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Abstract

Despite the great theoretical advancements in the area of Belief Revision, there has

been limited success in terms of implementations. One of the hurdles in implement-

ing revision operators is that their specification (let alone their computation), requires

substantial resources. On the other hand, implementing a specific revision operator,

like Dalal’s operator, would be of limited use. In this paper we generalise Dalal’s con-

struction, defining a whole family of concrete revision operators, called Parametrised

Difference revision operators or PD operators for short. This family is wide enough to

cover a wide range of different applications, and at the same time it is easy to repre-

sent. In addition to its semantic definition, we characterise the family of PD operators

axiomatically (including a characterisation specifically for Dalal’s operator), we prove

its’ compliance with Parikh’s relevance-sensitive postulate (P), we study its computa-

tional complexity, and discuss its benefits for belief revision implementations.

Keywords: Belief Revision

1. Introduction

The AGM framework [3] is the dominant paradigm for the study of belief revision.

It has been studied extensively and lies on solid theoretical foundations (see [4] for a

‹This submission is the journal version (with improvements and additions) of the research work previ-
ously published in conference papers; in particular in [1] and (partially) in [2].
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survey). Yet despite the success of its theoretical models, little has been done in terms

of implementations of AGM belief revision operators. This is not to say that important

attempts have not been made; see for example [5], [6], [7]. None of them however has

had the great impact on real-world applications that one would expect from a successful

belief revision solver.

There are at least two major obstacles to a successful implementation of an AGM

belief revision system that can work beyond toy examples. The first is the high compu-

tational complexity of the belief revision process [8]; we will have more to say about

this later in the paper.

The second is the large amount of information that, in principle, the user needs to

provide explicitly to the system; we shall call this the representational cost of a belief

revision solver. Recall that the AGM postulates for revision specify not one, but an

entire class of revision functions. Hence, before a belief revision system can answer

any query about the result of revising a theory K by a sentence ϕ, denoted K ˚ ϕ, the

user needs to specify the particular revision function ˚ under consideration. There are

many ways that this can be done, but in principle, they are all equivalent to specifying

a family of total preorders over possible worlds; i.e., one total preorder for each theory

of the object language L [9]. For a propositional language with n variables, there exist

22n
theories; clearly an enormous number. Even if one focuses only on a single theory

K, one still needs to specify a preorder ď over the 2n possible worlds.

Of course there are shortcuts. For example one can request only a partial specifi-

cation of a preorder over worlds and fill in the remaining information automatically,

using some (intuitive) default rule. In this case it is important that the side-effects of

the completion process are well understood, and that the formal properties of the re-

sulting revision functions are thoroughly investigated. The other option is to avoid the

requirement for preorder specification altogether by choosing to implement only one

concrete revision operator. The problem of course is that such a system would be rather

limited in scope. Moreover, as far as concrete “off-the-shelve” AGM revision operators

go, there are not all that many to choose from. Out of the few well known proposals,

like [10], [11], [12], [13], it is only Dalal’s operator [14] that satisfies all the AGM
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postulates for revision.

Herein we introduce an entire class of concrete revision operators, all of which sat-

isfy the full set of AGM postulates for revision; we call them Parametrised Difference

revision operators, or PD operators for short. PD operators are essentially generali-

sations of Dalal’s operator. Most importantly, each PD operator can be fully specified

from a preorder over the n propositional variables (also called atoms) of the object

language L. In other words, a single preorder over the n atoms suffices to generate the

preorders over possible worlds associated with all 22n
theories of L. This is a double

exponential drop on the representational cost.

The range of applicability of PD operators is illustrated via some characteristic

belief revision scenarios, including ones from iterated revision, that are beyond the

reach of Dalal’s operator.

Perhaps surprisingly, this added expressiveness of PD operators compared to Dalal’s

operator comes at no extra computational cost: we show that PD operators lie at the

same level of the polynomial hierarchy as Dalal’s operator. Moreover, and probably

more importantly for practical applications, when confined to Horn formulas, and the

size of the new evidence is small compared to that of the initial knowledge base, PD

operators become tractable; in fact, complexity can be further reduced to linear time

with respect to the size of the initial knowledge base, if the the size of the queries is

bounded by a constant.

PD operators are defined semantically and characterised axiomatically via six con-

ditions named (D1) – (D6). As a by-product we also provide an axiomatic character-

isation of Dalal’s operator. Moreover we illustrate some attractive formal properties

of PD operators including their compliance with Parikh’s notion of relevance-sensitive

revision [15].

The rest of the paper is structured as follows. The next section introduces some

notation and terminology, followed by a section covering the necessary background on

AGM belief revision. In Section 4 we introduce the class of PD operators and illustrate

their use in characteristic belief revision scenarios. Then, new axioms characterising

3



PD operators are formulated, accompanied by corresponding representation results.

The formal properties of PD operators are discussed in Section 6. The following section

discusses the representational cost of AGM revision, and compares the effectiveness of

PD operators with previous approaches in dealing with this problem. This is followed

by a section that contains our study on the computational complexity of PD operators.

In the last section we provide some concluding remarks.

2. Preliminaries

In this article we shall be working with a propositional language L built over finitely

many propositional variables. The finite, nonempty set of all propositional variables

(also called atoms) is denoted by P. A literal is a variable in P or the negation of

a variable. If l is a literal containing the variable α, then by l we denote the literal

 α if l “ α, and the literal α otherwise. The letters x, y, p, q, and z (possibly with

subscripts and/or superscripts) will always represent literals. The letters A, B, C, D, and

E (possible with subscripts and/or superscripts) will always represent sets of literals.

For a set of literals A, we define A to be the set A “ tq : q P Au. We will sometimes

abuse notation and treat a set of literals A as a sentence, namely the conjunction of

all its literals, leaving it to the context to resolve any ambiguity; thus for example, in

“A Ď B”, A is a set of literals whereas in “ A”, A is a sentence. In the limiting case

where the set A is empty, we take the sentence A to be an arbitrary tautology.

An interpretation assigns truth values to propositional variables; more formally, an

interpretation v (over P) is a function mapping every propositional variable in P to the

set tT, Fu, where “T” stands for “true” and “F” stands for “false”. The definition of v

can be extended to assign truth values to arbitrary sentences of L using the classical

semantics of the Boolean connectives: vp ϕq “ T iff vpϕq “ F, vpϕ _ ψq “ T iff

vpϕq “ T or vpψq “ T , vpϕ ^ ψq “ T iff vpϕq “ T and vpψq “ T , vpϕ Ñ ψq “

vp ϕ _ ψq, and vpϕ Ø ψq “ vppϕ Ñ ψq ^ pψ Ñ ϕqq. For any sentence ϕ P L, we

shall say that v satisfies ϕ, which we denote as v |ù ϕ, iff vpϕq “ T . We shall say

that v satisfies a set of sentences Γ, denoted v |ù Γ, iff v satisfies all sentences in Γ.
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Finally, a sentence or set of sentences is called consistent iff there exists at least one

interpretation that satisfies it.

The set of all interpretations over P is denotedM. Interpretations will also be called

possible worlds (or simply worlds) and henceforth will be identified with the set of

literals they satisfy. Like with any set of literals, a possible world r may sometimes be

treated as a sentence (as for example in the expression “r_r1q”. Possible worlds will be

denoted with the letters w, r, u, possibly with subscripts and/or superscripts. Arbitrary

sentences of L will be denoted by the Greek letters ϕ, ψ (possibly with subscripts and/or

superscripts).

For a set of sentences Γ and a sentence ϕ of L, we shall write Γ |ù ϕ iff every

interpretation that satisfies Γ, also satisfies ϕ. For sentence ϕ, ψ P L, we shall write

ψ |ù ϕ as an abbreviation of tψu |ù ϕ. For sets of sentences Γ,∆, we shall write Γ |ù ∆

iff Γ |ù ϕ, for all ϕ P ∆.

For a set of sentences Γ of L, by CnpΓqwe denote the set of all logical consequences

of Γ, i.e., CnpΓq “ tϕ P L: Γ |ù ϕu. A theory K of L is any set of sentences of L closed

under |ù, i.e., K = CnpKq. We shall use the letters K, H, and T to denote theories of

L. The set of all consistent theories is denoted by K . A theory K is complete iff for all

sentences ϕ P L, ϕ P K or  ϕ P K.

For a set of sentences Γ of L, rΓs denotes the set of all possible worlds that satisfy

Γ. Often we shall use the notation rϕs for a sentence ϕ P L, as an abbreviation of rtϕus.

For a theory K and a set of sentences Γ of L, we shall denote by K ` Γ the closure

under |ù of K Y Γ, i.e., K ` Γ “ CnpK Y Γq. For a sentence ϕ P L we shall often write

K ` ϕ as an abbreviation of K ` tϕu.1

1In this paper we essentially follow the notation and terminology that is typically used in the Belief

Revision literature.
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3. The AGM Framework

In the AGM framework, [3], [16], belief revision is modelled as a function ˚ map-

ping a theory K and a sentence ϕ, to a theory K˚ϕ, representing the result of revising K

by ϕ. Alchourrón, Gärdenfors and Makinson have introduced a set of eight postulates,

numbered below as (K ˚ 1) – (K ˚ 8), that ought to be satisfied by any rational revision

function. These postulates are now known as the AGM postulates for revision, and the

functions that satisfy these postulates are known as AGM revision functions (or simply

revision functions):2

(K ˚ 1) K ˚ ϕ is a theory of L.

(K ˚ 2) ϕ P K ˚ ϕ.

(K ˚ 3) K ˚ ϕ Ď K ` ϕ.

(K ˚ 4) If  ϕ R K then K ` ϕ Ď K ˚ ϕ.

