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Over the past few decades, the demand for Data Center (DC) services has significantly
increased due to the world’s growing need for internet access, social networking, and
data storage. Data Centers are among the most energy-intensive businesses, so optimiz-
ing IT operations in DC requires energy-efficient techniques. This paper presents Al based
modeling strategies for effective energy management with a particular emphasis on DC'’s
two most energy intensive systems (i.e., cooling and IT systems). This study addresses
the issues of IT equipment performance degradation, inappropriate IT room thermal
conditions, inefficient workload placement, and excessive energy waste. This research
entails the application of machine learning for DC thermal classification, and deployment

of deep learning models to predict resource utilization and energy consumption in DC.

Furthermore, a comparative analysis is performed with existing relevant methods to

demonstrate the effectiveness and accuracy of the proposed Al techniques. The findings

of this study also provide evidence-based recommendations for DC efficient energy

management.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In today’s data-driven cultures, Data Centers (DC) constitute a significant, mission-critical component of the computing
infrastructure. They play an essential role in the IT industry worldwide and are continually expanding in size and com-
plexity in terms of high-performance computing. The adoption of cutting-edge technologies in the field of digitalization
has accelerated the growth of internet services such as big data analytics for businesses [1], Internet of Things (IoT),
and cloud services [2], etc. Due to social networking, video streaming, conferencing, and online gaming, internet traffic
has surged by more than 40% globally during the past two years [3]. The continual increase in demand for big data
computing, processing, and storage [4] by a range of cloud service providers (i.e Google, Facebook, Twitter, etc.), is the
key driver of DC’s criticality [5]. Additionally, there has been an increase in electricity usage due to the expansion of IT
systems. According to a recent report by the International Energy Agency [3], data centers are one of the most energy-
intensive businesses, accounting for roughly 1% (200-250 TWh) of the world’s electricity to support the rising demand
for data-intensive technology [6].

The primary goal is to manage data center operations and control its associated energy consumption at various
granularity levels [5]. This cooperative control of several DC components enhances both the stipulated Quality of Service
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(QoS) and the overall energy efficiency (Quality in Sustainability, QiS). Data centers are built differently based on their
sizes [7]. The top priorities of data center deployment are good quality performance and also, energy efficiency. System
control operations within a data center could be structured according to 3 levels: server/node level; rack level and data
center level. The two broad categories within a data center are [8]:

1. The IT system: encompasses all IT equipment such as servers, storage devices, monitoring workstations, networking
equipment.

2. The Facilities system: encompasses all the mechanical and electrical systems which are used to support the IT
system such as uninterrupted power supply (UPS), power distribution equipment, cooling system/HVAC, computer
room air conditioners (CRAC) units etc.

High server densities and correspondingly high-power consumption in DC result from expanding demand for comput-
ing resources [9]. Servers in DCs consume the most energy and account for more than 75% of the entire energy load of
IT equipment. Storage devices are the second highest energy-consuming equipment making up 10%-15% of the total IT
equipment energy load [8]. On the other hand, cooling infrastructure is the most energy-intensive facility, accounting for
more than 50% of a DC’s overall energy usage [9].

The purpose of this research is to apply appropriate Al techniques for efficient energy management in DC IT and thermal
operations inclusively. Organization of the paper: This paper is organized as follows: Section 1 — Introduction; Section 2
— Related Work; Section 3 — Methodology (categorized into four phases); Section 4 — Results and Discussion; Section 5
— Conclusion; Section 6 — Recommendations and Future Work.

1.1. Background and motivation

The motivation for analyzing the energy-intensive operations within a DC is to provide deeper insight of DC energy
consumption and build reliable predictive models. This study presents Al-based modeling approaches and strategies for
managing DC energy efficiency with a focus on IT reliability and sustainability as well as thermal operations.

The authors have summarized a review on projected DC increasing energy demand and excessive carbon emissions.
The IT corporation Cisco’s annual report has provided a global forecast that evaluates the digital transformation trend
and has predicted that by 2023, 66% more people would be using the internet globally than in 2018 [10]. The DCs are
the critical infrastructure to cope with such a rising trend. According to a survey by Synergy Research Group [11], there
are over 400 major DCs worldwide in 2017. According to IEA estimation, data centers use 200-250 TWh of electricity in
2020, which represents 1% of the world’s total electricity demand [3]. According to estimates by Cao [12], the DC industry
is contributing up to 0.3% to the world’s carbon emissions and it is projected to increase further in the next decade. The
report by Kumar [13] states that the CO, emission from the ICT sector is anticipated to rise at a pace of 6% each year.
Most research has investigated and evaluated the use of metrics for DC assessment in terms of sustainability and energy
consumption [14]. A green DC has also been suggested to increase DC energy efficiency and reduce carbon footprint [15].
High energy efficiency in a DC mainly pertains to cooling and power supply systems [16]. Future challenges in greening
DCs include maximizing energy efficiency and sustainability across all DC operations. Despite extensive research relating
to DC energy efficiency, investigation of energy efficiency at different operational stages and their associated carbon
footprint assessments remains limited in practice [17]. The following challenges need to be considered:

1. A lack of regulatory standard or framework for assessing DC sustainability that includes a comprehensive specifi-
cation of particular measurements and methodology practices [18];

2. While considering energy-efficient solutions for server utilization, limited focus has been on integrating additional
energy-consuming sources such as storage and network [19];

3. An in-depth evaluation of thermal characteristics analysis of IT rooms in real DCs [20];

4, Aborted jobs in DCs wastes resources and energy due to complex system dynamics. A more thorough examination
of job disparities in correspondence to the operational and thermal characteristics of the compute node still requires
due consideration [21].

