for encoding the object’s instantiation of activation and 
different layers parameters. The instantiation parameter changes as the viewing circumstance change, however, 
the capsule remain active. With the capability of assigning parts to wholes, invariance, and equivariance are 
two qualities that are used to construct visual hierarchical connections. Figure 2 illustrates the infrastructure 
of CapsNet.

CapsNet simulates visual hierarchical relationships due to the “Dynamic routing” technique. In CapsNet, 
dynamic routing is used for establishing visual hierarchical relationships through the technique named "rout-
ing‐by‐agreement" to repeatedly route data transition from low to high-level capsules that is the central idea of 
dynamic routing in CapsNet.

Initially, the ReLU function is activated with 256 filters and takes the parameter of size 9×9 with a stride 
of 1. The feature was passed to the primary capsule through this function. CapsNet involves three different 
mechanisms:

•	 Squash function,
•	 Convolution, and
•	 Reshaping function.

The input is provided to the convolutional layer during the convolution process for generating a list of “feature 
maps”. Here, this feature map was reshaped by the Reshaping function. At last, the entire vector’s length is kept 
inside the range of 0 and 1 , based on the squash function. Because it signifies the probability that an item will be 
found at a particular place in the image and it does not cause the positional data contained in a high dimensional 
vector to be destroyed .

Consider that l  and l + 1 layers have m and n capsules, correspondingly. The activation of the capsules at 
thel + 1 layer was computed based on the activation at the l  layer. The letter u represents capsule activations at 
thel layer. We should evaluate v , the capsule activation, at thel + 1 layer .

For a jth capsule at l + 1 layers .

1.	 At the l  layer, the capsule was used to evaluate the prediction vector. The prediction vector for jth capsule 
( l + 1 layer) produced by ith capsules ( l  layer) is:

	   In Eq. (15), Wij is the weight matrix.
2.	 Here is the output vector for thejth capsules that are evaluated. The output vector for thejth capsule is the sum 

of the weight of each prediction vector supplied by l  layer capsules:

3.	 Scalar cij signifies the coupling coefficient between capsules i  ( l  layer) and j ( l + 1 layer). The technique 
named iterative dynamic routing technique defines this coefficient.

4.	 The squashing function is used to the output vector for obtaining vj activation of the jth capsule:

5.	 The shot vector is pushed towards 0 and the Long vector is pushed towards 1 by the squashing function.

Hyperparameter tuning
For adjusting the hyperparameters related to the CapsNet model, the MPA is used. MPA is a bio-inspired 
metaheuristic technique proposed to overcome complex optimization problems by using biological processes 
and natural events47. The foraging strategy of marine predators in the wild serves as a basis for the mathematical 
modelling of MPA. MPA accommodates the Brownian statistical and Lévy distributions. The Brownian technique 
makes the consistent and systematic progression through the search space, whereas The Lévy search method 

(15)uj|i = Wijui

(16)sj =
∑m

i=1
cijuj|i

(17)vj = squash
(

sj
)

Figure 2.   Architecture of CapsNet.
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includes traversing space with the sequence of prominent hops. The Brownian search process guarantees visit 
to remote places. This phenomenon has drastically improved the search abilities of MPA.

In the MPA method, the movement equation is the most important. It directs how the predator moves around 
the solution space. This can be formulated as follows:

In Eq. (18), xi(t) shows the position of the ith predator at t  time , vi(t) indicates the velocity of the ith predators 
at t  time, and t  shows the existing iteration of the model.

The MPA’s strength lies in its adaptability to multi-modal and fast convergence to optimum solutions and 
massively parallel optimization problems. The technique requires parameter tuning and might be stuck in the 
local optima.

The MPA method not only derives a fitness function to attain higher efficiency of classification and also 
describes a positive integer to represent the better outcome of the solution candidate. The decline of the clas-
sification error rate is considered a fitness function.

Image classification
Finally, the ESN model classifies the input images into distinct class labels. ESN comprises 3 layers such as output, 
reserve, and input layers. Since the weighted matrix of the input layer and internal connection matrix of the 
reserve pool (RP) can be arbitrarily created and set, the computational count of trained methods is decreased48.