(K ˚ 5) If ϕ is consistent then K ˚ ϕ is also consistent.

(K ˚ 6) If |ù ϕØ ψ then K ˚ ϕ “ K ˚ ψ.

(K ˚ 7) K ˚ pϕ ^ ψq Ď pK ˚ ϕq ` ψ.

(K ˚ 8) If  ψ R K ˚ ϕ then pK ˚ ϕq ` ψ Ď K ˚ pϕ^ ψq.

It turns out that any AGM revision function can be constructed with the use of a set

of total preorders over possible worlds [9]; one total preorder ďK for each theory K.

Recall that a total preorder ďK overM is any binary relation overM that is reflexive

and transitive, and such that for all w,w1 P M, w ďK w1 or w1 ďK w. As usual, ăK

denotes the strict part of ďK . Moreover, we shall write w «K w1 iff w ďK w1 and

w1 ďK w.

2For a detailed discussion of the AGM postulates see [16] or [4].
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A total preorder ďK is said to be faithful to K iff for all w,w1 P M, (i) if w P rKs

then w ďK w1, and, (ii) if w P rKs and w1 R rKs then w ăK w1.3.

Given a faithful preorder ďK for each theory K, one can construct a revision func-

tion ˚ by means of the following condition, [9]:4

(ď˚) rK ˚ ϕs “ minprϕs,ďKq.

In the above definition, minpS ,ďKq is the set of minimal elements of the set S with

respect to ďK ; i.e., minpS ,ďKq = tw P S : for all w1 P S , if w1 ďK w, then w ďK w1u.

Hence according to (ď ˚), K ˚ ϕ is defined as the theory satisfied precisely by the

ďK-minimal worlds in rϕs.

Katsuno and Mendelzon have shown that the functions induced from total faith-

ful preorders via (ď˚) are exactly those satisfying the AGM postulates for revision.

Moreover, since we assume herein that the set P of propositional variables in finite, it

holds that for any given AGM revision function ˚ and theory K, there is a unique total

preorders ďK , that satisfies (ď˚). We shall call this unique total preorder, the faithful

preorder that ˚ assigns to K.

For ease of presentation, in the rest of the paper we shall focus only on revision

of consistent theories by consistent sentences. Hence from now on, unless explicitly

stated otherwise, we assume that the initial belief set K is a consistent theory, and that

the epistemic input ϕ is a consistent sentence.

4. Parametrised Difference Operators

As evident from the previous section, to fully describe an AGM revision function

˚ one needs to specify the faithful preorder ďK assigned to each theory K of L. For a

3It should be noted that in [9], Katsuno and Mendelzon define faithfulness for the broader class of partial

preorders; wherein however, it suffices to confine ourselves to total preorders.
4We note that in fact Katsuno and Mendelzon assign faithful preorders to sentences rather than to theories.

However this difference is inconsequential under the assumptions of this paper.
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propositional language built over n atoms, there exist 2n possible worlds, and 22n
´ 1

consistent theories. A general belief revision solver that requires users to provide a

preorder over 2n worlds for each consistent theory of L (or even for one theory of L),

will not be of any use beyond toy examples.

One can of course trade generality for representational efficiency and build a spe-

cialised belief revision solver; one that implements a single concrete AGM revision

operator ˚. In this case the faithful preorders that define ˚ can be “hard-wired” into the

solver. Users won’t need to provide any background information – just the knowledge

base and the epistemic input.

Perhaps the most popular concrete AGM revision operator is Dalal’s operator [14],

and its computational complexity has been studied in Eiter and Gottlob’s seminal article

[8].

Dalal provides a very natural way of defining the preorder ďK associated to a theory

K. We note that ďK is meant to encode the comparative plausibility of possible worlds:

the closer a world is to the beginning of the preorder the more plausible it is. Dalal

defines plausibility in terms of a notion of difference between worlds.

In particular, for any two worlds w, r PM, the difference between w and r, denoted

Diffpw, rq, is defined to be the set of propositional variables over which the two worlds

disagree; i.e., Diffpw, rq = tq P P: w |ù q and r |ù qu Y tq P P: r |ù q and w |ù qu.

The preorder ĎK that Dalal assigns to a consistent theory K is defined as follows: for

all r, r1 P M, r ĎK r1 iff there is a w P rKs such that for all w1 P rKs, |Diffpw, rq| ď

|Diffpw1, r1q|. Dalal’s operator, which we denote ˝, is defined as the revision function

induced from tĎKuKPK .

An example of Dalal’s preorder for a language L built from only three variables

a, b, c, assigned to the theory K = Cnpta, b, cuq, is given below:5

5We note that ĂK denotes the strict part of ĎK ; i.e. r ĂK r1 iff r ĎK r1 and r1 ĎK r.
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abc abc

abc ĂK abc ĂK abc ĂK abc

abc abc

In the above example, the plausibility of a world r is determined by the number of

propositional variables over which r differs from the initial world abc.

However, a belief revision solver restricted only to Dalal’s operator would be of

limited practical use. Many interesting belief revision scenarios lie outside the scope of

Dalal’s operator (see below).

Clearly we need to strike the right balance between expressivity and representa-

tional cost. Our answer to this is the class on PD operators introduced below.

A silent assumption in Dalal’s approach is that all atoms have the same epistemic

value; hence for example, a change in atom a is assumed to be as plausible (or implau-

sible) as a change in atom b. This is clearly a severe restriction that limits considerably

the range of applicability of Dalal’s operator. PD operators lift this restriction, allowing

propositional variables to have different epistemic values.

Suppose for example that for a certain application, the atoms a and b have greater

epistemic value than the atom c, and consequently a change in a or b is less plausible

than a change in c. This can be encoded by a total preorder Ĳ over the variables a, b, c

as follows: c Ÿ a, c Ÿ b, a Ĳ b, and b Ĳ a.6 Given Ĳ we can refine Dalal’s preoder to

take into account the difference in epistemic value between a, b, and c:

abc ĂĲK abc ĂĲK

abc

abc
ĂĲK

abc

abc
ĂĲK abc ĂĲK abc

In the example above the ranking of possible worlds takes place in two stages. The

first stage is identical to Dalal’s ranking: each world r is ranked according to the num-

6As usual Ÿ denotes the strict part of Ĳ; moreover the obvious relationships a Ĳ a, b Ĳ b, and c Ĳ c

have been omitted for the sake of readability.
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ber of switches in propositional variables that are necessary to turn the initial world

abc into r. At the second stage the ranking is further refined to take into account the

different epistemic value of the propositional variables that have been switched. In par-

ticular, for any two worlds r, r1 that require the same number of switches from abc (i.e.,

|Diffpabc, rq| “ |Diffpabc, r1q|), r is more plausible than r1 iff Diffpabc, rq lexicograph-

ically precedes Diffpabc, r1q with respect to Ĳ. Thus for example, abc ĂĲK abc because

cŸ a (despite the fact that both worlds are one switch away from abc).

The example above illustrates the basic idea in generalising Dalal’s approach. The

formal definition of PD preorders is given below.

Firstly, some auxiliary notation. For a total preorder Ĳ over P, a set S Ď P and an

atom q P P, by S q we denote the set S q “ tp P S : p Ĳ qu. The definition of Ĳ can

now be extended to sets of propositional variables as follows:

Definition 1. Let Ĳ be a total preorder over P. We define the extension of Ĳ over sets

of atoms as follows. For any S , S 1 Ď P, S Ĳ S 1 iff one of the following three conditions

holds:

(a) |S | ă |S 1|.

(b) |S | “ |S 1|, and for all q P P, |S q| “ |S 1q|.

(c) |S | “ |S 1|, and for some q P P, |S q| ą |S 1q|, and for all pŸ q, |S p| “ |S 1p|.

In the above definition, condition (b) states that S and S 1 are lexicographically in-

distinguishable with respect to Ĳ, whereas (c) states that S lexicographically precedes

S 1 (wrt Ĳ). Henceforth we shall use Ĳ to denote both a total preorder over atoms, as

well as its extension over sets of atoms; any ambiguity will be resolved by the context.

It is not hard to verify that (the extended) Ĳ is a total preorder over 2P:

Lemma 1. Let Ĳ be any total preorder over the atoms in P. The extension of Ĳ over

sets of atoms as defined above, is a total preorder over 2P.
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Proof. Reflexivity follows immediately from the definition ofĲ (in particular, con-

dition (b)). For totality, consider any two sets of atoms S , S 1. If |S | ă |S 1| then by

condition (a) of the above definition, S Ĳ S 1; likewise, if |S 1| ă |S | then S 1 Ĳ S

and thus, once again, S and S 1 comparable with respect to Ĳ. Assume therefore that

|S | “ |S 1|. If for all q P P, |S q| “ |S 1q|, then by condition (b), S Ĳ S 1. If not, there is a

Ĳ-minimal atom in q P P such that |S q| ‰ |S 1q|. Without loss of generality we can as-

sume that |S q| ą |S 1q|. Observe that since q is aĲ-minimal atom for which |S q| ‰ |S 1q|,

it follows that |S p| “ |S 1p| for all pŸ q. Hence by condition (c), S Ĳ S 1; i.e. S and S 1

are again Ĳ-comparable. Thus Ĳ is total.

For transitivity, consider any three sets of atoms S , S 1, S 2, such that S Ĳ S 1 and

S 1 Ĳ S 2. Assume towards contradiction that S Ĳ S 2. Since, as shown above, Ĳ is

total, we derive that S 2 Ĳ S . Hence, by the definition of Ĳ, |S 2| ď |S |. Moreover,

from S Ĳ S 1 and S 1 Ĳ S 2 we derive respectively that |S | ď |S 1| and |S 1| ď |S 2|. Thus

it follows that |S | “ |S 1| “ |S 2|. Then from S 2 Ÿ S we derive that there is a q P P

such that |S 2q | ą |S q| and |S 2p| “ |S p| for all pŸ q.