The interaction between the computing and cooling systems is motivated by achieving overall energy efficiency in DC
operations. The aim is to investigate factors that strongly affect DC energy efficiency. To achieve the aim of this research,
we have implemented a three-phased methodology (see the methodology section). The research questions and objectives
for this study are as follows:

RQ1: How could Al algorithms be applied to real DC efficient energy management?

To answer this research question, we have defined specific research objectives for each phase of our proposed

methodology.

Phase I — IT Room Thermal Characteristics Analysis using Machine Learning
The goal of this phase is to analyze the DC IT room thermal conditions to maintain the equipment’s operational
environment as per ASHRAE 9.9 guidelines [22]. The research objectives for this phase are defined as follows.
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e RO1.1: Implement supervised machine learning classification models to classify DC monitored data into thermal
classes based on IT room environmental conditions;
e RO1.2: Evaluate results from RO1.1 using model’s performance metrics.

Phase II — Prediction of Resource Utilization using Deep Learning Algorithm
In this phase, we aim to perform prediction analysis on DC real-time data using deep learning modeling techniques.
The research objectives for this phase are as follows:

e RO1.3: Implement deep learning models on the monitored and estimated data to predict future DC resource
utilization based on historical behavior;
e RO1.4: Evaluate results from RO1.3 and provide relevant recommendations.

Phase III — Future Forecast of DC Resource Energy Consumption and Waste Energy
This phase aims to forecast the active resource energy consumption and energy waste during jobs execution. The
research objectives for this phase are defined as follows:

e RO1.5: Perform timeseries forecasting to predict active resource energy consumption and energy waste;
e RO1.6: Evaluate results from RO1.5.

2. Related work

In this section, the authors discuss the state-of-the-art and emerging energy efficiency measures that have brought
about a reduction in DCs energy consumption. This study reviews various practices and methods for advance DC energy
management.

2.1. Demand for data centers and electricity consumption

According to Dayarathna, Wen, and Fan [23], DCs are vital and energy-intensive computing infrastructures that host
computer servers to run large-scale Internet-based computing jobs and provide services. The rapid adoption of data-
intensive information, emerging technologies such as the Internet of Things (IoT), artificial intelligence (AI), smart and
connected energy systems, big data analytics, blockchain, and 5G leads to increased demand for DC services. According
to IEA research [3], increasing video streaming, social networking, and corporate operations digitization have contributed
to a 15-fold rise in worldwide internet traffic since 2010 and an increase of over 40% in 2020. The annual report by
Cisco [10] provides a global projection to evaluate the extent as well as trend of the digital revolution and predicts that
the worldwide number of internet users will increase from 51% in 2018 to 66% by 2023. IEA [3] estimates that DCs use
200-250 TWh of power in 2020, representing 1% of the world’s total electricity consumption.

2.2. Energy consumption outlook for data centers

Numerous research studies describe the energy consumed by various individual subsystems and components of the
DC. The two main categories for DC energy use are computational and physical resources, as discussed in the Introduction
Section. Statistics published by Rong and colleagues [9] have revealed that compute resources account for 50% of
the overall DC energy consumption whilst physical resources contribute up to 40%. Other miscellaneous sub-systems
(e.g., power supply system) use only 10%. A distribution of energy consumption of different components within a DC is
presented in Fig. 2.1 [9]. The energy use of computing resources is further broken down into various subcomponents, such
as servers’ computation, which uses 40% of the energy, while communication and storage devices account for roughly 10%.
Ahmed and colleagues [24] have also provided a component-based energy consumption model for the DC. According to
their estimated energy consumption levels for various components, IT loads and cooling systems consume 86% of the total
energy, whilst air conditioning and network equipment use 13%. The energy consumption of lightning facilities is roughly
1%, which is assumed to be negligible by most literature.

2.3. Data center carbon footprint

Due to the expansion of IT service providers’ technological capabilities for high-performance computing, DCs signif-
icantly consume more electricity, as discussed in the previous section. This massive growth in DC energy consumption
translates into a substantial increase in greenhouse gas emissions (mainly CO,). This is because majority energy sources
for DCs around the world are non-renewable resources and carbon-intensive fossil fuels (e.g. coal and natural gas) [25].
As a result of their high energy requirements for power transmission to large-scale computing infrastructure, DCs are
now the concern for both environmental activists and governments. According to Cao and colleagues [12], the data center
sector is estimated to account for 0.3% of global carbon emissions and is projected to increase further in the next decade.
Additionally, excessive carbon emissions have a negative impact on the environment, and an estimated global DC carbon
emission from 2018 to 2030 is depicted in Fig. 2.2. [12]. It can be seen in the graph how DC energy use and carbon
emissions will grow over the next several years due to ongoing expansion of the world’s digital economy.

