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Abstract: HyperSpectral Imaging (HSI) plays a pivotal role in various fields, including medical
diagnostics, where precise human vein detection is crucial. HyperSpectral (HS) image data are
very large and can cause computational complexities. Dimensionality reduction techniques are
often employed to streamline HS image data processing. This paper presents a HS image dataset
encompassing left- and right-hand images captured from 100 subjects with varying skin tones. The
dataset was annotated using anatomical data to represent vein and non-vein areas within the images.
This dataset is utilised to explore the effectiveness of dimensionality reduction techniques, namely:
Principal Component Analysis (PCA), Folded PCA (FPCA), and Ward’s Linkage Strategy using
Mutual Information (WaLuMI) for vein detection. To generate experimental results, the HS image
dataset was divided into train and test datasets. Optimum performing parameters for each of
the dimensionality reduction techniques in conjunction with the Support Vector Machine (SVM)
binary classification were determined using the Training dataset. The performance of the three
dimensionality reduction-based vein detection methods was then assessed and compared using the
test image dataset. Results show that the FPCA-based method outperforms the other two methods in
terms of accuracy. For visualization purposes, the classification prediction image for each technique
is post-processed using morphological operators, and results show the significant potential of HS
imaging in vein detection.

Keywords: hyperspectral imaging; vein detection; image classification

1. Introduction

Vein detection plays a critical role in the medical field, as numerous surgical procedures
rely on accessing the vascular system, necessitating accurate identification and localization
of veins within the human body [1–5]. Medical practitioners often find it difficult to
precisely locate veins in the human body [2,4]. This issue is particularly prevalent in
certain patient populations, including children, individuals with excessive subcutaneous
fat, and patients with darker skin tones [1,2,4]. When veins are inadequately visible,
medical professionals are compelled to rely on their anatomical knowledge to perform
blind sticks during medical procedures. Relying solely on a practitioner’s skills and
anatomical knowledge can result in imprecise outcomes [1]. This makes precise vein
detection essential in modern medical practice. Failed venipuncture attempts can lead to
complications such as vein thrombosis [6], hematoma, or nerve injuries, potentially causing
conditions like “causalgia” or complex regional pain syndrome (CRPS) [3,7]. Moreover,
accurate vein detection is vital for studying and managing cancer, as it provides valuable
insights into the anatomical relationship between arteries and veins in tumours [5,8,9].

Improving vein detection methods can significantly enhance patient care and treat-
ment outcomes. Currently, a variety of devices have been developed to aid healthcare
workers in locating subcutaneous veins of patients for delivering intravenous or surgical
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treatments. These devices utilize different techniques such as trans-illumination, photo-
acoustic, ultrasound, and Near-Infrared (NIR) imaging to aid in visualizing non-visible
veins of patients. Each technique possesses distinct advantages and drawbacks, but NIR
imaging has emerged as particularly suitable for vein localization during intravenous treat-
ments [1,10–12]. By employing non-ionizing light rays, NIR imaging can penetrate deep
within skin tissues to acquire clear images of the venous structure. However, despite the
advancements in NIR imaging, challenges persist in accurately and reliably detecting veins,
especially in complex surgical scenarios. To address this gap, Hyper-Spectral Imaging (HSI)
offers a promising solution.

HSI captures spectral radiation across the visible to near-infrared electromagnetic spec-
trum, generating distinct images for each spectral band. It captures hundreds of continuous
spectral bands, forming a datacube often referred to as a hypercube. This comprehensive
data representation enables the acquisition of detailed information beyond what the human
eye can perceive, providing valuable insights for various applications, e.g., agriculture,
environmental monitoring, geology and mineral exploration, and medical imaging [13,14].
Widely explored in remote sensing applications, HSI offers a powerful tool for analysing
and interpreting complex data from a diverse range of sources. Despite its successes in
the medical field, HSI for human vein detection is yet to be investigated. The capabilities
of HSI to capture rich spectral information may provide reliable data for vein detection,
enabling precise vein localization during surgeries and other medical procedures.

To address the challenges in accurate vein detection, a hyperspectral (HS) image
dataset is presented. This dataset stands out for its diverse representation of skin tones,
inclusion of left and right hands from 100 subjects, and meticulous annotation to map
out veins and the surrounding hand areas. The HS image dataset serves as a crucial
contribution to the field, providing a rich resource for evaluating and advancing vein
detection methodologies in real-world scenarios.

HSI data can be quite large, posing challenges in terms of manageability and de-
manding high computational resources. Consequently, these factors can potentially impact
vein detection performances and, consequently, overall classification accuracy. Therefore,
dimensionality reduction techniques are commonly employed to reduce their complexity.
The selection of the most appropriate dimensionality reduction technique depends on the
specific application’s requirements and the technique’s performance in accurately preserv-
ing essential vein detection features while reducing data complexity. For this research, three
dimensionality reduction techniques that have previously been successfully used in HS
data analysis, namely Principal Component Analysis (PCA), Folded Principal Component
Analysis (FPCA), and Ward’s Linkage Strategy using Mutual Information (WaLuMI) were
chosen for experimentation.