The ESN resolves the fitting regression time sequence problems by exchanging the FC hidden state with spare 
connection RP; the upgrade layer of the network together with the resultant formula as:

whereas tanh denotes the activation function and is utilized for obtaining the network echo features, a denotes 
the rate of leakage utilized for controlling the upgrade weighted of ESN network, Win stands for the matrix of 
input weighted arbitrarily created in the range of 1 and 1, R implies the connection matrix with sparse design 
inside the RP, u(t) defines the input at time t, x(t) stands for the t‐moment layer of the RP, and y(t) indicates the 
outcome at time t  . The resultant matrix Woui of the ESN is resolved using ridge regression with the subsequent 
optimizer objectives:

whereas, � stands for the regularized co-efficient utilized for preventing over-fitting in the ESN-trained set, and 
I represent the identity matrix. The forecast data can be replaced as Eqs. (20) and (21) to acquire the last forecast 
outcome.

The ESN design is easy and practical; but its forecast outcome was affected by parameter settings, like the RP 
connection matrix scaling parameter represented by Rh , N denotes the count of RP network nodes, IS denotes 
the input data scaling co-efficient, S implies the RP sparsity degree, and a refers to the leakage value. Employing 
suitable parameter settings efficiently improves the forecast ability of the ESN.

Experimentation, results and discussion
Simulation setup and parameters

Number of UAVs (n): 10
UAV Mobility Model: Random Waypoint Model
UAV Speed: 10 m/s
Communication Range (Rc): 200 m
Base Station (BS): Located at coordinates (0, 0) for centralized data processing.

For clustering

Population Size: 50
Maximum Iterations (MaxGen): 100

(18)Xi(t + 1) = Xi(t)+ vi(t)

fitness(xi) = ClassifierErrorRate(xi)

(19)=
numberofmisclassifiedsamples

Totalnumberofsamples
∗ 100

(20)x(t) = (1− a)x + a · tanh(Rx(t − 1)+Wu(t))

(21)y(t) = Woutx(t)

(22)min�WoutX − Y�22 + ��Wout�22

(23)Wout = YXT (XXT + �I)−1
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Hyperparameters

Learning Rate: 0.001
Batch Size: 32
Number of Epochs: 50

Performance metrics
Accuracy
The accuracy of a classification model is determined by calculating the proportion of correctly predicted 
instances, which includes both true positives and true negatives, relative to the total number of instances present 
in the dataset. From a mathematical standpoint, it can be formulated as follows:

Precision
Precision is a metric that serves as an indicator of the performance of a machine learning model. It specifically 
measures the quality of positive predictions made by the model. Precision is a metric that quantifies the propor-
tion of accurate positive predictions in relation to the total number of positive predictions. It is calculated by 
dividing the number of true positives by the sum of true positives and false positives.

Recall
The recall metric is determined by dividing the number of correctly classified Positive samples by the total num-
ber of Positive samples. The recall metric quantifies the model’s capacity to accurately identify positive samples. 
There is a positive correlation between recall and the number of positive samples detected.

F1‑score
The F1 score can be defined as the harmonic mean of precision and recall, thereby offering a well-balanced 
evaluation of the model’s efficacy by incorporating both metrics. Precision is a metric that quantifies the ratio of 
accurately predicted positive instances (true positives) to the total number of positive predictions made by the 
model. In contrast, recall quantifies the ratio of correctly identified positive predictions to the total number of 
positive instances present in the dataset.

Result analysis
In this section, the clustering and scene classification outcomes of the WSOODL-UAVCSC technique are exam-
ined. The scene classification results of the WSOODL-UAVCSC technique are tested on the UCM dataset49. 
This is a 21-class land use image dataset with 100 images of each class. Each image measures 256 × 256 pixels.

Table 1 and Fig. 3 exhibits the energy consumption (ECOM) outcomes of the WSOODL-UAVCSC technique 
with present techniques. The results show that the TIFL model shows worse outcomes with maximum ECOM 
values. At the same time, the KHA and MPSO models obtain slightly boosted performance with moderate ECOM 

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1− score =
2 ∗

(

precision ∗ recall
)

precision+ recall

Table 1.   ECOM outcome of WSOODL-UAVCSC system with other methods on varying rounds.

Energy consumption (mJ)

No. of rounds WSOODL-UAVCSC T2FL-protocol KHA-protocol MPSO-protocol TIFL-protocol

1000 26.81 44.09 59.68 64.76 86.79

2000 32.91 54.93 71.88 78.31 101.70

3000 35.96 62.05 81.36 94.92 118.98

4000 40.02 64.08 85.77 102.37 125.75

5000 41.72 67.81 91.53 110.51 135.24
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values. Although the T2FL model illustrates considerable performance, the WSOODL-UAVCSC technique dem-
onstrates superior results with the least values of ECOM.