In addition to an estimate of the DCs total carbon emissions, Fig. 2.3 also includes estimates of the CO, emissions for
each ICT-information and communication technology-related category within DCs [13].
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2.4. Data center energy efficiency

One of the primary goals in all global economic sectors is energy efficiency. DCs represent an enormous and growing
energy consumption industry with a substantial global impact. Several energy-saving strategies, policies, and frameworks
are proposed to improve DC energy efficiency.

o European Code of Conduct for DC Energy Efficiency

The Joint Research Center (JRC) has launched this voluntary project in 2008 to restrict energy consumption in ICT
sectors (including DCs) and reduce their associated negative impact on the environment and economy [26]. The goal is
to educate and raise awareness among DC owners and operators to minimize DC’s energy use without compromising its
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essential functions. The code of conduct for energy conservation focuses on the energy consumption of IT and facility loads.
DC operators are advised to undertake an energy audit of their facilities to find potential energy savings. According to the
2021 European Code of Conduct on Data Center Energy Efficiency [27], DC operators must benchmark their efficiency and
provide proof of efficiency growth over time.

o Energy Efficiency Directives by European Parliament

The EU Parliament’s Directive (EU) 2018/844 lays out strategies for improving DC facilities energy efficiency considering
various local and climatic factors. It provides guidelines and a standard framework for measuring parameters on
consumption chain and management systems. It aims to promote smart technologies in DCs and cost-effective renovation
of existing DCs. The European Commission has devised a methodological framework that the EU member states must
adhere for measuring optimal energy performance requirements [28].

o Energy Conservation and Optimization at different Granularities in DC

This section summarizes existing approaches and strategies for maximizing DC energy efficiency while limiting its
negative environmental impact. Additionally, several key elements are highlighted for energy efficiency while maintaining
the required QoS - Quality of Service - to satisfy user expectations. The most significant aspects that may increase the
energy efficiency of DC computing capability are instantaneous power usage and total energy consumption. Power can
be conserved at different granularity levels, such as per job/task, per node etc.

o Server Level

According to research [29], the utilization rate of server resources in DCs only reaches 20% of its potential performance.
Therefore, appropriate resource scheduling can effectively reduce server clusters energy usage and maintain a low idle
rate [30].

Resource Scheduling and Optimization: In energy-saving research, dynamic voltage scaling (DVS)-based power-aware
work scheduling is commonly employed. The effectiveness of conventional job schedulers may be further enhanced by
real-time monitoring of energy consumption and forecasting power needs [9].

Efficient Resource Management Systems: Monitoring and reducing power use in accordance with task requirements also
increases energy efficiency. The system performance is optimized by intelligently allocating workloads to available nodes
based on the energy requirements of each application and the power capacity of computing resources [31].

Low-Power Servers Design: Improves performance due to the specific internal configuration of core components and
optimization of processors and storage structure. It also consumes less energy than typical servers in DCs and offers
sufficient computing power which is ideal for power-saving operations [32].

o Rack Level

Poor cooling systems in DCs often cause premature server failures and poor performance, eventually leading to
a rise in energy consumption and operational costs. According to research by Nada and Elfeky [33], placing high
power density servers in the middle rack may result in optimal thermal performance and energy efficiency. Tolia [34]
describes a model-based approach that employs fan power management as a control technique for the server’'s energy
utilization effectiveness. Thermal-aware task scheduling such as predictive modeling-based scheduling also optimizes
system utilization [35]. An adaptive control system for the dynamic allocation of computing resources to IT loads to
balance the computational load helps reduce energy consumption [36].

o Data Center Level

The primary approach for improving energy efficiency at the DC level is to divide the controlling systems into cooling
and powering zones. The goal is to apply various appropriate controlling strategies in different zones and integrate
all actions for the zone synergy [7]. A control method is presented by Rao and colleagues [9] that distributes the IT
load across the servers with the lowest risk of high inlet temperatures. This approach enhances a cooling system’s
effectiveness, eventually reducing the cooling power usage. A thermal prediction model described in [37] enables
pre-emptive over-cooling of DC to take advantage of time-varying power costs during the day [38].

2.5. Data center energy management

As discussed in the previous section, the four major categories of energy-consuming systems in the DC include IT,
cooling, power, and other miscellaneous sub-systems. The contribution of this systems to total DC energy consumption
is 45%, 40%, 10%, and 5% respectively [3]. Several cutting-edge technologies and methodologies for energy conservation
and efficiency optimization in DC have been developed which are discussed in the next section.

o Optimal Workload Management in DCs

Numerous studies have been conducted on workload management, but only few of them have considered energy-
efficiency at node-level processes. Zhu and colleagues [39] have provided a framework of delay-tolerant workload
distribution which uses a Mixed Integer Linear Programming (MILP) model. This model calculates the load ratio of
computational nodes and considers optimization of both the power supply side and the demand response side which
results in saving 39.7% of operation cost. An energy-efficient task scheduling system is presented in [40] for UPS nodes

5
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Fig. 2.4. Illustration of IT system and cooling system coupling in data center [50].