HSI has made significant contributions to the medical field, with a diverse range of
applications. One such application involves the calculation of tissue oxygen saturation [15],
offering valuable insights into oxygen levels within tissues. It has also been effectively
employed to monitor relative spatial changes in retinal oxygen saturation [16], providing
detailed observations of oxygen variations in the retinal region. Additionally, this imaging
technique has been used to obtain the optimum range of illumination for venous imaging
systems [1].

This paper makes a substantial contribution to the field by introducing a curated
HS image dataset of 100 subjects that are labeled to map out the vein and the rest area
of the hand, forming ground truth images. The dataset covers a wide range of skin
tones from diverse ethnicities. This dataset is then used to study the effectiveness of
PCA, FPCA, and WaLuMI in conjunction with the Support Vector Machine (SVM) binary
classifier for vein detection. The annotated HS image dataset allows evaluation of the
performance of each of the dimensionality reduction methods in the context of real-world
vein detection tasks. By leveraging these dimensionality reduction techniques, salient
features are extracted from the HS data, enabling the vein detection algorithm to identify
vein patterns accurately. The rest of this paper is organized as follows: Section 2 describes
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the HS image data acquisition method. Section 3 discusses the vein detection methodology
and Section 4 provides insights into the experiments conducted and the results obtained.
Finally, Section 5 draws the conclusion.

2. Materials and Method
2.1. Hyperspectral Image Acquisition

To capture the HyperSpectral (HS) image data, the benchtop HSI system manufactured
by Resonon Inc. (Bozeman, MT, USA) was used. The Resonon’s benchtop HSI system
comprises of a Pika XC2 HSI camera, objective lens, linear translation stage, mounting
tower, halogen line light with stabilized power supply, a calibration tile, and a system with
Spectronon software pre-loaded. The Pika XC2 camera has a spectral range of 400–1000 nm
(nanometer), spectral resolution of 1.9 nm, spectral channels of 447, spatial pixels of 1600,
and spectral bandwidth of 1.3 nm. Every pixel within the HS image contains a series of
reflectance values across various spectral wavelengths, revealing the spectral signature
of that particular pixel. Figure 1 illustrates a schematic depiction of a sample captured
HS image.

Figure 1. A hyperspectral image: (a) A schematic view of a hyperspectral image of human hand.
(b) The spectral graph of the spectrum of a pixel from the hand. The graph represents the reflectance
values for each wavelength captured by the pixel.
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To setup the HS data acquisition system, the camera is mounted on the tower directly
above the motorized linear translation stage. The lighting assembly is positioned and
secured on the tower to illuminate in the direction of the stage baseplate from above.
A halogen line light, as the light source, provides stabilized broad-band illumination on the
human hand to be captured. To optimize the setup and improve data acquisition capabili-
ties, the camera and lighting were carefully adjusted along the length of the tower. Figure 2
shows the HS image data acquisition setup.

Figure 2. Hyperspectral image data acquisition setup.

To initiate data capturing, the camera underwent calibration to ensure precise mea-
surements. Throughout the data acquisition process, a consistent distance was maintained
between the camera lens and the stage baseplate. During data acquisition, the linear
translation stage moves, causing the hand to be translated beneath the camera. The HS
camera utilizes the push-broom technique for imaging. This technique involves the camera
scanning the object line by line using its inbuilt tunable filters or liquid crystal filters.
By electronically adjusting these filters, the camera captures different spectral wavelengths
of light. As the linear translation stage moves along the scanning direction, the camera
sequentially captures HS information from different parts of the object. This allows the
construction of spectral intensity images for each wavelength, resulting in a comprehensive
HS image set. Figure 3 shows a human hand being captured.

Figure 3. A human hand being captured using the push-broom technique.
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The Spectronon software facilitates the visualization of the captured HS images and
enables a comprehensive suite of intuitive hypercube analysis functionalities. Additionally,
it offers control over the linear translation stage, allowing precise manipulation of the stage
position for enhanced data acquisition. The hypercubes are captured in Band-Interleaved-
by-Line (BIL) format, accompanied by the generation of a corresponding HeaDeR File
(HDR) for each completed capture. The HDR file contains essential metadata that describes
various aspects of the captured data.

2.2. HS Image Dataset

The capturing processes formed a HS image dataset comprising the left- and right-
hand images of 100 participants meticulously captured, yielding a comprehensive collection
of 200 images. The volunteer participants are a diverse group of individuals from various
countries, including Asia, Africa, America, Britain, and Malaysia. The dataset encompassed
individuals spanning different age groups and exhibiting distinct skin tones, representing
a broad range of ethnicities for the experiments. To characterize the dataset, skin tone
distribution is categorized according to the Fitzpatrick Scale [17]. The Fitzpatrick Scale was
developed by dermatologist Thomas B. Fitzpatrick to classify skin color and response to
ultraviolet radiation [18]. This scale serves diverse applications, including assessing skin
cancer risk, guiding aestheticians in determining optimal laser treatment parameters for
procedures like hair removal or scar treatment, and evaluating the potential for premature
skin aging due to sun exposure. The Fitzpatrick Scale classifies skin tones into Types I
to VI, representing a range from the lightest to darkest. For reference, Type I corresponds
to very light or pale skin, while Type VI represents very dark or deeply pigmented skin.
The statistical summaries are presented in Tables 1 and 2.