Observe that if |S 2p| “ |S
1
p| for all p P P, then |S 1q| ą |S q| and |S 1p| “ |S p| for all

pŸq; this contradicts S Ĳ S 1. Hence from S 1 Ĳ S 2 we derive that there is a z P P such

that |S 1z| ą |S
2
z |, and |S 1p| “ |S

2
p| for all pŸ z. Next we distinguish between two cases,

and we show that in both we reach a contradiction. Firstly assume that q Ÿ z. Then

|S 1q| “ |S
2
q | ą |S q|, and for all pŸ q, |S 1p| “ |S

2
p| “ |S p|. This entails S Ĳ S 1, which

of course contradicts our initial assumption. Assume on the other hand that z Ĳ q.

Then, |S 1z| ą |S
2
z | ě |S z|. Moreover, for all pŸ z, |S 1p| “ |S

2
p| “ |S p|. Therefore, once

again, S Ĳ S 1; contradiction. l

The intended reading of Ĳ, defined over sets of variables, is the same as before:

S Ĳ S 1 means that S 1 as a whole is at least as important as S (as a whole). Therefore,

if during believe revision there was a choice between changing all variables in S or

changing all variables in S 1, we would pick the former.

Based on this reading, we define the PD preorder ĎĲK overM, induced from Ĳ at

a theory K, as follows:
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(AW) r ĎĲK r1 iff there is a w P rKs such that for all w1 P rKs, Diffpw, rq Ĳ Diffpw1, r1q.

Lemma 2. Let Ĳ be any total preorder over the atoms in P and K a consistent theory

of L. The binary relation ĎĲK overM induced fromĲ at K via (AW), is a total preorder

overM, and it is faithful to K.

Proof. Let r, r1 be any two worlds inM. Moreover, let wr and wr1 be two worlds

in rKs such that Diffpwr, rq is minimal with respect to (the extended) Ĳ in the set

tDiffpu, rq : u P rKsu, and, likewise, Diffpwr1 , r1q is minimal with respect to Ĳ in

the set tDiffpu1, r1q : u1 P rKsu. Since, by Lemma 1, Ĳ is a total preorder, it follows

from (AW) that r ĎĲK r1 iff Diffpwr, rq Ĳ Diffpwr1 , r1q.

It is now quite straightforward to prove the lemma. Since Ĳ is transitive, reflexive,

and total, then so is ĎĲK .

For faithfulness, assume that r P rKs. Then, clearly, Diffpwr, rq “ Diffpr, rq “ H.

Moreover from the definition of Ĳ, it follows immediately that H Ĳ S for any set of

atoms S ; hence Diffpwr, rq ĎĲK Diffpwr1 , r1q for any world r1. Thus, all worlds in rKs

are minimal with respect to ĎĲK . For the converse, let r1 we any world not in rKs. Then

clearly, Diffpwr1 , r1q ‰ H. On the other hand, for any world r P rKs, Diffpwr, rq “

H. Thus, |Diffpwr, rq| ă |Diffpwr1 , r1q| and consequently, from the definition of Ĳ we

derive that Diffpwr, rq ŸDiffpwr1 , r1q. This again entails r ĂĲK r1, and therefore r1 is not

minimal inM with respect to ĎĲK . Hence ĎĲK is faithful to K. l

Notice that according to this definition, a single preorderĲ over P suffices to deter-

mine the preorders assigned to all consistent theories K. Hence a preorder Ĳ generates

a family of PD preorders tĎĲK uKPK which in turn define a revision function ˚. A revi-

sion function so constructed is called a Parametrised Difference revision operator or a

PD operator for short.

To illustrate the use of PD operators in encoding belief revision scenarios, consider

the following modified version of an example in [17]. A circuit consists of two adders

and one multiplier. The variables a1, a2, and m represent the facts that “adder1 is work-

ing”, “adder2 is working”, and “the multiplier is working” respectively. Initially we
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believe that the circuit is working properly. Moreover we know that multipliers are less

reliable than adders. Hence, if we observe that there is a malfunction in the circuit, it

is plausible to assume that the multiplier (rather than one of the adders) is not working

properly.

This scenario can easily be encoded with a PD operator. In particular, consider the

PD operator ˚ induced from the following preorder Ĳ on the propositional variables

a1, a2,m: m Ÿ a1, m Ÿ a2, a1 Ĳ a2, and a2 Ĳ a1 (in addition, Ĳ includes all pairs that

follow from reflexivity and transitivity). It is not hard to verify that with this preorder,

the revision of Cnpta1, a2,muq by  a1 _  a2 _  m leads us to Cnpta1, a2, muq as

desired.7

Our next example comes from [18]: “We encounter a strange new animal and it

appears to be a bird, so we believe the animal is a bird. As it comes closer to our

hiding place, we see clearly that the animal is red, so we believe that it is a red bird. To

remove further doubts about the animal’s birdhood, we call in a bird expert who takes

it for examination and concludes that it is not really a bird but some sort of mammal.

The question now is whether we should still believe that the animal is red.”

Once again PD operators deliver the anticipated results. Let us denote by a the

proposition “the animal is red” and by b the proposition “the animal is a bird”. Our

initial belief set is Cnptbuq. Let ˚ by any PD operator and Ĳ the preorder over atoms

associated with ˚. Since a is consistent with Cnptbuq it follows that Cnptbuq ˚ a “

Cnpta, buq. Let K “ Cnpta, buq. Clearly, |Diffpab, abq| ă |Diffpab, abq| and therefore

ab ĂĲK ab, regardless of the preorder Ĳ. Hence Cnptbuq ˚ a ˚  b “ Cnpta, buq as

desired.

It should be noted that, not only classical AGM, but even its extension with the

postulates for iterated revision proposed by Darwiche and Pearl in [17], has trouble

dealing with such examples (see [19], [18], and [20] for details).

7On the other hand, Dalal spreads the blame equally to all three components of the circuit; i.e., the Dalal-

revision of Cnpta1, a2,muq by  a1 _ a2 _ m yields the theory Cnpa1a2m_ a1a2m_ a1a2mq.
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Our last example is new. It is essentially an extension of the curcuit example in

[17].

A circuit consists of a multiplier and two adders. Let us denote by m the propo-

sition “the multiplier is working”, and by a1, a2 the propositions “the first adder is

working” and “the second adder is working” respectively. After performing some tests

on the circuit, we discover that the multiplier or adder 1 is malfunctioning; in symbols,

 m_ a1. Suppose that our initial belief set is Cnptm, a1, a2uq. Since it is known that

multipliers are less reliable than adders, we end up with the belief set Cnptm, a1, a2uq.

For the same reason, if our initial belief set were Cnptm, a1, a2uq, then m_ a1 would

have taken us to Cnptm, a1, a2uq. What would then be our response to  m _  a1 had

our initial belief set been Cnptm, a1uq? Given our past preference to adder 1 over the

multiplier (regardless of the status of adder 2), we argue that it is reasonable to once

again put the blame on the multiplier. Moreover, since adder 2 is independent from the

other two components, our beliefs about adder 2 should not be affected.

The desired behaviour can be easily captured by a PD operator. Indeed the PD

operator ˚ used in the first circuit example can also be used for this one. That is, ˚ is

induced from a preorder over atoms Ĳ such that mŸ a1, mŸ a2, a1 Ĳ a2, and a2 Ĳ a1.

Clearly by construction, ˚ has all desired properties: Cnptm, a1, a2uq ˚ pm _ a1q “

Cnptm, a1, a2uq, Cnptm, a1, a2uq˚ pm_a1q “ Cnptm, a1, a2uq, and Cnptm, a1uq˚ pm_

a1q “ Cnptm, a1uq.

It should be noted that the idea of generalising Dalal’s notion of distance between

worlds, by differentiating between atoms has been used in the Belief Merging literature

for quite some time. In particular, preorders on a weighted Hamming distance are quite

similar to PD preorders. A weighted Hamming distance assigns a numerical value (i.e.,

a weight) to each variable of the language. The distance between two possible worlds is

then defined as the sum of the weights of all variables over which the two worlds differ

(see for example, [21]). These numerical weights assigned to variables can be thought

of as the quantitative analog of the preorder Ĳ over variables used in the construction

of a PD preorder. There is a major difference however between preorders induced from

weighted Hamming distances and PD preorders: with the former it is possible for three
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worlds w, r, r1, to be such that r1 is closer to w than r, even though r differs from w

in fewer variables than r1 (i.e., |Diffpw, rq| ă |Diffpw, r1q|q;8 this can never be the case

with PD preorders.9

5. Axioms for PD Operators

In this section we provide an axiomatic characterisation of PD operators.

We note from the outset that our new axioms are not on a par with the AGM postu-

lates. In fact the two have a totally different purpose. AGM postulates encode general

principles of rational belief change. Our new axioms on the other hand, are simply

formal properties that characterise a certain class of AGM revision functions (namely

those induced from PD preorders), thus providing insight to their behaviour.

Formulating the new axioms was not trivial. The task is complicated by the fact that

a PD operator ˚ is constructed from a preorder Ĳ over P in two stages; first Ĳ induces

tĎĲK uKPK , which in turn induces ˚. Thus, metaphorically speaking, ˚ is two steps away

from its generatorĲ. That makes it harder to devise constraints on ˚ that would project

correctly, at a two-steps distance, to Ĳ.

For the sake of readability we shall introduce the new axioms in stages. At each

stage we provide representation results that highlight the role of the new axioms in the

overall characterisation of PD operators.