to reduce energy consumption by flexible allocation decisions. To anticipate overall DC power usage, a new framework
for self-aware workload forecasting is introduced in a recent study [41] where the most relevant features of the ICT
system are dynamically selected and applied to a model for the prediction of total power consumption. The study
by Xue and colleagues [42] presents a neural network-based framework to forecast future resource utilization and
power consumption. The proposed strategy efficiently and accurately predicts future loads and peak loads. An innovative
technique to automatically determine the best model for an accurate prediction of DC resource utilization is proposed by
Baig and colleagues [43]. The framework trains classifiers based on the pertinent statistical aspects of historical resource
consumption. The suggested technique improves prediction results from 6% to 27%. Yi and colleagues [44] present a job
allocation algorithm for long-lasting and compute-intensive jobs using deep reinforcement learning (DRL) which results
in saving more than 10% DC computing power.

e Optimal Thermal Energy Management in DCs

A DC comprises several equipment including servers, storage, and networking devices etc. Heat dissipation from
multi-core processing units or cooling machines contributes to increased facility temperatures in data centers. A recent
study [45] experimentally investigates a compact two-phase loop cooling application system to deploy high-density rack-
mount server cooling applications. With this methodology, the system can accommodate a high heat flux range of up
to 22.22 W/cm2, showing excellent potential for cooling server rack-mount enclosures. Song and colleagues [46] have
presented a framework of multi-tiers thermal intelligent workload placement which evaluates the thermal conditions of
servers within the cluster using CPU DTS (Digital Thermal Sensor) thermal margin. Sarkinen and colleagues [47] have
proposed a holistic air-cooling strategy to minimize DC energy usage by synchronizing DC server fans and facility fans.
Their results reveal that lowering server inlet temperatures minimizes energy consumption and Power Usage Effectiveness
(PUE). Authors in [48] have presented a data-driven machine learning method which uses several regression models
to predict the host ambient temperature based on the host thermal behavior properties. The suggested approach has
increased energy savings by 34.5% and decreased average peak temperature by up to 6.5%. In a recent study by De Chiara,
Chinnici, and Kor [49], the researchers have proposed a data mining algorithm for locating hotspot areas in the server
room. The procedure entails grouping nodes into clusters based on their thermal ranges (including hot, regular, etc.) and
identifying hotspot zones.

o Joint Workload and Thermal Management in DCs

Zhang and colleagues [50] have identified heat as a component that links cooling systems and IT operations(see Fig. 2.4).

They have conducted a survey on joint optimization of DC IT operations and cooling system to provide a comprehensive
discussion and comparison between different technologies. Based on their findings, they concluded that the learning-based
approach is a promising framework for joint DC ICT and cooling management. In a recent study by Mirhoseini Nejad and
colleagues [51], they have proposed a novel low complexity holistic DC model considering controlling parameters of
cooling units in conjunction with the thermal effects of server’s workload. Results have shown that combining workload
scheduling and cooling factors saves more power than individually optimizing each of them. Another optimization
approach based on Deep Reinforcement Learning (DRL) called DeepEE developed by Ran and colleagues [52], is for
improving DC energy efficiency while concurrently considering IT and cooling systems. In contrast to baseline joint
optimization methodologies, the findings reveal that this technique saves 15% energy consumption while maintaining
service quality.

3. Proposed methodology

This section furnishes a holistic overview of the applied methods to achieve the goal of this research. As discussed
in the previous section, DC sustainability is primarily attained by pursuing energy efficiency in all operational aspects,
including workload processing efficiency, optimal resource allocation, and suitable cooling technologies. Hence, the
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DC Energy Management for IT and Thermal operations
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Fig. 3.1. Three phases methodology for DC energy management.

Fig. 3.2. HPC CRESCO6 in ENEA-R.C. Portici (courtesy of Davide De Chiara).

primary emphasis of this study is to analyze and investigate techniques for efficient DC energy management. To reiterate,
the IT and cooling systems are viewed as two significant contributors to DC energy consumption. We have illustrated a
holistic approach in Fig. 3.1 employed in this study where the DC facility monitored data has been used to build advanced
analytical models. Phase 1 presents thermal characteristics analysis of the DC IT room to provide an optimal operational
environment for the IT equipment. Phases 2 and 3 extends the analysis by experimenting on IT operations which involves
resource utilization prediction and future forecasting of resources energy consumption based on system workload.

This research is conducted in collaboration with the ENEA-Research Center (RC), Portici in Italy. The real-time data
is obtained from the High-Performance Computing (HPC) cluster CRESCO6 operating in the ENEA-R.C. Portici Italy (see
Fig. 3.2). In this study, we have used four individual datasets collected from different sources within the DC IT room for
the entire year of 2020. The analysis and preprocessing of all the datasets are provided in (Khan, De Chiara, Kor and
Chinnici) [53] and are further extended in this work using Al techniques for the management of both IT and thermal
operations [54,55].

The following sections provide an in-depth discussion of experiments performed in each phase. The work in each phase
is organized as; 1. Problem identification and a proposed solution; 2. Data preparation for the experimentation; 3. Data
analysis for insights; 4. Model application on the analyzed data.