Table 1. Summary statistics of the dataset.

Category Count Percentage

Total Participants 100 100%
Male 76 76%
Female 24 24%

Ethnicity
African 32 32%
Asian 59 59%
European 9 9%

Age Group
19–25 27 27%
26–30 28 28%
31–35 23 23%
36–40 20 20%
41–45 2 2%

Skin Tone
Type I (Light) 15 15%
Type II (White) 19 19%
Type III (Medium) 21 21%
Type IV (Olive) 22 22%
Type V (Brown) 15 15%
Type VI (Black) 8 8%

Table 1 outlines essential statistics regarding the dataset composition. Notably, the
dataset consists of 200 hand images, representing both the left and right hands of the
100 participants. The gender distribution reveals that 76% are male, and 24% are female.
Ethnicity distribution shows a diverse representation, with 32% African, 59% Asian, and 9%
European participants. Age distribution spans multiple categories, with the majority falling
within the 26–30 age group (28%). Furthermore, the majority of individuals in the dataset
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exhibit skin tones classified as Type III (Medium) and Type IV (Olive), each accounting for
21% and 22%, respectively.

Table 2. Summary statistics of the skin tones distribution of the dataset using ethnicity criteria [19].

Ethnicity Skin Tone Count Percentage

European

Type I (Light) 6 6%
Type II (White) 2 2%
Type III (Medium) 1 1%
Type IV (Olive) 0 0%
Type V (Brown) 0 0%
Type VI (Black) 0 0%

African

Type I (Light) 0 0%
Type II (White) 0 0%
Type III (Medium) 4 4%
Type IV (Olive) 8 8%
Type V (Brown) 13 13%
Type VI (Black) 7 7%

Asian

Type I (Light) 9 9%
Type II (White) 17 17%
Type III (Medium) 16 16%
Type IV (Olive) 14 14%
Type V (Brown) 2 2%
Type VI (Black) 1 1%

Table 2 provides a detailed breakdown of skin tone distribution within each ethnic
group, adhering to the Fitzpatrick Scale. Noteworthy findings include the prevalence of
Type IV (Olive) and Type V (Brown) skin tones among African participants, constituting
8% and 13% of the group, respectively. In the European group, the majority exhibit Type I
(Light) and Type II (White) skin tones, accounting for 6% and 2%, respectively. Asian
participants exhibit a more balanced distribution across various skin tones, with Type II
(White) and Type III (Medium) being the most prevalent.

Figure 4 shows RGB image representations of some HS images from the dataset
generated for visualization purposes using the hypercubes. This was achieved for each
of the showcased HS images by selecting three specific channels from their hypercube
and mapping them to the red, green, and blue channels of the RGB image. The captured
hand images have spatial dimensions of 2800 × 1600 pixels and a spectral dimension of
462 bands. Some samples of the captured skin tones are shown in Figure 5.

Figure 4. Sample RGB image representations of some of the HS hand images from the dataset:
(a) Asian male, (b) Asian male, (c) African male. The RGBs are generated using three channels of the
HS image.

2.3. Vein Detection Methodology Using HSI and Ground Truth

Vein detection using HSI is a vital process essential for medical applications. The pro-
cedure involves collecting a HS image dataset focused on anatomical regions like human
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hands and meticulously annotating ground truth images. These annotations, performed
by experts, designate each pixel as part of the skin or vein, which can be represented as a
binary class having 1 (vein) and 0 (skin). This ground truth is crucial for the subsequent
training and evaluation of classifiers, particularly Support Vector Machines (SVM).

Figure 5. RGB images showing diversity of skin tones captured: (a) British male; (b) Asian male;
(c) British female; (d) Asian male; (e) Indian male; (f) Asian male; (g) African male.

In the training phase, reduced-dimensional HS data, often obtained through tech-
niques like PCA or FPCA, is fed into the SVM binary classifier. The classifier learns intricate
patterns from the training dataset, associating spectral features with corresponding ground
truth labels. During testing, the trained SVM is applied to new HS images, classifying each
pixel as 0 or 1 based on learned patterns. Importantly, this step is referred to as “detection”,
signifying the identification of veins within the HS data.

In this binary classification setup, a pixel assigned the value 0 represents skin, while a
pixel labeled 1 indicates the presence of a vein. The binary representation simplifies the
complexity of HS data, enabling a clear distinction between relevant anatomical structures.
Ground truth, through its association of spectral patterns with known vein locations, en-
sures the reliability and precision of the vein detection algorithm. The interplay between
HS imaging, ground truth annotations, and SVM classification forms a robust method-
ology for accurate and reliable human vein detection, with significant implications for
medical applications.