Table 2 and Fig. 4 show the end-to-end delay (ETED) effects of the WSOODL-UAVCSC approach with present 
systems. The outcomes exposed that the TIFL method demonstrates worse results with maximal ETED values. 
Simultaneously, the KHA and MPSO methods acquired moderately increased performance with enough ETED 
values. Though the T2FL system demonstrates significant performance, the WSOODL-UAVCSC method exhibits 
greater outcomes with minimum values of ETED.

In Table 3 and Fig. 5, the throughput (TRHT) outcomes of the WSOODL-UAVCSC technique are compared 
with existing approaches under varying rounds. The resultant values indicate that the WSOODL-UAVCSC 
technique reaches increased values of TRHT. For example, on 1000 rounds, the WSOODL-UAVCSC method 

Figure 3.   ECOM outcome of WSOODL-UAVCSC system on varying rounds.

Table 2.   ETED outcome of WSOODL-UAVCSC system with other methods on varying rounds.

End-to-End Delay (sec)

No. of rounds WSOODL-UAVCSC T2FL-protocol KHA-protocol MPSO-protocol TIFL-protocol

1000 1.21 1.62 1.72 2.26 4.17

2000 1.87 2.48 2.65 3.20 5.07

3000 2.13 2.63 3.26 4.17 5.85

4000 2.20 2.94 3.49 4.95 6.26

5000 2.20 3.76 4.66 5.81 6.51

Figure 4.   ETED outcome of WSOODL-UAVCSC system on varying rounds.
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Table 3.   TRHT outcome of WSOODL-UAVCSC system with other methods on varying rounds.

Throughput (mbps)

No. of rounds WSOODL-UAVCSC T2FL-protocol KHA-protocol MPSO-protocol TIFL-protocol

1000 0.99 0.97 0.91 0.89 0.86

2000 0.96 0.94 0.86 0.84 0.79

3000 0.93 0.89 0.82 0.76 0.70

4000 0.91 0.83 0.74 0.71 0.62

5000 0.90 0.79 0.70 0.63 0.58

Figure 5.   TRHT outcome of WSOODL-UAVCSC system on varying rounds.

Figure 6.   Accuy curve of the WSOODL-UAVCSC system.
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attained an increased TRHT of 0.99Mbps while the T2FL, KHA, MPSO, and TIFL models offered reduced THRT 
of 0.97Mbps, 0.91Mbps, 0.89Mbps, and 0.86Mbps correspondingly. Moreover, on 5000 rounds, the WSOODL-
UAVCSC system reached to increase TRHT of 0.90Mbps but the T2FL, KHA, MPSO, and TIFL techniques 
provided decreased THRT of 0.79Mbps, 0.70Mbps, 0.63Mbps, and 0.58Mbps correspondingly.

Figure 6 shows the training accuracy TR_accuy and VL_accuy of the WSOODL-UAVCSC approach. The 
TL_accuy is described by the estimation of the WSOODL-UAVCSC system on the TR database however the 
VL_accuy is computed by calculating the performance on an individual testing database. The outcomes dem-
onstrated that TR_accuy and VL_accuy raising with an upsurge in epochs. Accordingly, the performance of the 
WSOODL-UAVCSC systems acquires to enhance the TR and TS database with an increase in many epochs.

In Fig. 7, the TR_loss and VR_loss effects of the WSOODL-UAVCSC method are exposed. The TR_loss deter-
mined the error between the predicted performance and original values on the TR dataset. The VR_loss signify 
the estimation of the performance of the WSOODL-UAVCSC approach on a separate validation dataset. The 
outcomes denoted that the TR_loss and VR_loss tend to reduce with increasing epochs. It depicted the greater 
performance of the WSOODL-UAVCSC system and its proficiency to produce an accurate classification. The 
diminished value of TR_loss and VR_loss exhibits the improved performance of the WSOODL-UAVCSC proce-
dure on capturing patterns and relationships.

A short precision-recall (PR) analysis of the WSOODL-UAVCSC system is established on the test database in 
Fig. 8. The outcomes stated that the WSOODL-UAVCSC system outcomes in maximum values of PR. Further-
more, it is perceptible that the WSOODL-UAVCSC approach can achieve greater PR values on all class labels.

In Fig. 9, a ROC investigation of the WSOODL-UAVCSC model is shown on the test dataset. The figure 
defined that the WSOODL-UAVCSC method resulted in the enhancement of ROC values. Additionally, the 
WSOODL-UAVCSC system can increase ROC values on all class labels.