3.1. Phase I: IT room thermal characteristics analysis using machine learning

In this phase, we examine the IT room thermal conditions to reduce excessive energy usage through thermal
characteristics analysis followed by identification and control of high energy consumption related factors. For instance,
it is known that high and long-term equipment utilization can effect IT equipment performance degradation especially
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Table 1
Thermal guidelines by ASHARE for DC [22].
Class IT Recommended Allowable Maximum Environmental
equipment operating operating dew point control
type range range
A2 Volume 18° to 27 °C 10 to 35 °C 21 °C Some control
servers,
storage
products,
personal
computers,

workstations

when DC servers operate 24/7. For this reason, it is necessary to analyze the IT room thermal conditions to ensure IT
equipment optimal use while maintaining their reliability.

o Data Preparation for IT Room Thermal Analysis

Based on the monitored data of CRESCO6 cluster at ENEA R.C. Portici, we have manipulated the available monitored
data to produce several new features. The IT room in the DC has several installed temperature sensors, and the room'’s
area is comparatively smaller compared to the entire DC. To address the complexity of handling multiple values for the
same feature, we have used all the sensor mean values for the same timestamp. The description of all data features is
provided in [53]. The calculations for new feature values are as follows:

1. There are ten built-in fans on the servers, we have considered their average speed for further analysis.
So, average of node fan speeds:

Avg. fan speed = (Fanla 4 Fanl1b + Fan2a... + Fan5b)/10 @)
2. Average of CPU temperature:

Avg CPU Temp = (Temperature of CPU1 + Temperature of CPU2)/2 (2)
3. Resource Utilization percentage:

Resource Utilization percentage = System utilization percentage + Network Utilization percentage

+ Memory utilization percentage (3)
4, Resource Consumption Power:

Resource Consumption Power = System power + Memory power (4)

The same strategy is applied for the environment dataset provided in [53]. As there are several temperature and
humidity sensors placed in the hot and cold aisles of the room, so we have considered the average of all sensor values.

e Guidelines by ASHRAE TC 9.9 on DC Operational Environment

The servers operating in DCs produces a large amount of heat during processing. If the environmental conditions are
not monitored and maintained, it may cause equipment performance degradation. Hence, maintaining room temperature
and humidity according to recommended operational environment is necessary for equipment performance efficiency.
According to the guidelines by ASHRAE TC 9.9 [22], we have defined multiple thermal classes based on the recommended
allowable ranges for an optimal processing environment for IT equipment.

1. We first analyze the class of the equipment installed in the DC and categorize them based on the classes specified
by ASHRAE Thermal guidelines.

2. According to the class of equipment, we follow the recommended and allowable ranges for optimal data processing
environment as defined by the ASHRAE TC 9.9 [22] (see Table 1).

3. We have created five thermal classes based on the ASHRAE guidelines as shown in Fig. 3.3.

o Thermal Analysis of DC IT Room

To visualize and analyze the room’s thermal characteristics, multiple features including computing server node
temperature, average processor temperature, and environment temperature are plotted. Additionally, we can observe
from Fig. 3.4 that CPU temperature is significantly higher than the overall node temperature. It is because the CPU has
comparatively larger range of operating temperatures and dissipates more heat during computation [56].

The operational environment of the IT room continues to remain in acceptable temperature ranges. However, it
sometimes reaches over-temperature conditions as it crosses the acceptable threshold as shown in Fig. 3.5. We have
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Fig. 3.3. Thermal Classes Guidelines by ASHRAE [22].
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Fig. 3.4. Monthly analysis of thermal conditions of IT Room.

conducted a monthly analysis on servers, cooling systems, and environmental thermal parameters to determine the
underlying cause.

Fig. 3.5 shows that even if the server is operating normally, the ambient temperature increases though the temperature
of the compute node does not rise. Thus, we speculate that it could be due to the under-performing cooling system. A
monthly analysis of the cooling system performance is conducted and depicted in Fig. 3.6.

We can observe in Fig. 3.6 that when the ambient temperature rises, the usage (percentage) of a cooling machine
for the supply of cool air is low during that period. It demonstrates that the ineffective cooling in the IT room is the
contributor to the unfavorable thermal conditions. Furthermore, fluctuations in the first few months (Fig. 3.6) shows that
the AC machine supplies cool air to servers but for quite short periods of time which causes the peaks in the graph.

e Machine Learning Modeling of IT Room Thermal Parameters

We have observed the trend and patterns of IT room thermal conditions throughout the year. We have included thermal
data from [53] and additional calculated data features as input features to the supervised machine learning classification
models. The goal of this phase is to predict the thermal class of IT room for efficient DC IT operations. We have applied
five different supervised machine learning classification models including Logistic regression, Decision tree, Support Vector
Machine, Random Forest, and Gaussian Naive Bayes for the prediction of thermal classes. For the evaluation of models,
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Fig. 3.5. Monthly analysis of thermal parameters of IT room.
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Fig. 3.6. Monthly analysis of cooling system performance.

we have used different performance metrics. Also, we have conducted a comparative analysis amongst the ML models.
The results for the ML model are discussed in the Results and Discussion Section.

3.2, Phase II: Prediction of resource utilization using deep learning algorithm

In this phase, we focus on DC IT operations to examine relevant resource utilization behavior which includes CPU and
memory usage, during job execution period and their corresponding energy consumption over a period of one year. In
ENEA Portici HPC CRESCO6 cluster, LSF (Load Sharing Facility) scheduler is used. It is a framework for managing workloads
and scheduling jobs in distributed HPC systems using FCFS — First come First Serve approach. Since CRESCO6 has more
than 400 nodes, it distributes the work to a first available free node.