2.4. Preprocessing

The experimentations and data processing were conducted using MATLAB R2023a,
a widely used software tool for scientific computing and data analysis, due to its com-
prehensive functionality and flexibility. The Region Of Interest (ROI) within the images
has dimensions of 1024 × 1024 × 462 pixels. The ROI was carefully selected to encompass
the essential spectral information relevant to the research objectives. The HS images were
cropped to the size of the ROI. An estimated RGB image representation for each of the im-
ages’ ROI is then generated, which can be used for manual annotation. Figure 6a showcases
the delineated ROI.

Figure 6. Sample HS image: (a) An RGB image representation with the Region Of Interest (ROI)
highlighted in red. (b) Annotated RGB image, where veins are highlighted in blue.

2.5. Data Annotation/Ground Truth Creation

To facilitate subsequent vein detection analysis, each HS hand image in the dataset
was manually annotated to highlight the veins present in the hand. By doing so, ground
truth images were created for each of the captured HS images as reference labels, and this
was performed with the guidance of a medical expert and by using anatomical data to
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determine the vein locations in the images. The ground truth is a binary image with
one representing the vein locations and zeros representing the rest. Figure 6b depicts the
annotated RGB representation of the sample HS image data, with veins highlighted in blue.

3. Enhancement of Vein Detection Methodology

In this section, the methodology applied for enhanced vein detection in HS images is
outlined, encompassing data pre-processing, dimensionality reduction, training and testing
set separation, classification, performance assessment metrics, and visual representation of
the classification outcome.

The methodology for human vein detection, employing the dataset of 200 HS images,
introduces several novel elements that set it apart from existing methods in the field.
In contrast to the work by Hamza et al. [20], which primarily focuses on blood vessel
visualization in human skin using HSI, and that of Mzoughi et al. [21] exploring HS
visualization for blood vessels with a focus on improving contrast ratios, the primary
objective is the accurate detection of human veins for medical applications.

In the study by Hamza et al. [20], a technique for HS visualization of blood vessels
in human skin is proposed. The experiment involves participants with diverse skin types,
races, and nationalities, highlighting the adaptability of their approach. While the em-
phasis is on improving the first-attempt puncture success rate and reducing patient pain
through enhanced blood vessel visualization, our proposed approach distinguishes itself
by specifically targeting the challenging task of vein detection.

Furthermore, Mzoughi et al. [21] propose a technique for visualization of blood
vessels using HS images, focusing on the improvement of contrast ratios. Their work
involves an experiment with participants of different skin types, and they introduced
new index formulae deduced through an exhaustive search. While their emphasis is on
enhancing visualization and generating high-contrast blood vessel images for different skin
types, our proposed approach goes beyond visualization, it addresses the crucial aspect of
vein detection. See Figure 7.

Figure 7. Spectral profiles depicting the reflectance spectrum of two distinct classes: skin (red) and
vein (blue).

Tailored to the intricacies of HS based vein detection, the methodology leverages a
dataset of 200 HS images of human hands for training and testing. Significantly, ground
truth annotations are meticulously crafted under the guidance of an expert in the field,
ensuring accuracy and reliability in vein localization. In contrast to the aforementioned
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approaches, which primarily enhance visibility for general blood vessel localization, our
proposed method specifically evaluates the effectiveness of dimensionality reduction tech-
niques in conjunction with a Support Vector Machine (SVM) binary classifier. This unique
combination allows the extraction of salient features from HS image data, facilitating
accurate vein detection.

3.1. Dataset Preparation

Sixty (60)% of the HS images within the dataset were randomly selected and used for
training purposes and the remaining images were used for testing and evaluation. This
division allowed for the construction and assessment of the algorithm’s performance on
unseen data.

To reduce the computation time during processing, while retaining essential informa-
tion, the ROI of the images were cropped to 128 × 128 × 462 and likewise, their ground
truth images were cropped to 128 × 128.

3.2. Dimensionality Reduction

The experiment involved three dimensionality reduction techniques, namely PCA,
FPCA, and WaLuMI. The selection of these dimensionality reduction techniques for the
experimentation was driven by their distinct characteristics and potential benefits in the
context of HS data analysis. These techniques have demonstrated effectiveness in related
fields and show promise for exploring their applicability in HS studies. Their concepts are
explained below.

3.2.1. PCA for HS Images

Principal Component Analysis (PCA) [22–24] is a widely used statistical technique for
dimensionality reduction and data exploration in various fields [25]. It enables the analysis
of complex datasets by transforming them into a new set of uncorrelated variables called
principal components [26]. These components capture the maximum variance in the data,
allowing for a simplified representation without significant loss of information. PCA has
proven to be particularly valuable in numerous applications, including image processing,
pattern recognition, and feature extraction.

In HSI, PCA has been successfully utilized for dimensionality reduction [24,27,28].
PCA’s ability to capture essential spectral variations and effectively reduce the dimension-
ality of HS data has led to its widespread adoption in this domain. HS images contain
rich spectral information captured within a wide range of spectral bands. PCA aims to
transform the original high-dimensional HS data into a new set of orthogonal axes called
principal components. These components are ordered by the amount of variance they
capture, with the first component capturing the highest variance, the second component
capturing the second highest variance, and so on.