Table 4 and Fig. 10 inspect the scene classification results of the WSOODL-UAVCSC technique with other 
recent models10. The experimental values highlighted that the VGGNet, VGG-RBFNN, CA-VGG-LSTM, Goog-
leNet, and CA-GoogleNet-LSTM models have obtained poor performance over other models. Simultaneously, 
the C-PTRN method has shown slightly improved results with accuy , precn , recal , and Fscore of 98.67%, 91.65%, 
97.45%, and 93.26% respectively. However, the WSOODL-UAVCSC technique gains maximum performance 
with accuy , precn , recal , and Fscore of 99.12%, 97.45%, 98.90%, and 98.10% correspondingly.

The CT results of the WSOODL-UAVCSC technique are compared with recent models in Table 5 and Fig. 11. 
The results indicate that the VGGNet, VGG-RBFNN, CA-VGG-LSTM, GoogleNet, and CA-GoogleNet-LSTM 
have offered maximum CT values. Next, the C-PTRN model exhibits considerable outcomes with a CT of 1.72s. 
Nevertheless, the WSOODL-UAVCSC technique offers superior results with the least CT of 0.87s. These results 
show the betterment of the WSOODL-UAVCSC technique over other models.

Figure 7.   Loss curve of the WSOODL-UAVCSC system.
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Figure 8.   PR curve of the WSOODL-UAVCSC system.

Figure 9.   ROC curve of the WSOODL-UAVCSC system.
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Conclusion
This paper emphasises on the advancement of the WSOODL-UAVCSC system, aiming to enhance transmission 
efficiency and scene classification within the UAV network. The primary objective of the WSOODL-UAVCSC 
technique is to effectively cluster UAVs in order to optimise transmission and enhance scene classification. The 
WSOODL-UAVCSC approach comprises two primary constituents, namely UAV clustering and scene classi-
fication. The utilisation of the WSO algorithm in the optimisation of the UAV clustering process facilitates the 
achievement of efficient communication and interaction within the network. The performance and robustness of 
the UAV system are enhanced through the utilisation of the WSO method, which incorporates dynamic modi-
fication of clustering. The picture classification process incorporates the WSOODL-UAVCSC technique, which 
encompasses CapsNet feature extraction and classification using ESN. A comprehensive simulation analysis 
was conducted to verify the superior performance of the WSOODL-UAVCSC approach. The comprehensive 
analysis of the results revealed that the WSOODL-UAVCSC method exhibited superior performance compared 
to other current approaches. The suggested model has a possible drawback in its susceptibility to variations in 
hyperparameter configurations, a concern particularly relevant to deep learning architectures such as CapsNet 
and ESN. Achieving optimal hyperparameter tuning often requires thorough experimentation and dependence 
on domain-specific expertise. The validation of the method’s effectiveness in real-world UAV applications should 

Table 4.   Comparative outcome of WSOODL-UAVCSC system with other methods.

Methodology Accuracy Precision Recall F-score

VGGNet 91.44 77.77 81.00 78.09

VGG-RBFNN 93.15 79.06 83.90 79.06

CA-VGG-LSTM 94.07 80.68 81.64 80.35

GoogleNet 94.48 81.64 81.97 80.35

CA-GoogleNet-LSTM 94.43 79.06 87.13 81.97

C-PTRN Protocol 98.67 91.65 97.45 93.26

WSOODL-UAVCSC 99.12 97.45 98.90 98.10

Figure 10.   Comparative outcome of WSOODL-UAVCSC system with other methods.

Table 5.   CT outcome of WSOODL-UAVCSC system with other methods.

Methodology Computational time (s)

VGGNet 4.78

VGG-RBFNN 3.72

CA-VGG-LSTM 3.20

GoogleNet 2.80

CA-GoogleNet-LSTM 2.72

C-PTRN Protocol 1.72

WSOODL-UAVCSC 0.87
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be undertaken through the implementation of field testing and trials in future research endeavours. The execu-
tion of trials in practical settings including UAV communication and scene classification situations will provide 
significant knowledge and feedback, hence helping subsequent improvements.

In the future, enhancing the interpretability and explainability of deep learning models utilised for scene 
categorization and navigation could potentially foster greater trust and acceptance of these methodologies in 
safety–critical applications. Consequently, this may result in a heightened adoption of these techniques. The 
examination of novel methodologies for visualising decision-making processes inside these models has the 
potential to yield UAV systems that exhibit increased transparency and accountability.

Data availability
The data that support the findings of this study are available from the corresponding author, upon reasonable 
request.
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