We recall that throughout this paper, x, y, p, q, z denote literals, A, B,C,D, E de-

note nonempty consistent sets of literals, ϕ, ψ denote consistent sentences, and K,H,T

denote consistent theories. Moreover, we shall often use concatenation as an abbrevi-

ation for conjunction; thus for example AB is an abbreviation of A ^ B, and Ap is an

abbreviation of A^ p.

8This can happen for example if one of the variables in Diffpw, rq has a weight that is greater than the

sum of all weights in Diffpw, r1q.
9We thank the anonymous reviewer of [1] for pointing out previous work on weighted Hamming distances

and the similarity of their induced preorders to PD preorders.
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For nonempty sets of literals A, B, we define A �K B iff A, B Ď K and  pAq R

K ˚ pA_ Bq. Intuitively, A �K B holds whenever, starting from the belief set K (which

contains both A and B), it is at least as costly to change (the values of) all literals in

B as it is to change all literals in A. We define A ăK B as A �K B and B �K A (or

equivalently, A, B Ď K and  B P K ˚ pA _ Bq). Finally, for literals p, q, we define

p �K q and p ăK q to be an abbreviation of tpu �K tqu and tpu ăK tqu, respectively.

5.1. The Special Case of Consistent Complete Theories

Let us start by assuming that the initial belief set K is a consistent complete theory.

This assumption will allow us to arrive quickly at preliminary representation results

that will be instrumental in establishing the general results of the next subsection.

Our first axiom says that if during revision a choice exists between reversing all

literals in A or reversing all literals in B, then revision never picks the larger set; in

other words, the more literals one needs to reverse during revision, the more costly it

is:

(D1) If K is complete and A �K B, then |A| ď |B|.

(D1) alone suffices to characterise an interesting super-class of PD operators. In

particular, consider the following constraint on a total faithful preorder ďK assigned to

K:10

(H) If K is complete and |DiffpK, rq| ă |DiffpK, r1q|, then r ăK r1.

We shall call a total preorder ďK overM satisfying (H), a Hamming preorder.11

10Recall that in this subsection, K is assumed to be a consistent complete theory. Hence we will often

abuse notation, like in DiffpK, rq, and identify K with the unique possible world that satisfies it.
11We note that Hamming preorders are similar, but not quite the same as the preorders induced from

weighted Hamming distances discussed earlier.
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Theorem 1. Let K be a consistent complete theory, ˚ an AGM revision function and

ďK the faithful preorder that ˚ assigns to K. Then ďK is a Hamming preorder iff ˚

satisfies (D1) at K.

Proof. Assume that ďK is a Hamming preorder. We prove (D1) by showing its

counter-positive. Consider therefore any two sets of literals A, B in K, such that |B| ă

|A|. Define r to be the world that satisfies B and agrees with K on all remaining literals,

and let r1 be any world that satisfies A. Clearly |DiffpK, rq| “ |B| ă |A| ď |DiffpK, r1q|.

Hence by (H), r ăK r1, and therefore no A-world is minimal in rA _ Bs. This again

entails  A P K ˚ pA_ Bq, and proves (D1).

For the converse, assume that ˚ satisfies (D1) at K and let r, r1 be any two worlds

such that |DiffpK, rq| ă |DiffpK, r1q|. Clearly r1 R rKs. Hence, if DiffpK, rq “ H, then

from the faithfulness of ďK to K we derive that r ăK r1 as desired. Assume therefore

that DiffpK, rq ‰ H. Define A to be the set of literals in K over DiffpK, rq and B

the set of literals in K over DiffpK, r1q.12 Clearly |A| ă |B| and therefore by (D1),

 B P K ˚ pA_ Bq. Hence there is a minimal A-world, call it z, which is strictly smaller

wrt ďK than every B-world. Consequently, z ăK r1. Next we show that r “ z. Suppose

on the contrary that r ‰ z. Then, by construction, there is a q P r X K such that q P z.

Define C “ AYtqu. Then by (D1),  C P K ˚ pA_Cq and therefore A P K ˚ pA_Cq.

Hence, since C “ A Y tqu, from  C P K ˚ pA _ Cq we derive that q P K ˚ pA _ Cq

and consequently z R rK ˚ pA_Cqs. This however contradicts our original assumption

that z is a minimal A-world. Thus, r “ z and therefore r ăK r1 as desired. l

All PD preorders are Hamming preorders, but not the other way around. Let us take

a closer look at the difference between the two.

Given the initial world K, all remaining worlds can be partitioned according to the

number of atoms in which they differ from K. In both PD and Hamming preorders, the

worlds that differ from K in one atom, precede those that differ from K in two atoms,

which precede those that differ from K in three atoms, etc. On the other hand, the rela-

12More precisely, A “ tx P K : x P DiffpK, rqu Y t x P K : x P DiffpK, rqu. Likewise, for B.
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tive order of the worlds that belong to the same partition is quite different in Hamming

and PD preorders: in Hamming preorders the ordering with a partition is arbitrary,

whereas in PD preorders it is highly regulated. More precisely, in a PD preorder, the

way that the worlds in the first partition are ordered, fully determines the ordering of

the worlds in all subsequent partitions. In other words, if two PD preorders, faithful

to K, agree on the ordering of worlds that differ from K on one atom, then the two

preorders are identical. This observation has been the basis for formulating the extra

axioms required for PD revisions:

(D2) If K is complete, A �K B, p �K q, and q R B, then Ap �K Bq.

Axiom (D2) essentially says that if switching the literals in A is at least as easy

as switching the literals in B, and switching p is at least as easy as switching q, then

switching A and p together is at least as easy as switching B and q together (provided

that q is not already in B).

(D3) If K is complete, A �K B, p ăK q, and q R B, then Ap ăK Bq.

Axiom (D3) is essentially the strict version of (D2). Like in (D2), we assume that

reversing A is at least as easy as reversing B, but this time we assume that reversing p

is strictly easier than reversing q. In this case, says (D3), reversing A and p together is

strictly easier than reversing B and q together (provided that q R B).

(D4) If K is complete, A ăK B, p P K, q R B, and for all z P B, z �K q, then

Ap ăK Bq.

Axiom (D4) is based on a similar intuition as (D2) and (D3), but deals with a

different case. Suppose that reversing A is strictly easier than reversing B. Moreover

assume that reversing the literal q is at least as hard as reversing any literal z in B.

Then, says (D4), for any literal p P K, changing A and p together is strictly easier than

changing B and q together (provided that q is not already in B).
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Theorem 2. Let K be a consistent complete theory, ˚ an AGM revision function and

ďK the faithful preorder that ˚ assigns to K. If ďK is a PD preorder then ˚ satisfies

(D1) – (D4) at K.

Proof. Assume that ďK is a PD preorder. Then there exists a preorder Ĳ over P, such

that the preorder ĎĲK generated from Ĳ is identical to ďK .

To proceed with the proof we first need to introduce some more notation. For any

variable q P P, by qK we denote q itself if q P K, and the literal  q otherwise. Clearly,

since K is complete, qK P K for all q P P. For a set of variables A Ď P, by AK we

denote the set AK “ tqK : q P Au.

Next we show that for all p, q P P, p Ĳ q iff pK R K ˚ ppK _ qKq. Consider any

p, q P P such that p Ĳ q and suppose towards contradiction that pK P K ˚ ppK _ qKq.

From the latter we derive that there is a qK-world, call it r, such that r ĂĲK r1 for

all r1 P rpKs. Define r2 to be the world that agrees with K on all literals except q.

Then clearly, DiffpK, r2q “ tqu Ď DiffpK, rq. Hence DiffpK, r2q Ĳ DiffpK, rq and

consequently, r2 ĎĲK r. Next define u to be the world that agrees with K on all literals

except p. Thus DiffpK, uq “ tpu. Given that u |ù pK , we derive that r ĂĲK u, and

consequently, r2 ĂĲK u. Therefore DiffpK, r2q Ÿ DiffpK, uq, which leads us to q Ÿ p

contradicting our initial assumption p Ĳ q. Hence we have shown that if p Ĳ q then

p R K ˚ ppK _ qKq.

For the converse, suppose that p, q P P are such that pK R K ˚ ppK _ qKq. Then

there is a pK-world, call it r, such that r ĎĲK r1 for all r1 P rqKs. Let r2 be the the

world that agrees with K on all literals except p. Then DiffpK, r2q “ tpu Ď DiffpK, rq.

Consequently, r2 ĎĲK r. Define u to be the world that agrees with K on all literals

except q. Thus DiffpK, uq “ tqu. Given that u |ù qK , we derive that r ĎĲK u, and

consequently, r2 ĎĲK u. This again entails that p Ĳ q as desired. Hence we have shown

that for all p, q P P, p Ĳ q iff p R K ˚ ppK _ qKq.

We can now proceed to show the validity of the postulates (D1) – (D4).

For (D1), let A, B Ď P be such that  AK R K ˚ pAK _ BKq. We will show that
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|A| ď |B|. Assume on the contrary that |B| ă |A|. Call r the world that differs from

K only over the variables in B. Then clearly, DiffpK, rq “ B. Moreover, for any AK-

world r1, A Ď DiffpK, r1q. Therefore, from |B| ă |A|we derive that for any AK-world r1,

|DiffpK, rq| ă |DiffpK, r1q|, and consequently, DiffpK, rqŸDiffpK, r1q. This again entails

r ĂĲK r1, for all r1 P rAKs, and consequently,  AK P K ˚ pAK _ BKq. Contradiction.