Mathematically, given a HS data set matrix X, where each row corresponds to a pixel
and each column corresponds to a spectral band, PCA can be applied for data reduction
and feature extraction of a HS image data as follows:

1. Mean-Centering: subtract the mean of each band from the corresponding column of
X to center the data.

2. Covariance Matrix: calculate the covariance matrix by

C =
1

n − 1
XTX (1)

where n is the number of samples (pixels).
3. Eigen Decomposition: compute the eigenvectors and eigenvalues of the covariance

matrix C. The eigenvectors form the principal components, and the eigenvalues
represent the amount of variance captured by each component.
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4. Data Projection: select the top k eigenvectors corresponding to the k highest eigenval-
ues to form a projection matrix P. Multiply the original data matrix X by P to obtain
the lower-dimensional representation Y.

3.2.2. FPCA for HS Images

Folded Principal Component Analysis (FPCA) [29] is an extension of PCA that takes
into account the spatial information inherent in HS images. Unlike traditional PCA, which
treats each pixel independently, FPCA considers the correlation between neighboring
pixels. It leverages the interplay between spectral and spatial information to enhance
dimensionality reduction and feature extraction.

In FPCA, the fundamental idea is to convert each spectral vector into a matrix for-
mat, enabling the direct calculation of a partial covariance matrix. This matrix is then
accumulated for eigen-decomposition and data projection, effectively incorporating spatial
relationships into the analysis.

FPCA can be implemented on HS data with important parameters H (fold size) and
W (number of spectral bands in each segment) as follows:

1. Matrix Transformation: for each pixel’s spectral vector, a matrix is constructed where
each row contains a segment of W spectral bands. The entire spectral signature,
represented by F bands, is divided into H segments. This transformation allows for
capturing spectral-spatial interactions within a local context.

2. Partial Covariance Matrix: a partial covariance matrix is computed directly from these
segmented matrices. This matrix reflects the interactions between different spectral
bands within each segment, encapsulating both spectral and spatial information.

3. Eigen Decomposition and Projection: the accumulated partial covariance matrices
are subjected to eigen decomposition. The resulting eigenvectors represent directions
of maximum variance within the folded spectral-spatial data. By selecting the top k
eigenvectors associated with the largest eigenvalues, a projection matrix is formed.

When H = 1, FPCA simplifies to conventional PCA, treating each pixel’s spectral
vector individually. As H increases, spatial context is increasingly incorporated. A larger H
enables capturing broader spatial interactions but creates increased computational com-
plexity. FPCA has previously been successfully applied in HSI for efficient dimensionality
reduction and feature extraction [28–30].

3.2.3. WaLuMI for HS Images

Ward’s Linkage Strategy using Mutual Information (WaLuMI) [31] is a technique that
combines hierarchical clustering using Ward’s linkage method [32] with mutual information
as a similarity measure for HS image analysis. Hierarchical clustering groups pixels
based on their similarity, creating a dendrogram that represents the hierarchy of pixel
associations. Mutual Information (MI) is used as a criterion to measure the similarity
between pixels. By utilizing mutual information and hierarchical clustering, WaLuMI
considers both spectral and spatial information to discard redundant information in HS
data, hence, leading to efficient data reduction in HS images. WaLuMI can be implemented
on HS data as follows:

1. Mutual Information Calculation: compute the mutual information between spectral
vectors of pixels. Mutual information measures the amount of information shared be-
tween two variables, indicating how much knowing one variable reduces uncertainty
about the other.
Let I be the input HS image with dimensions n × m, and X be the vectorized spectral
data. The mutual information matrix is computed by

MIij = I(Xi; Xj) (2)
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2. Wards Linkage: use the mutual information values to perform hierarchical clustering
using the Wards linkage strategy. This strategy merges clusters that minimize the
increase in the sum of squared differences within clusters.

3. Dendrogram Creation: as the algorithm progresses, a dendrogram is formed, repre-
senting the hierarchical structure of pixel groupings.

Each of these techniques was employed in a separate experiment. Initially, the HS
images underwent dimensionality reduction using conventional PCA, after which a com-
prehensive analysis of the classification results was conducted.

Subsequently, the procedure was iterated by employing FPCA for dimensionality
reduction, followed by a replication of the same process utilizing the WaLuMI technique.
This systematic approach facilitated a thorough and comparative evaluation of how differ-
ent dimensionality reduction techniques, namely PCA, FPCA, and WaLuMI, influenced the
performance of vein detection.

3.3. Training and Testing Set Separation

The classifier was trained using 60% of the images of the HS image dataset and the
rest of the images were used for testing to evaluate the classification performance for each
technique. The training images were concatenated vertically to form the training data.

3.4. Classification: Support Vector Machine

Support Vector Machines (SVMs) [33] are widely used for classifying large data or
handling noisy samples [5,34,35]. SVM has recently become a prominent method for HS
image classification, gaining significant attention in the field [5,36–38]. Its popularity stems
from its ability to find optimal decision boundaries that maximize the separation between
different classes, even in complex data distributions [36]. By doing so, SVMs can effectively
handle high-dimensional data and offer robust classification performance. SVM’s versatility
and strong theoretical foundation have made it a valuable tool in various fields, including
biomedical applications [5,39], pattern recognition [40], and data analysis [37,41].