The simple linear regression model is a known technique for predicting a DC energy consumption. It is best suited for
CPU-dominated servers with moderate usage and consistent power consumption. However, an advanced level predictive
model is necessary for the consideration of predictions involving complex data. Thus, we have implemented two different
models for advanced prediction of DC resources utilization.

o Time Series Decomposition of Data Attributes

The time series decomposition of data provides an insight into data variances [57]. To prepare data for time series
decomposition, we first merge the monitored real-time data of CRESCO6 cluster with the estimated data from previous
section.
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Augmented Dickey-Fuller Test on "Resource Utilization"

Null Hypothesis: Data has unit root. Non-Stationary.

Significance Level = 8.85
Test Statistic = -9.6602
No. Lags Chosen =22
Critical value 1% = -3.431
Critical value 5% = -2.862
Critical value 18% = -2.567

=> P-Value = 0.0. Rejecting Null Hypothesis.
=> Series is Stationary.

Augmented Dickey-Fuller Test on "Resource Consumption Power”

Null Hypothesis: Data has unit root. Non-Stationary.

Significance Level = 8.85
Test Statistic = -8.7808
No. Lags Chosen =23
Critical value 1% = -3.431
Critical value 5% = -2.862
Critical value 10% = -2.567

=> P-Value = 0.0. Rejecting Null Hypothesis.
=> Series is Stationary.

Fig. 3.7. Augmented Dickey-Fuller test on data attributes.

An Augmented Dickey-Fuller Test (ADF) [58] is performed for all the data attributes individually. It is a statistical
test that determines whether the given time series is stationary or not. We have formulated a null hypothesis which
determines the unit root. If the p-value is less than 0.05, we will reject the null hypothesis which shows the time series
is stationary. From the results shown in Fig. 3.7, we observe that most of the time series data attributes are stationary
and exhibit marginal variations in the values that repeat after each time interval.

o Time Series Forecast using Vector Autoregression (VAR)

An approach for statistical multivariate forecasting called vector autoregression is used to predict a time series
vector [59]. It is often applied when time series data characteristics that need to be forecasted exhibit a correlation
between values. It is best applied for variables that are stationary (i.e., mean and variance do not change over time).
As we have previously completed time series decomposition to identify seasonality, residue, etc., we can then apply the
algorithm on the data attributes. The results for the model application are discussed in the Results and Discussion section.

o Time Series Forecast using LSTM

Long Short-Term Memory (LSTM) is an artificial repetitive neural network (RNN) used in deep learning [60]. This model
is the best suited for time series prediction as it can store information for a longer period of time than typical RNNs, thus
enhancing its prediction accuracy. In our case, the future prediction of resource utilization is solely based on historical
data. For this reason, we have used the LSTM model. Its structural elements include a cell, a learn input gate, a use output
gate, a remember gate, and a forget gate [60].

3.3. Phase III: Future forecast of DC resource energy consumption and waste energy

In this phase, we experiment with IT operations and aims to predict energy consumption and energy waste for job
execution by compute resources. The amount of energy used for server computations depends on the job execution time
and percentage of resources usage. The server manages hundreds of jobs daily, thus, we are aiming to forecast overall
server energy consumption for all jobs submitted over the course of a full year to the HPC CRESCO6 cluster. Based on the
job execution status in the cluster, we have categorized the jobs into two classes i.e., done jobs, which indicate successful
task completion, and exit jobs, which indicate unfinished task execution. The graph (Fig. 3.8) displays the frequency of
both groups over the period of one year.

We have separated energy consumption into active resource energy consumption and energy waste in accordance with
the job categories. This is because every executed job (albeit successful or not) consumes resources as well as energy. In
this phase, we have considered three types of energy usage during task execution: energy waste from active resource
energy consumption, energy waste due to exit jobs, and overall energy waste (due to missing job data).

o Data Preparation for Prediction Analysis
For prediction analysis, we first calculate active resource energy consumption and energy waste based on different
features from different datasets provided in [53].

Active Resource Energy Consumption = Resource Consumption Power * Active Job Execution Time (5)
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Fig. 3.9. Monthly analysis of active resource energy consumption and energy waste.

Energy Waste by Exit = Resource Consumption Power * Execution time of Exit Jobs (6)

Overall Energy Waste = (Total Resource Consumption Power x 24 h) — Active Energy Consumption (7)

The workload data on the compute nodes is provided for the entire year of 2020. However, job data submitted to the
cluster is only recorded until early December 2020. As job data is unavailable for a short period, we have decided not
to remove resource power consumption data for that period. Instead, we have assumed resource power is being used as
usual during the period.

o Time Series Decomposition of Data Attributes

The time series decomposition is performed on data to examine active resource energy use and energy waste. As shown
in Fig. 3.9, the exit jobs rarely occur compared to completed jobs. We observe some high peaks in the graph for energy
waste. Additionally, we discover that most of the exit jobs take very long time (up to two days) for execution but exit in
the end, hence, resulting in high futile energy consumption.