For (D2), consider any p, q P P and A, B Ď P such that q R B. Assume that

 AK R K ˚ pAK _ BKq and pK R K ˚ ppK _ qKq. We will show that  pAK pKq R

K ˚ pAK pK _ BKqKq. From pK R K ˚ ppK _ qKq it follows that p Ĳ q. Moreover from

 AK R K˚pAK_BKqwe derive that there is a AK-world, call it r, such that r ĎĲK r1, for

all r1 P rAKsYrBKs. Define r2 to be the world that differs from K only over the variables

in A. Clearly then, since r P rAKs, we derive that DiffpK, r2q “ tAu Ď DiffpK, rq.

Consequently, r2 ĎĲK r. Next define u to be the world that differs from K only over the

variables in B. Then, DiffpK, uq “ B and u |ù BK . Hence, r ĎĲK u, and consequently

r2 ĎĲK u. This again entails that A Ĳ B. From this, p Ĳ q, and q R B, it is not hard to

derive that A Y tpu Ĳ BY tqu. Next define w to be the world that differ from K only

over the variables in A Y tpu. Clearly then, w |ù AK pK and DiffpK,wq “ A Y tpu.

Moreover observe that for any BKqK-world w1, B Y tqu Ď DiffpK,w1q and therefore

BY tqu Ĳ DiffpK,w1q. Since AY tpu Ĳ BY tqu we then derive that w ĎĲK w1 for all

w1 P rBKqKs. This again entails  pAK pKq R K ˚ pAK pK _ BKqKq as desired.

For (D3), consider any p, q P P and A, B Ď P such that q R B. Assume that  AK R

K˚pAK_BKq and qK P K˚ppK_qKq. We will show that BKqK P K˚pAK pK_BKqKq.

Firstly observe that from qK P K ˚ ppK _ qKq we derive that p Ÿ q. Moreover from

 AK R K˚pAK_BKqwe derive that there is a AK-world, call it r, such that r ĎĲK r1, for

all r1 P rAKsYrBKs. Define r2 to be the world that differs from K only over the variables

in A. Clearly then, since r P rAKs, it follows that DiffpK, r2q “ tAu Ď DiffpK, rq.

Consequently, r2 ĎĲK r. Next define u to be the world that differs from K only over the

variables in B. Then, DiffpK, uq “ B and u P rBKs. Hence, r ĎĲK u, and consequently

r2 ĎĲK u. This again entails that A Ĳ B, which in turn, when combined with pŸ q, and

q R B, leads to AYtpuŸBYtqu. Next define w to be the world that differ from K only

over the variables in A Y tpu. Clearly then, w P rAK pKs and DiffpK,wq “ A Y tpu.
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Moreover observe that for any BKqK-world w1, B Y tqu Ď DiffpK,w1q and therefore

BY tqu Ĳ DiffpK,w1q. Since A Y tpu Ÿ BY tqu we then derive that w ĂĲK w1 for all

w1 P rBKqKs. This again entails  BKqK P K ˚ pAK pK _ BKqKq as desired.

Finally for (D4), consider any p, q P P and A, B Ď P such that q R B. Assume

that  BK P K ˚ pAK _ BKq and for all z P B, zK R K ˚ pzK _ qKq. We will show

that  BKqK P K ˚ pAK pK _ BKqKq. First observe that from zK R K ˚ pzK _ qKq

for all z P B, we derive that z Ĳ q for all z P B. In other words, q is Ĳ-maximal

in B Y tqu. Moreover from  BK P K ˚ pAK _ BKq we derive that there is a AK-

world, call it r, such that r ĂĲK r1, for all r1 P rBKs. Define r2 to be the world that

differs from K only over the variables in A. Clearly then, since r P rAKs, it follows that

DiffpK, r2q “ tAu Ď DiffpK, rq. Consequently, r2 ĎĲK r. Next define u to be the world

that differs from K only over the variables in B. Then, DiffpK, uq “ B and u P rBKs.

Hence, r ĂĲK u, and consequently r2 ĂĲK u. This again entails that AŸB. Then because

q is Ĳ-maximal in B Y tqu, it is not hard to verify that A Y tpu Ÿ B Y tqu, for any

variable p P P. Define w to be the world that differ from K only over the variables in

A Y tpu. Clearly, w P rAK pKs and DiffpK,wq “ A Y tpu. Moreover observe that for

any BKqK-world w1, BY tqu Ď DiffpK,w1q and therefore BY tqu Ĳ DiffpK,w1q. Since

AYtpuŸ BYtqu we then derive that w ĂĲK w1 for all w1 P rBKqKs. This again entails

 BKqK P K ˚ pAK pK _ BKqKq. l

The converse of Theorem 2 is also true. To prove it though we need an auxiliary

result.

Consider the condition (DD) below (as usual, p denotes a literal, and A denotes a

set of literals):

(DD) If K is complete, p P K, A Ď K and p R A, then p P K ˚ A.

Lemma 3. Let K be a consistent complete theory, and ˚ an AGM revision function. If

˚ satisfies (D1) at K then it satisfies (DD).

Proof. Assume that K is a complete theory and ˚ an AGM revision function that sat-

isfies (D1) at K. Let ďK be the faithful preorder that ˚ assigns to K. By Theorem 1,
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ďK satisfies (H) at K. Let A Ď K be an arbitrary set of literal in K, and p a literal in K

such that p R A. Let r1 be any minimal A-world with respect to ďK . To prove (DD) it

suffices to show that r1 |ù p. Assume on the contrary that r1 |ù  p. Let pv be the propo-

sitional variable that appears in p. Clearly, since p P K and r1 |ù  p, it follows that

pv P DiffpK, r1q. We define r to be the world that agrees with r1 over all variables except

pv. Since p R A, and r1 |ù A, by construction it follows that r |ù A. Moreover, again by

construction, DiffpK, rq “ DiffpK, r1q´ tpvu, and therefore, |DiffpK, rq| ă |DiffpK, r1q|.

Condition (H) then entails that r ăK r1, which however contradicts our assumption that

r1 is a minimal A-world with respect to ďK . l

With Lemma 3 we can now prove the converse of Theorem 2

Theorem 3. Let K be a consistent complete theory, ˚ an AGM revision function and

ďK the faithful preorder that ˚ assigns to K. If ˚ satisfies (D1) – (D4) at K then ďK is

a PD preorder.

Proof. Assume that ˚ satisfies (D1) – (D4) at K, and let ďK be the faithful preorder

that ˚ assigns to K. We shall construct a preorder Ĳ over P, such that the induced PD

preorder ĎĲK overM, coincides with ďK .

First some notation. For any propositional variable z P P, we define zK to be z itself

if K |ù z, and  z otherwise. Since K is assumed to be compete, it clearly follows that

K |ù zK for all z P P.

We construct the preorder Ĳ over P as follows:

p Ĳ q iff pK R K ˚ p pK _ qKq

Firstly observe that Ĳ is indeed a total preorder over P. Reflexivity follows imme-

diately from the construction of Ĳ, and so does totality.

For transitivity, assume that p Ĳ q Ĳ z. From p Ĳ q we derive that pK R K ˚

ppK _ qKq, and consequently there exists a pK-world, call it r, that is ďK-minimal in

rpK _ qKs. Likewise, from q Ĳ z we derive that there exists a qK-world, call it r1, that
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is ďK-minimal in rqK _ zKs. Since r is ďK-minimal in rpK _ qKs and r1 P rqKs, it

follows that r ďK r1. Moreover, since r1 is ďK-minimal in rqK _ zKs and given that

rzKs Ď rqK _ zKs, we derive that r1 ďK r2 for all r2 P rzKs. From the transitivity of ďK

we then derive that r ďK r2 for all r2 P rzKs. This again entails that r is ďK-minimal

in rpK _ zKs, and consequently pK R K ˚ ppK _ zKq. Hence, p Ĳ z as desired.

Let ĎĲK be the preorder overM induced fromĲ at K. Consider two arbitrary worlds

r, r1 PM. To complete the proof it suffices to show that

r ĎĲK r1 iff r ďK r1

Since both ĎĲK and ďK are reflexive and they are both faithful to K, the above

equivalence follows immediately if r P rKs or r1 P rKs or r “ r1. Assume therefore

that r, r1 R rKs and r ‰ r1.

First consider the (easy) case where |DiffpK, rq| ‰ |DiffpK, r1q|. Without loss of

generality, let’s assume that |DiffpK, rq| ă |DiffpK, r1q|. Then clearly, by definition,

r ĂĲK r1. Moreover from Theorem 1, it also follows that r ăK r1.

Hence, if |DiffpK, rq| ‰ |DiffpK, r1q|, it holds that r ĎĲK r1 iff r ďK r1 as desired.

Next we consider the case where |DiffpK, rq| “ |DiffpK, r1q|. We will prove that

r ĎĲK r1 iff r ďK r1 by induction on the size of |DiffpK, rq|.

Base Case: Assume that |DiffpK, rq| “ |DiffpK, r1q| “ 1.

Then for some p, q P P, DiffpK, rq “ tpu and DiffpK, r1q “ tqu. This again entails

that r |ù pK and r1 |ù qK .

First assume that r ĎĲK r1. Then by the definition of ĎĲK we derive that p Ĳ q.

Therefore, by the construction of Ĳ, pK R K ˚ ppK _ qKq. Moreover, by Lemma 3 it

follows that r is the only ďK-minimal world in rpKs. Consequently pK R K ˚ppK_qKq

entails that r is also ďK-minimal in rpK _ qKs. Hence, from r1 P rqKs we derive that

r ďK r1 as desired. Thus we have shown that r ĎĲK r1 entails r ďK r1.

For the converse, assume that r ďK r1. From Lemma 3 it follows that r is the only

ďK-minimal world in rpKs, and r1 is the only ďK-minimal world in rqKs. Hence, from
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r ďK r1 we derive that pK R K ˚ ppK _ qKq. Thus p Ĳ q, and consequently r ĎĲK r1 as

desired.