Due to SVM’s successes in HSI applications, it was chosen to classify the HS data.
The input for SVM classification consisted of the training data and its ground truth. Follow-
ing training of the SVM classifier, it was applied to the testing images to predict the class
labels of the test samples. By evaluating the classifier’s performance on unseen data, the ef-
fectiveness of the classification approach could be assessed. Throughout the SVM training
phase, integration of a linear kernel function aided the classification process, resulting in a
significant enhancement of vein detection performance in the experiment.

3.5. Performance Assessment Metrics

Following the classification stages, measures to evaluate the classification performance
were implemented. This involved calculating various metrics to assess the effectiveness
of the dimensionality reduction techniques combined with SVM classification. This was
implemented by calculating a range of performance evaluation metrics including accu-
racy, precision, recall, and confusion matrix. These metrics were compared and analyzed
with respect to ground truth labels to determine the performance of each technique in
discriminating between different classes of hands based on HS images.

3.6. Visual Representation of Classification Result

For improved clarity and comprehensibility of the classification outcomes using PCA,
FPCA, and WaLuMI techniques, a systematic approach was employed. The initial step
involved a thorough analysis by varying the number of spectral bands to assess their impact
on classification accuracy. This preliminary step was crucial in determining the optimal
number of bands that would yield the most accurate results.

Subsequently, with the optimal number of bands identified, a visual representation of
the classification result at the optimum was generated. This visual representation enhances
the comprehension of classifier performance and effectiveness.
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To offer a detailed perspective on this process, this process can be divided into
two key steps:

1. Assessing Optimal Number of Bands: The classification accuracies were plotted against
the varying number of bands as shown in Figure 8. This step allowed the identification
of the point at which the classifier achieved its highest accuracy. The chosen number of
bands at this point was regarded as the optimal configuration for subsequent analysis.

2. Visual Classification Outcome: With the optimal number of bands established, a visual
representation of the classification outcome at the optimum was created. The produced
image facilitates visual comparison with the ground truth. This provides insights into
the performance of the classifier by illustrating the veins identified in the tested HS
image (see figures in Sections 4.2.1–4.2.3).

Figure 8. Accuracy plots for the three techniques evaluated on the right hand image using an
increasing number of bands as features. Optimal points highlighted in red: (a) PCA (150 components),
(b) FPCA (window size of 151 × 3, 310 components), and (c) WaLuMI (40 bands).

4. Results and Discussion

In this section, the results obtained from applying PCA, FPCA, and WaLuMI dimen-
sionality reduction techniques are presented. The objective was to assess the effectiveness
of these techniques and their performance in the context of vein detection using HS data.
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4.1. Experiments and Results

To determine the optimal operating points of the three-dimensionality reduction
methods, PCA, FPCA, and WaLuMI, 60% of the HS images of the dataset were randomly
selected to train the SVM classifier, and the rest of the images were used to generate
experimental results. The experimental procedures for each of the techniques are elaborated
in the following subsections.

4.1.1. PCA Experiments

The initial set of experiments applied PCA to the HS image data, systematically
varying the number of principal components from 10 to 462 in steps of 10 to assess its
impact on classification performance. As shown in Figure 8a, the experiments uncovered a
complex interplay between the number of principal components and classification accuracy.
While higher numbers of components often contributed to improved accuracy, it was
observed that this trend did not hold uniformly across all ranges of component values.
Instead, there were regions where increasing the number of components resulted in lower
accuracy, indicating the presence of peak ranges for component selection. Beyond this
range, further increases in components led to diminishing returns and, in some cases,
decreased accuracy. From Figure 8a, it can be seen that the PCA-based method achieves its
highest performance in terms of accuracy when it uses 150 components.

4.1.2. FPCA Experiments

The second set of experiments delved into FPCA, which considers the window param-
eters (Height (H) and Width (W) of the window). The experiments aimed to understand the
influence of both, the number of components and window parameters, on the classification
accuracy using FPCA.

Figure 8b shows a three-dimensional plot representing the achieved accuracy versus
the window’s height and the number of components. From Figure 8b, it is clear that the
FPCA-based method achieves its optimum performance in terms of accuracy when it uses
310 components and a window size of 151 × 3.

Moreover, it is evident that the choice of the window parameters (H ×W) significantly
impacted the results. Smaller window height values often led to improved accuracy,
particularly when dealing with a high number of components.

4.1.3. WaLuMI Experiments

The third set of experiments focused on WaLuMI, specifically investigating the number
of components and their influence on classification accuracy. Figure 8c demonstrates the
accuracy versus the reduced number of bands for the WaLuMI-based method. From this
figure, it can be observed the WaLuMI-based method achieves its highest performance in
terms of accuracy when it reduces the dimensionality of the HS images to 40 bands.