The time series analysis is also performed on data attributes which show a cyclic behavior in seasonality within data.

e Monthly Analysis of Active Resource Energy Consumption and Energy Waste

We have examined the feature’s autocorrelation using the autocorrelation function (ACF) prior to the deep learning
modeling. The ACF function provides the autocorrelation value of a series with its lag values [61]. It demonstrates how
closely present values relate with the past values, which are crucial for predictions. The prediction accuracy of the model
will be low if there is weak correlation within the data values. The data values exhibit non-stationary behavior at some
points, as illustrated in Fig. 3.10, which are eliminated using differencing method.

o Time Series Forecast using SARIMA

Seasonal Autoregressive Integrated Moving Average, or SARIMA, is a method for forecasting future values based on
historical data [62]. Our dataset has shown seasonality trends, thus, this has prompted the selection of the SARIMA model
which considers the seasonality aspect of data as well as past values during the prediction of future values. The ADF test
is initially run on the data attributes before tuning the model. Additionally, trend values and seasonal parameters are
modified to evaluate the model’s effectiveness in order to increase performance. The findings of this experimentation are
discussed in the Results and Discussion Section.
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Fig. 3.10. ACF plot of active resource energy consumption and energy waste.
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Fig. 4.1. Comparison of ML classification models accuracies.

4. Results and discussion

This section summarizes results for all phases in the research. Furthermore, a comparative analysis is conducted for
this research experimental findings and other related existing models.

To reiterate, the IT and cooling systems are considered as two significant contributors to DC energy consumption. The
goal of this research is to target energy efficiency operations and management within these two DC systems.

4.1. Results analysis of phase I

In this phase, we have performed thermal characteristics analysis of a DC IT Room using machine learning classification
techniques. The thermal conditions of the DC IT room are first analyzed to identify different patterns in monitored data,
and then classified into different thermal ranges based on guidelines provided by ASHRAE TC 9.9 [59].

As discussed in the methodology section, five machine learning classification models are applied on the real-time data
for the prediction of thermal classes of DC IT room. We have included thermal data from [53] and additional calculated
data features as input features to the supervised machine learning classification models. This combined dataset comprises
both continuous and categorical data features. The datasets are split into training and testing datasets with the ratio of 80%
and 20%. Furthermore, we have only selected input features which have shown high correlation with the target feature
as given in [53].

The models’ performances are evaluated based on prediction accuracies. To measure the model accuracy, we have
used a confusion matrix and accuracy scoring metric. An overall comparison amongst models’ accuracy scores is plotted
in Fig. 4.1 while Fig. 4.2 depicts precision of all models for each individual thermal class. From the plotted graphs, we can
see that Random Forest outperforms all the other four models with the highest true class predictions. However, Logistic
Regression and Decision Tree have also shown good performances with the second highest accuracies in the prediction
of thermal classes.

The confusion matrix and graph plots in Figs. 4.3 and 4.4 show the number of true predictions and false predictions
made by each model. Random forest has only made 25 wrong predictions of thermal classes out of 1566 entities of a
test sample. On the other hand, SVM and Decision Tree have made approximately the same number of false predictions.
Implementation of an efficient ML modeling technique with an accuracy of 98% for classifying thermal conditions in the
IT room concludes the second phase of this work and completes objectives RO1.1 and RO1.2.
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In existing literature, Ilager and colleagues [48] have only considered CPU and inlet airflow temperature variations
for DC thermal management assessment using Machine Learning algorithms which not only limits the scope of their
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Fig. 4.6. Prediction error percentage by VAR.

study but also reduces prediction accuracy. On the other hand, in this research, we have considered all the parameters for
experimentation including computing devices, environmental conditions, and cooling machines which directly impact the
DC thermal characteristics. The integration of these features has provided a holistic approach for data-driven temperature
estimation of IT room in a data center. As a result, optimal thermal management with accurate temperature prediction
can reduce the operational cost of a data center and increase equipment reliability.

4.2. Results analysis of phase II

In this phase, we have aimed to perform advanced prediction of DC resource utilization for efficient workload
placement. There are two techniques implemented for prediction analysis including deep learning modeling (i.e., long
short-term memory (LSTM)) and statistical data modeling (i.e., vector autoregressive model (VAR)) to observe the
variations in the results. To achieve efficient performance and accurate results, the models are trained with different
tuning parameters. The performances of both models are evaluated using root mean square error and absolute error as
the features to be predicted are continuous numerical data.

The Results for the prediction of resource utilization by the VAR model are shown in Fig. 4.5. Furthermore, the graph
plot in Fig. 4.6 depicts the root mean square error for the prediction of different features.

As LSTM has a storage capability for longer periods and a feedback system that has made it best suited for such
prediction problem. The model is only applied for prediction analysis of DC resource utilization. However, it can be used
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for other data features as well. The performance of LSTM model is enhanced further by epoch and batch size tuning. The
batch size indicates how many data samples will be used for training while epochs is a hyperparameter that indicates the
number of times the algorithm will run and iterate over the entire training dataset. Additionally, on testing the model
with different values of epochs, the accuracy of the model has a positive trend. To prevent over-fitting, we have stopped
at 13 epochs for model training. The graphs in Fig. 4.7 show the LSTM predicted values vs actual values with different
hyperparameter tuning. The predicted values are relatively more accurate and closer to actual values as compared to
previous VAR results. This model performance is also evaluated using mean absolute error, as seen in Fig. 4.8. The LSTM
model prediction error reduces with increasing epochs which evidences enhanced model performance.