Hence, the claim that r ĎĲK r1 iff r ďK r1 holds for |DiffpK, rq| “ |DiffpK, r1q| “ 1.

Induction Hypothesis:

Assume that for m ě 1, and any world u, u1 P M, if |DiffpK, rq| “ |DiffpK, r1q| “ m,

then it holds that u ĎĲK u1 iff u ďK u1.

Induction step:

We will show that for any for any r, r1 P M, if |DiffpK, rq| “ |DiffpK, r1q| “ m ` 1,

then it holds that r ĎĲK r1 iff r ďK r1.

Let r, r1 PM be such that |DiffpK, rq| “ |DiffpK, r1q| “ m` 1. We start by showing

that r ĎĲK r1 entails r ďK r1. We distinguish between three cases.

First assume that |DiffpK, rqz| = |DiffpK, r1qz| for all z P P. Let p and q be Ĳ-

maximal elements of DiffpK, rq and DiffpK, r1q respectively. It is not hard to verify that

p Ĳ q and DiffpK, rq ´ tpu Ĳ DiffpK, r1q ´ tqu.13 Define u to be the world that differs

from r only in p, and u1 to be the world that differs from r1 only in q. Then, DiffpK, uq “

DiffpK, rq ´ tpu and DiffpK, u1q “ DiffpK, r1q ´ tqu. Hence, from DiffpK, rq ´ tpu Ĳ

DiffpK, r1q ´ tqu, we derive that u ĎĲK u1. Moreover, |DiffpK, uq| “ |DiffpK, u1q| “ m

and therefore by the induction hypothesis, u ďK u1. Call A, B the set of literals in K

over the variables in DiffpK, uq and DiffpK, u1q respectively. From Lemma 3 it follows

that u is ďK-minimal in rAs, and u1 is ďK-minimal in rBs. Hence, from u ďK u1 it

follows that  pAq R K ˚ pA _ Bq. Consequently, since p Ĳ q, from (D2) we derive

that  pApKq R K ˚ pApK _ BqKq. Hence all ďK-minimal worlds in rApKs belong to

rK ˚pApK_BqKqs. Observe that by the definition of A and Lemma 3, r is the only ďK-

minimal world in rAps. Therefore, r P rK ˚ pAp_ Bqqs. Consequently, since r1 P rBqs,

we derive that r ďK r1.

For the second case, assume that for some z P P, |DiffpK, rqz| ą |DiffpK, r1qz|, and

that |DiffpK, rqz1 | “ |DiffpK, r1qz1 |, for all z1 Ĳ z; moreover, assume that there exists

13Of course the converse also holds: q Ĳ p and DiffpK, r1q ´ tqu Ĳ DiffpK, rq ´ tpu.
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p P DiffpK, rq such that zŸ p.

Let q be a Ĳ-maximal element in DiffpK, r1q. Since |DiffpK, rq| “ |DiffpK, r1q|, by

the assumptions of the case we derive that z Ÿ q. Then it is not hard to verify that

DiffpK, rq´ tpuŸDiffpK, r1q´ tqu. Define u to be the world that differs from r only in

p, and u to be the world that differs from r only in q. Then, DiffpK, uq “ DiffpK, rq´tpu

and DiffpK, u1q “ DiffpK, r1q ´ tqu. Hence, from DiffpK, rq ´ tpu Ÿ DiffpK, r1q ´ tqu,

we derive that u ĂĲK u1. Moreover, |DiffpK, uq| “ |DiffpK, u1q| “ m, and therefore by

the induction hypothesis, u ăK u1. Call A, B, the set of literals in K over the variables in

DiffpK, uq and DiffpK, u1q respectively. From Lemma 3 it follows that u is the only ďK-

minimal in rAs, and u1 is the only ďK-minimal in rBs. Hence, from u ăK u1 it follows

that  B P K ˚ pA _ Bq. Moreover, since q is Ĳ-maximal in DiffpK, r1q, we derive that

z1 R K ˚ pz1 _ qKq for all z1 P B. Consequently from (D4),  BqK P K ˚ pApK _ BqKq.

Observe that by Lemma 3, r is the only ďK-minimal worlds in rAps and r1 is the only

ďK-minimal worlds in rBqs. Thus from  Bq P K ˚ pAp_ Bqq we derive that r ăK r1.

For the third case, assume that for some z P P, |DiffpK, rqz| ą |DiffpK, r1qz|, and

that |DiffpK, rqz1 | “ |DiffpK, r1qz1 |, for all z1 Ĳ z; moreover assume that p Ĳ z, for all

p P DiffpK, rq.

Clearly, z is maximal in DiffpK, rq. Define q to be the maximal element of DiffpK, r1q.

It is not hard to see that zŸ q. Next we show that DiffpK, rq ´ tzu Ĳ DiffpK, r1q ´ tqu.

Observe that, if z is the only maximal element in DiffpK, rq, then DiffpK, rq´tzu “
Ť

z1Ÿz DiffpK, rqz1 . Hence, since for all z1Ÿ z it holds that |DiffpK, rqz1 | “ |DiffpK, r1qz1 |,

we derive that DiffpK, rq ´ tzu Ĳ DiffpK, r1q ´ tqu.14 If on the other hand there is

a p ‰ z such that z Ĳ p then, it is not hard to verify that from the assumptions of

the case, it follows that |pDiffpK, rq ´ tzuqz1 | “ |pDiffpK, r1q ´ tquqz1 | for all z1 Ÿ p,

and |pDiffpK, rq ´ tzuqp| ě |pDiffpK, r1q ´ tquqp|. From this and |DiffpK, rq ´ tzu| “

|DiffpK, r1q ´ tqu| we derive that once again DiffpK, rq ´ tzu Ĳ DiffpK, r1q ´ tqu.

Next we proceed in a fashion similar to the previous case. In particular, define u to

14Notice that for all z1 Ÿ z, DiffpK, rqz1 “ pDiffpK, rq ´ tzuqz1 and DiffpK, r1qz1 “ pDiffpK, r1q ´ tquqz1 .
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be the world that differs from r only in z, and u to be the world that differs from r only in

q. Then, DiffpK, uq “ DiffpK, rq´ tzu and DiffpK, u1q “ DiffpK, r1q´ tqu. Hence, from

DiffpK, rq ´ tzu Ĳ DiffpK, r1q ´ tqu, we derive that u ĎĲK u1. Moreover, |DiffpK, uq| “

|DiffpK, u1q| “ m, and therefore by the induction hypothesis, u ďK u1. Call A, B, the

set of literals in K over the variables in DiffpK, uq and DiffpK, u1q respectively. From

Lemma 3 it follows that u is ďK-minimal in rAs, and u1 is ďK-minimal in rBs. Hence,

from u ďK u1 it follows that  A R K ˚ pA_ Bq. Consequently, since zŸ q, from (D3)

we derive that  pApKq R K ˚ pApK _ BqKq. Hence, rK ˚ pApK _ BqKqs contains a

ApK-world. Observe that by the definition of A and Lemma 3, r is a ďK-minimal world

in rApKs. Therefore, r P rK ˚pApK_BqKqs. Consequently, since r1 P rBqKs, we derive

that r ďK r1.

We have thus shown that r ĎĲK r1 entails r ďK r1 (under the assumptions of the

induction step).

For the converse, assume that r ďK r1. Let p, q beĲ-maximal elements in DiffpK, rq

and DiffpK, r1q respectively. Moreover, let A, B be the set of literals in K over DiffpK, rq´

tpu and over DiffpK, r1q ´ tqu respectively. From Lemma 3 it follows that r is ďK-

minimal in rApKs and r1 is ďK-minimal in rBqKs. Hence, since r ďK r1 we derive that

 pApKq R K ˚ pApK _ BqKq. Moreover, since p is Ĳ-maximal in DiffpK, rq, we have

that for all z P DiffpK, rq, zK R K ˚ pzK _ pKq. Consequently, from the counter-positive

of (D4) we derive that  A R K ˚ pA_ Bq.

Let u be the world that agrees with r over all variables except p, and let u1 be the

world that agrees with r1 over all variables except q. Clearly, u P rAs and u1 P rBs.

From Lemma 3 it follows that u is a ďK-minimal world in rAs. Hence from  A R

K ˚ pA_ Bq, we derive that u is also ďK-minimal in rA_ Bs. Therefore, from u1 P rBs

it follows that u ďK u1. Consequently, by the induction hypothesis, u ĎĲK u1. Hence,

DiffpK, uq Ĳ DiffpK, u1q or equivalently, DiffpK, rq ´ tpu Ĳ DiffpK, r1q ´ tqu. We

proceed by distinguishing between three cases.

First, assume that p Ĳ q and DiffpK, r1q ´ tqu Ĳ DiffpK, rq ´ tpu. Since we have

shown that DiffpK, rq´ tpu Ĳ DiffpK, r1q´ tqu, we derive that |pDiffpK, rq´ tpuqz1 | “
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|pDiffpK, r1q ´ tquz1q| for all z1 P P. Consequently, either |DiffpK, rqz1 | “ |DiffpK, r1qz1 |

for all z1 P P, or |DiffpK, rqp| ą |DiffpK, r1qp| and |DiffpK, rqz1 | “ |DiffpK, r1qz1 | for all

z1 Ÿ p. In either case DiffpK, rq Ĳ DiffpK, r1q and therefore r ĎĲK r1.