Concerning the effect of dimensionality reduction, WaLuMI demonstrated competitive
accuracy compared to PCA and FPCA. For instance, with 40 components, WaLuMI achieved
an accuracy of approximately 73%.

The outcomes of these experiments provide valuable insights into the applicability
of PCA, FPCA, and WaLuMI in the context of HS image classification for vein detection.
Each of these techniques revealed distinct advantages, with FPCA particularly standing
out by achieving the highest classification accuracy in the experiments. The selection of
a method and its parameter configuration in the context of this study should be guided
by the specific demands of the HS vein detection task. Considerations should encompass
factors such as the dataset’s dimensionality and the distinctive spectral attributes of veins
under investigation. These findings emphasize the necessity of aligning the choice of
dimensionality reduction techniques with the intricacies of the vein detection challenge
addressed in this research.

To generate experimental results, the calculated optimal operation parameters for
PCA-, FPCA-, and WaLuMI-based methods were used to reduce the dimensionality of
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the input HS image data, where 60% of the input HS images of the dataset were used for
training the SVM classifier and the rest of the images were used to generate the statistics.
The obtained results for PCA, FPCA, and WaLuMI are presented in Table 3.

Table 3. Performance evaluation metrics for the three techniques on the HS image at their
optimal parameters.

Method/Metric Accuracy (%) Precision (%) Recall (%) FPR (%) FNR (%)

PCA 70.18 76.48 33.90 6.55 66.10
FPCA 75.63 73.34 59.12 13.78 40.88

WaLuMI 73.00 78.03 43.00 7.76 57.00
FPR = False Positive Rate, FNR = False Negative Rate.

As shown in Table 3, in the evaluation of the three techniques, several key metrics
were considered, including the accuracy, precision, recall, false positive rate (FPR), and false
negative rate (FNR), which provide crucial insights into their classification performance.

PCA exhibited a relatively low FPR, suggesting that it had a commendable ability
to correctly classify non-vein pixels without generating an excessive number of false
alarms. However, a notable drawback is observed in its performance in terms of FNR. PCA
exhibited a higher FNR, implying that it missed a considerable number of vein pixels during
the classification process, leading to a significant number of false negatives. The overall
accuracy of PCA is 70.18%, indicating that it successfully classified around 70.18% of the
vein and non-vein pixels. The precision and recall values for PCA are 76.48% and 33.90%,
illustrating its ability to balance between true positives and false positives.

FPCA demonstrates a slightly higher FPR compared to PCA, meaning that it has a
relatively higher rate of false positives. This might lead to a slightly increased number
of false alarms. However, FPCA excelled in capturing vein pixels, as indicated by its
considerably lower FNR. The overall accuracy of FPCA is the highest among the three
techniques, with a rate of 75.63%. This implies that FPCA correctly classified approximately
75.63% of the vein and non-vein pixels. The precision and recall values for FPCA are 73.34%
and 59.12%, underlining its effectiveness in achieving both high true positives and low
false positives.

Furthermore, WaLuMI shows a competitive FPR, striking a balance between classify-
ing non-vein pixels correctly and avoiding false positives. Nonetheless, it has a higher FNR
when compared to FPCA, signifying that it also missed some vein pixels during classifi-
cation. The overall accuracy of WaLuMI is 73.00%, which means it successfully classified
approximately 73.00% of the vein and non-vein pixels. The precision and recall values for
WaLuMI are 78.03% and 43%, reflecting its ability to provide balanced classification results.

These results show that FPCA excelled in achieving the highest overall accuracy. Its
strength lies in minimizing false negatives, even though it resulted in a slightly higher rate
of false positives. PCA and WaLuMI demonstrated their own strengths and weaknesses,
with PCA being effective at avoiding false positives and WaLuMI offering competitive
accuracy. These findings highlight the importance of choosing dimensionality reduction
techniques that fit the specific needs of the vein detection task, considering the trade-off
between false positives and false negatives.

The dataset of 200 HS images of human hands, carefully curated, contributes sig-
nificantly to the methodology’s reliability. The calculated optimal operation parameters
for PCA, FPCA, and WaLuMI are used for dimensionality reduction, and the obtained
results showcase the effectiveness of these techniques. The dataset’s diversity, covering
a wide range of skin tones, enhances the generalizability of the vein detection algorithm.
The ground truth annotations, crafted under the guidance of an expert, ensure accuracy and
reliability in vein localization, further contributing to the robustness of the methodology.
Overall, the comprehensive dataset plays a crucial role in training and evaluating the vein
detection algorithms, reflecting real-world scenarios and contributing to the methodol-
ogy’s reliability.
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4.2. Morphological Operations

After performing vein detection using PCA, FPCA, and WaLuMI techniques, the ob-
tained results were enhanced through morphological operations. This section presents the
morphological operations applied for each dimensionality reduction technique.

4.2.1. Morphological Operations for PCA

Morphological operations, including erosion and dilation, were strategically employed
to extract and refine vein structures from the classified image for PCA. The morphological
erosion involved the use of a disk-shaped structuring element with a radius of 4 pixels,
iteratively reducing noise and filling gaps in the classified image. Additionally, an iter-
ative dilation operation with a line-shaped structuring element (length: 5 pixels, angle:
180 degrees) was applied to enhance feature extraction.