In existing literature, Yi and colleagues [44] have performed advance prediction of resources utilization using LSTM.
However, the study merely focuses on CPU utilization excluding memory and network utilization. In this research, we
have considered all possible parameters including memory and network utilization along with CPU utilization to analyze
the overall behavior of resource consumption. Additionally, they [44] have performed prediction analysis by clustering the
dataset which causes inconsistent accuracy results for different clusters. On the other hand, the experiments conducted in
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Fig. 4.9. Future forecasting of active resource energy consumption and waster energy by SARIMA.

this research focus on one entire dataset to overcome inconsistency in the results. Furthermore, in comparison with [45]
which involves the implementation of several ML algorithms for the prediction of resource utilization results in a higher
root mean square error of up to 3.32. This study also focuses on CPU utilization as an observed metric. The system
architecture of this research includes window size sensitivity for training prediction models based on time series features
of recent window results varying prediction accuracies. However, the design of our research experiment provides a
feedback approach to learn the patterns of resource utilization effectively for achieving optimized results.

In conclusion, we can say that this research has provided an efficient deep learning modeling technique (LSTM) for the
prediction of resource utilization with the highest accuracy and minimal error rate, thus addressing research objectives
RO1.3 and RO1.4.

4.3. Results analysis of phase III

The objective of this phase is to perform future forecasting of DC’s active resource energy consumption and waste
energy while considering the sustainability aspect. We have merged data from [23] with newly calculated data features
to estimate energy consumption by resources during job execution. Our dataset has shown seasonality trends; thus, this
has prompted the selection of the SARIMA model which considers the seasonality aspect of data as well as past values
during the prediction of future values. It analyzes the seasonal patterns of the data for prediction of active resource energy
consumption and energy waste as shown in Fig. 4.9. Therefore, we could conclude that all three phases of this research
work have successfully answered our RQ1.

5. Conclusion

Energy efficiency in IT systems ought to be the ultimate approach for a data center (DC) with a sizable high-
performance computing facility to achieve sustainable development goals. IT and cooling systems are considered the
common areas within a DC which performs the most energy intensive operations. Therefore, the primary emphasis of
this study is on: IT system energy efficiency and effective thermal conditions in DC.

To assess the energy consumption of various IT and thermal operations in the ENEA Portici HPC CRESCO6 cluster for
efficient energy management, this research work has been divided into three phases. It is known that high and long-term
IT equipment utilization under poor operational conditions can degrade the equipment’s performance, particularly for
DC servers which operate 24/7. For this reason, it is necessary to maintain the operational environment of IT systems for
efficient usage of the equipment while maintaining their reliability. Considering this issue, Phase [ emphasizes on thermal
characteristics analysis of DC as a vital aspect of the operational environment. Data is collected from different sources
within the DC (including environmental parameters, equipment usage and cooling supply) where only input features
which have shown high correlation with the target feature are selected for experimentation. For thermal class prediction
analysis based on ASHRAE guidelines, five supervised machine learning classification models are applied to the processed
data. The performances of these models are compared where the Random Forest classification model has outperformed
the other models with the highest prediction accuracy of 98% which would help in effectively maintaining the operational
environment. Due to inefficient workload management, the resources in DC are sometimes under and overutilized which
causes energy waste. The advanced prediction of resources utilization would help in effectively managing the workload
and reduces energy waste. Reflecting on this, phase Il provides advanced prediction of DC's resource utilization using
two modeling techniques i.e., deep learning and autoregression. Based on different patterns and characteristics of the
data, LSTM — deep learning model due to its a storage capability of historical data for longer periods and a feedback
system has resulted in high prediction accuracy and the least percentage error of 3.05 MAE as compared to autoregressive
modeling results. Furthermore, failed jobs execution in DC cause resource and energy wastage. In response to this issue,
the forecast of the active energy usage and wastage due to successful and failed jobs is investigated in phase III. Overall,
this research work provides state-of-the-art techniques for evidence-based DC energy management and a comparative
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analysis in terms of reliability, consistency, and prediction accuracy. The applicability of the proposed methods to other
DC datasets depends on DC monitoring systems data, accuracy of data collection, and individual characteristics of DCs.
Sustainability and energy efficiency goals in DCs can be achieved by integrating the proposed methods and techniques of
this study in real-time DC operations.

6. Recommendations and future work

Improvement in job scheduling techniques can help in efficient workload management and resources utilization.
Undeniably, inefficient workload placement causes under or overutilization of resources which ultimately result in
energy waste. The server’s operating power should be monitored and improved based on thermal conditions of the IT
room environment. The long-term and high utilization of resources causes performance degradation of IT systems. To
maintain the performance of servers and their reliability, servers should be turned off completely after working certain
hours instead of transforming them into IDLE mode. Monitoring of server energy consumption based on their technical
requirements and power specifications should be considered to determine whether the IT equipment is using normal
power or more than it requires. Failed job execution tends to consume more energy as it not only wastes power but also
keeps the resources occupied from executing a productive job. Several studies have proposed different methods to deal
with such problems but an intelligent solution that can detect the behavior/requirements of the submitted job before
allocating the resources can help in saving energy. The operational conditions for an IT room environment should be
monitored all the time to examine if the cooling supply is effective. As discussed in this paper, an IT room is over-heated
due to insufficient cooling supply. An intelligent system should integrate both the IT systems and cooling systems that can
trigger or notify the DC operator in the event the cooling system or IT system is not working, or if the room temperature
conditions are not acceptable.
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