For the second case, assume that p Ĳ q and DiffpK, rq´tpuŸDiffpK, r1q´tqu. Then

for some z P P, |pDiffpK, rq´tpuqz| ą |pDiffpK, r1q´tquqzq| and |pDiffpK, rq´tpuqz1 | “

|pDiffpK, r1q ´ tquqz1q| for all z1 Ÿ z. If z Ÿ p, or if p and q are equivalent wrt Ĳ (i.e.,

p Ĳ q and q Ĳ p), we derive that |DiffpK, rqz| ą |DiffpK, r1qz| and |DiffpK, rqz1 | “

|DiffpK, r1qz1 | for all z1 Ÿ z; thus r ĎĲK r1. If on the other hand p Ĳ z and p Ÿ q, then

|DiffpK, rqp| ą |DiffpK, r1qp| and |DiffpK, rqz1 | “ |DiffpK, r1qz1 | for all z1 Ÿ p. Hence,

once again, r ĎĲK r1.

For the third case, assume that q Ÿ p. If  B R K ˚ pA _ Bq, then from (D3) we

derive that  ApK P K ˚ pApK _ BqKq. This however contradicts our initial assumption

that r ďK r1 (recall that by Lemma 3, r and r1 are ďK-minimal in rAps and rBqs

respectively). Hence we derive that  B P K ˚ pA _ Bq, and therefore u ăK u1. By the

induction hypothesis we then derive that u ĂĲK u1, and therefore DiffpK, rq ´ tpu Ÿ

DiffpK, r1q ´ tqu. Hence, since q is Ĳ-maximal in DiffpK, r1q, it is not hard to verify

that by the definition of Ĳ, DiffpK, rq Ĳ DiffpK, r1q, and therefore r ĎĲK r1. l

According to Theorem 3, if the revision function ˚ satisfies (D1) – (D4) at K, then

there exists a preorderĲ over P, such that ĎĲK is identical to the preorder that ˚ assigns

to K. Clearly, if ˚ also satisfies (D1) – (D4) at some other theory H, then Theorem 3

entails that the preorder that ˚ assigns to H can also be induced from some preorderĲ1

over atoms. Notice however, that Ĳ and Ĳ1 are not necessarily the same. To ensure this

we need the axiom (D5) below:

(D5) If K,H are complete, p �K q, x P tp, pu, y P tq, qu and x, y P H, then x �H y.

Axiom (D5) says that if for a given theory K it is at least as easy to reverse p as it

is to reverse q, then this relationship is preserved for any other theory H and any other

two literals x, y that share the same atoms with p and q respectively; for example if

p �K q and  p, q P H, then  p �H q.
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It can be shown that the addition of (D5) to (D1) – (D4) suffices to characterise the

AGM revision functions that assign PD preorders to every consistent complete theory,

all of which are generated from the same preorder Ĳ over P.

Theorem 4. If ˚ is a PD operator, then (D5) is satisfied for any two consistent complete

theories K, H.

Proof. Assume that ˚ is a PD operator, and let Ĳ be the preorder over atoms that

induces ˚.

Next some notation that we shall use in this proof. For any literal x, we define the

variable of x, denote xv as follows: if x P P then xv “ x; if on the other hand x “  y

for some y P P, then xv “ y.

Consider now any two consistent complete theories K, H and literals p, q, x, y such

that p, q P K, x, y P H, x P tp, pu, y P tq, qu, and p R K ˚ pp _ qq. We will show that

x R H ˚ px_ yq.

From p R K ˚ pp _ qq it follows that there is a world r P rps such that r is ĎĲK -

minimal in rp _ qs. Hence there is a world w P rKs such that Diffpw, rq Ĳ Diffpw1, r1q

for all w1 P rKs and all r1 P rqs. It is not hard to verify that r agrees with w over all

variables except pv; i.e., Diffpw, rq “ tpvu. Define r1 to be the world that agrees with

w over all variables except qv; i.e., Diffpw, r1q “ tqvu. Clearly, r1 P rqs and therefore

Diffpw, rq Ĳ Diffpw, r1q. Hence we derive that pv Ĳ qv.

Since x P tp, pu and y P tq, qu, it follows that xv Ĳ yv. Let u be any world in

rHs and s the world that agrees with u over all variables except xv. Then s P rxs

and Diffpu, sq “ txvu. Moreover obverse that for any world s1 P rx _ ys and any

u1 P rHs, Diffpu1, s1q contains at least one of xv or yv. Hence from xv Ĳ yv we derive

that Diffpu, sq Ĳ Diffpu1, s1q for all u1 P rHs and s1 P rx_ ys. This again entails that s is

ĎĲH -minimal in rx_ ys and therefore x R H ˚ px_ yq. l

The following corollary follows immediately from Theorems 2, 3, and 4:

Corollary 1. Let ˚ be an AGM revision function. Then ˚ satisfies (D1) – (D5) iff there
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exists a total preorder over atoms Ĳ, such that ĎĲK is identical to the faithful preorder

that ˚ assigns to K, for all consistent complete theories K.

5.2. The General Case

We now turn to the general case of arbitrary consistent theories as belief sets. The

characterisation of PD revision for this case requires some extra notation.

Consider any two possible worlds w,w1 and a sentence ϕ P L. By ϕpw,w1q we

denote the sentence produced from ϕ by replacing every variable in Diffpw,w1q with its

negation.

For example, consider the worlds w “ abc and w1 “ abc (over the language built

from the propositional variables a, b, and c). Clearly, Diffpw,w1q “ ta, bu. Hence for

ϕ “ p a_ cq ^ b, it follows that ϕpw,w1q “ p  a_ cq ^  b, which of course is

equivalent to pa_ cq ^ b.

Intuitively, the above mapping translates any sentence ϕ into a sentence ϕpw,w1q

that “differs” from w1 in exactly the same way that ϕ “differs” from w. This is made

more precise by the following lemma:

Lemma 4. Let w,w1, r, r1 be possible worlds such that Diffpw, rq “ Diffpw1, r1q. Then

for any contigent sentence ϕ P L, r P rϕs iff r1 P rϕpw,w1qs.

Proof. Let ϕ be a consistent sentence of L. We prove the lemma by induction on

the number of boolean operators in ϕ.

Firstly assume that ϕ has no boolean operators (base case of the induction). Hence

ϕ is a propositional variable. If ϕ R Diffpw,w1q, then ϕpw,w1q “ ϕ, and therefore either

both w,w1 satisfy ϕ or they both falsify it. Consequently, since Diffpw, rq “ Diffpw1, r1q,

either both r, r1 satisfy ϕ or they both falsify it. That is, r P rϕs iff r1 P rϕpw,w1qs as

desired.

Assume that the lemma holds for any sentence ϕ with up to k boolean operators

(induction hypothesis).
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Consider now a sentence ϕ with k ` 1 boolean operators (induction step). We dis-

tinguish between five cases depending on which of the boolean connective is the main

connective of ϕ.

Suppose that the main connective of ϕ is negation, i.e. ϕ =  ψ for some sentence

ψ P L. Clearly ψ has k connectives, it is contingent (since ϕ is contingent) and there-

fore by the induction hypothesis, r P rψs iff r1 P rψpw,w1qs. Moreover, by definition,

p ψqpw,w1q “  pψpw,w1qq. Consequently, r P r ψs iff r1 P rp ψqpw,w1qs, or equiv-

alently, r P rϕs iff r1 P rϕpw,w1qs as desired.

Next assume that the main connective is disjunction, i.e. ϕ = χ _ ψ for some sen-

tences χ, ψ P L. Clearly each of χ, ψ have at most k boolean connectives. Moreover,

since ϕ is contingent, either both χ and ψ are contingent, or one of them is a contradic-

tion and the other is a contingent sentence.

In the former case, by the induction hypothesis we derive that r P rχs iff r1 P

rχpw,w1qs and r P rψs iff r1 P rψpw,w1qs. Hence r P rχ _ ψs iff r1 P rχpw,w1q _

ψpw,w1qs. Finally observe that by definition, pχ _ ψqpw,w1q = χpw,w1q _ ψpw,w1q.

Therefore r P rϕs iff r1 P rϕpw,w1qs as desired.

In the latter case, we can assume without loss of generality that χ is a contradiction

and ψ is contingent. By the induction hypothesis we get that r P rψs iff r1 P rψpw,w1qs.

Moreover it is not hard to verify that since χ is inconsistent replacing any variable

in χ with its negation preserves inconsistency. Therefore χpw,w1q is also inconsistent.

Consequently it follows that r1 P rχpw,w1q _ ψpw,w1qs. Hence since pχ_ ψqpw,w1q =

χpw,w1q _ ψpw,w1q, we derive that r P rϕs iff r1 P rϕpw,w1qs as desired.

The remaining three cases where the main connective of ϕ is conjunction, implica-

tion, and equivalence, are totally analogous to the previous case. l

Lemma 4 entails immediately the following corollary which confirms more explic-

itly our statement that w differs from ϕ in exactly the same way that w1 differs from

ϕpw,w1q; or equivalently, that ϕpw,w1q is, loosely speaking, what ϕ looks like when

our point of view changes from w to w1:
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Corollary 2. Let w,w1 be any two possible worlds and ϕ P L a contingent sentence.

For each r P rϕs there is a r1 P rϕpw,w1qs such that Diffpw, rq “ Diffpw1, r1q; and

conversely, for each r1 P rϕpw,w1qs there is a r P rϕs such that Diffpw, rq “ Diffpw1, r1q.

The following property is the only one we need to add to (D1) – (D5) in order to

characterise PD revision for the general case:

pD6q K˚ϕ “ Cnp_

$

&

%

ψ P L : for some w P rKs, Cnpψq “ w ˚ ϕ, and for all

w1 P rKs,  ψpw,w1q R w1 ˚ pϕ_ ψpw,w1qq

,

.