From Figure 9, it can be seen that the PCA image exhibits relatively lower vein
detection clarity. It indicates that PCA may not be the optimal choice for vein detection in
HS images without further refinement.

Figure 9. Results for PCA morphological operations. (a) RGB and ground truth overlay, (b) classified
image, (c) refined image after morphological operations. Veins are highlighted in red.

4.2.2. Morphological Operations for FPCA

For FPCA, iterative morphological erosion and dilation operations were applied to
refine feature extraction. The morphological erosion involved an iterative process with
a disk-shaped structuring element (radius: 4 pixels) to refine feature extraction. Dilation
operations were then applied iteratively using a square-shaped structuring element (size:
2 × 2 pixels) to further enhance feature extraction.

From Figure 10, it can be observed that the FPCA refined image has a vivid repre-
sentation of vein structures, where vein regions in this image are prominently identified,
demonstrating the high accuracy achieved by FPCA. The refined image further enhances
the visualization, underscoring the method’s efficacy in isolating veins from the rest of the
hand, making it a compelling choice for vein detection in HS images.

4.2.3. Morphological Operations for WaLuMI

WaLuMI morphological operations involved the use of disk-shaped structuring ele-
ments with varying radii for morphological erosion and specific structuring elements for
morphological dilation. The morphological erosion employed disk-shaped structuring
elements with varying radii to iteratively reduce noise and gaps in the binary image. Dila-
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tion operations were then applied iteratively with structuring elements tailored to address
specific characteristics of the data.

Figure 10. Results for FPCA morphological operations. (a) RGB and ground truth overlay,
(b) classified image, (c) refined image after morphological operations. Veins are highlighted in red.

From Figure 11, it is evident that the refined image exhibits a notable degree of
vein detection, though with slightly lower contrast compared to FPCA. Morphological
operations enhance the image further, making it a viable choice for vein detection tasks,
especially when factors such as computational efficiency are taken into account.

Figure 11. Results for WaLuMI morphological operations. (a) RGB and ground truth overlay,
(b) classified image, (c) refined image after morphological operations. Veins are highlighted in red.

The outcomes of this visualization align with the quantitative results, where FPCA
demonstrated the highest vein detection accuracy. Figure 8 illustrates how different dimen-
sionality reduction techniques impact vein detection quality, emphasizing the importance
of method selection based on the specific demands of the application. The remarkable vi-
sual results achieved with FPCA hold great promise for enhancing vein detection in various
clinical contexts, paving the way for advancements in medical diagnostics and imaging.
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5. Conclusions

In conclusion, this paper leveraged hyperspectral (HS) images to advance the field
of vein detection, addressing the pressing need for improved diagnostic tools in various
clinical settings. The curated dataset consisted of 100 subjects’ HS hand images with varying
skin tones. To harness the potential of HS data for vein detection, three dimensionality
reduction techniques, namely Principal Component Analysis (PCA), Folded Principal
Component Analysis (FPCA), and Ward’s Linkage Strategy using Mutual Information
(WaLuMI) were employed.

Through rigorous experimentation and evaluation, FPCA emerged as the standout
performer, delivering the highest accuracy in vein detection. This result highlights the
importance of optimizing dimensionality reduction methods in the pursuit of enhanced
medical imaging and diagnostics.

Furthermore, the research extended beyond accurate classification to visualizing vein
regions effectively. This was achieved by generating classified images using the optimal
bands obtained from the dimensionality reduction techniques. These images were then
refined through the application of morphological operations, providing clearer and more
interpretable representations of vein structures.

The implications of this research are substantial, as it not only demonstrates the
potential of HSI in conjunction with tailored dimensionality reduction techniques but also
sets the stage for future investigations into advanced detection methods, including the
incorporation of deep learning. The findings of this paper hold great promise, with the
potential to significantly impact clinical practices and improve patient care in various
healthcare settings.

The key contributions of this paper are as follows:

• Curated a diverse HS dataset with left- and right-hand captures from 100 subjects,
addressing the need for varied skin tone representation.

• Explored three dimensionality reduction techniques (PCA, FPCA, WaLuMI) to opti-
mize vein detection in HS images.

• Identified FPCA as the most effective technique, achieving the highest accuracy in
vein detection.

• Extended the focus beyond accurate classification to include the effective visualization
of vein regions.

• Generated classified images using optimal bands obtained from dimensionality reduc-
tion, refined through morphological operations for clearer representations.

• Demonstrated the potential of HSI with tailored dimensionality reduction, contribut-
ing significantly to medical imaging and diagnostics.
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Abbreviations
The following abbreviations are used in this manuscript:

HS HyperSpectral
HSI HyperSpectral Imaging
PCA Principal Component Analysis
FPCA Folded Principal Component Analysis
WaLuMI Ward’s Linkage Strategy using Mutual Information
CRPS Complex Regional Pain Syndrome
NIR Near-Infrared
ROI Region Of Interest
SVM Support Vector Machine
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