-

q

Conditions (D6) defines the revision by ϕ of any consistent theory K, in terms of

the revision by ϕ of the possible worlds w of K (i.e. w P rKs). Loosely speaking, (D6)

says that K˚ϕ is the disjunction of all w˚ϕwith w P rKs, for which there is no w1 P rKs

such that ϕ is strictly more plausible than w ˚ ϕ when the latter is seen from w1’s point

of view.

Theorem 5. Let ˚ be a PD operator and K a consistent theory of L. Then for all

consistent sentences ϕ P L, (D6) is satisfied.

Proof. Since ˚ is a PD operator, there exists a preorder Ĳ over the atoms of L that

determines the faithful preorder assigned to K.

Let ϕ P L be any consistent sentence. We prove the theorem by showing that rK˚ϕs

= r_tψ P L : for some w P rKs, Cnpψq “ w ˚ ϕ, and for all w1 P rKs,  ψpw,w1q R

w1 ˚ pϕ_ ψpw,w1qqus.

LHS Ď RHS

Consider any r P rK ˚ ϕs. Then r P rϕs and moreover, there exists a z P rKs such that

Diffpz, rq Ĳ Diffpz1, r1q, for all z1 P rKs and r1 P rϕs; i.e. Diffpz, rq is Ĳ-minimal among

all Diffpz1, r1q for which z1 P rKs and r1 P rϕs. Clearly then r P rz ˚ ϕs.

Let ψ be any sentence such that Cnpψq “ z ˚ ϕ15 and assume towards contradiction

that r R r_tψ P L : for some w P rKs, Cnpψq “ w˚ϕ, and for all w1 P rKs, ψpw,w1q R

15Since L is assumed to be a propositional language built from finitely many propositional variables, such

a sentence ψ always exists

31



w1 ˚ pϕ _ ψpw,w1qqus. Then, since r P rz ˚ ϕs and z P rKs, we derive that there exists

a z1 P rKs such that  ψpz, z1q P z1 ˚ pϕ _ ψpz, z1qqus. This in turn entails that there is a

world u1 P rϕs such that Diffpz1, u1q Ÿ Diffpz2, u2q for all z2 P rKs and u2 P rψpz, z1qs.

In particular, Diffpz1, u1q Ÿ Diffpz1, u2q, for all u2 P rψpz, z1qs. This however, in view of

Corollary 2, leads us to a contradiction. Indeed, from Corollary 2 we derive that there

is a world r2 P rψpz, z1qs such that Diffpz, rq “ Diffpz1, r2q. Combining the above it

follows that Diffpz1, u1q Ÿ Diffpz, rq. Given that z1 P rKs and u1 P rϕs, this contradicts

our initial assumption about the Ĳ-minimality of Diffpz, rq.

RHS Ď LHS

Let r be any world in r_tψ P L : for some w P rKs, Cnpψq “ w ˚ ϕ, and for all

w1 P rKs,  ψpw,w1q R w1 ˚ pϕ_ ψpw,w1qqus.

Then there exists ψ P L such that for some w P rKs, Cnpψq “ w ˚ ϕ, r P rw ˚ ϕs

and for all w1 P rKs,  ψpw,w1q R w1 ˚ pϕ _ ψpw,w1qq. From r P rw ˚ ϕs we derive

that, firstly, r P rϕs, and moreover Diffpw, rq Ĳ Diffpw, r2q r2 P rϕs. Likewise, from

 ψpw,w1q R w1 ˚ pϕ _ ψpw,w1qq we derive that there is a u P rψpw,w1qs such that

Diffpw1, uq Ĳ Diffpw2, u2q for all w2 P rKs and u2 P rϕs. Finally, from Collorary 2

we then derive that there is a r1 P rϕs such that Diffpw, r1q “ Diffpw1, uq. Therefore,

Diffpw, r1q Ĳ Diffpw2, u2q for all w2 P rKs and u2 P rϕs. Moreover, since r1 P rϕs it

follows that Diffpw, rq Ĳ Diffpw, r1q. Hence Diffpw, rq Ĳ Diffpw2, u2q for all w2 P rKs

and u2 P rϕs, which again entails that r P rK ˚ ϕs. l

Theorem 6. An AGM revision function ˚ is a PD operator iff it satisfies (D1) – (D6).

Proof. The fact that all PD operators satisfy (D1) – (D6) follows from previous

results.

For the converse, assume that (D1) – (D6) are satisfied. In this case we have already

shown that the restriction of ˚ to complete theories is a PD operator. That is, there exists

a preorder Ĳ over the atoms of L, such that the faithful preorders assigned by ˚ to any

consistent complete theory is the one induced from Ĳ. To complete the proof we need

to show that this is also the case for any incomplete theory K. In particular, it suffices to
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show that for any sentence ϕ, the revision of K by ϕ as specified by (D6) is identical to

revising K by ϕ in accordance to the faithful preorder induced byĲ at K. This however

follows from Theorem 5. l

6. Properties of PD Operators

In this section we look at some of the properties of PD operators, starting with their

relationship with Parikh’s notion of relevance-sensitive belief revision.

In [15], Parikh introduced a new postulate for belief revision, called postulate (P),

to capture the intuition that when revising her belief, a rational agent changes only the

part of her belief set that is relevant to the new information.

(P) If K = Cnpχ, ψq where χ, ψ are sentences of disjoint sublanguages L1, L2 re-

spectively, and φ P L1, then K ˚ φ = pCnL1pχq ˝ φq ` ψ, where ˝ is a revision

operator of the sublanguage L1.

The intuition behind (P) should be obvious: when a belief set can be split into two

(syntactically) disjoint compartments, and the new information φ can be expressed in

terms of the language of the first compartment alone, then it is only the first compart-

ment that is revised by φ (considered the one relevant to φ); the beliefs in the second

compartment remain unaffected.

Postulate (P) was further analysed in [22] and two different interpretations of it

were identified, called the weak and the strong version of (P). The weak version of

postulate (P), which we denote (wP), is much more general and intuitive, and it is this

version we shall use herein.

Before presenting (wP) we need some more notation: for any sentence x, Lx denotes

the (unique) smallest language in which x can be expressed. Moreover, Lx denotes the

complement language, that is the language built from the propositional variables that

do not appear in Lx. With this additional notation we can now present (wP):

(wP) If K “ Cnptx, yuq, Lx X Ly “ H, and ϕ P Lx, then pK ˚ ϕq X Lx “ K X Lx.
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Postulate (wP) is weaker than (P) since it only requires that the non-relevant part

of K remains unchanged; it makes no commitment on how the relevant part of K is

affected.

In [22], (wP) was characterised semantically in terms of constraints over faithful

preorders.

First however, we recall some additional notation and definitions from [22].

For any nonempty set of propositional variables S Ď P, by LS we shall denote

the propositional language built from the variables in S . Moreover, we extend in the

following the definition of difference, Diff, between worlds, to include the difference

between an arbitrary consistent theory K and a world r.

In particular, consider now a consistent theory K, and let Q = tQ1, . . . ,Qnu be a

partition of P; i.e.,
Ť

Q “ P, Qi ‰ H, and Qi X Q j “ H, for all 1 ď i ‰ j ď n.

We say that Q = tQ1, . . . ,Qnu is a K-splitting iff there exist sentences φ1 P LQ1 , . . . ,

φn P LQn , such that K = Cnptφ1, . . ., φnuq. Parikh has shown in [15] that for every theory

K there is a unique finest K-splitting, i.e., one which refines every other K-splitting.16

In [22], the difference between an arbitrary consistent theory K and a world r was

defined using the finest splitting of K, call it F, as follows: DiffpK, rq =
Ť

tFi P F :

for some φ P LFi , K |ù φ and r |ù  φu (see [22] for a detailed discussion on this

definition).

With the extended definition of Diff, it was shown in [22] that (wP) can be seman-

tically characterised by the following two constraints:

(Q1) If DiffpK, rq Ă DiffpK, r1q and Diffpr, r1q X DiffpK, rq =H, then r ă r1.

(Q2) If DiffpK, rq “ DiffpK, r1q and Diffpr, r1q X DiffpK, rq =H, then r « r1.

Theorem 7. [22]. Let ˚ be a revision function satisfying (K*1) - (K*8), K a consistent

theory, and ďK a preorder faithful to K, that corresponds to ˚ at K by means of (ď˚).

16A partition Q1 refines another partition Q, iff for every Q1i P Q1 there is Q j P Q, such that Q1i Ď Q j.
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Then ˚ satisfies (wP) at K iff ďK satisfies (Q1) - (Q2).

It was furthermore shown in [22] that (wP) is consistent with the AGM postulates

(K*1) - (K*8).

Next we show that all PD operators satisfy (wP). To this aim we recall the following

lemma from [15]:

Lemma A [15]. Let K be a theory and tQ1, . . . ,Qnu a partition of P. If tQ1, . . . ,Qnu

is a K–splitting, then for any r1, . . . , rn P rKs, Mixpr1, . . . , rn; Q1, . . . ,Qnq belongs to

rKs. Conversely, if Mixpr1, . . . , rn; Q1, . . . ,Qnq belongs to rKs for all r1, . . . , rn P rKs,

then tQ1, . . . ,Qnu is a K–splitting.

In the lemma above, Mixpr1, . . . , rn; Q1, . . . ,Qnq denotes the unique world r that

agrees with r1 on the variables in Q1, with r2 on the variables in Q2, . . ., and with rn on

the variables in Qn.

We can now prove the theorem alluded earlier.

Theorem 8. Let ˚ be a PD operator and K a consistent theory of L. Then for all

consistent φ P L, (wP) is satisfied.

Proof Let Ĳ be the total preorder over atoms that induces ˚. By definition, the

faithful preorder that ˚ assigns to K is ĎĲK .

In view of Theorem 7, to prove (wP) it suffices to show that ĎĲK satisfies (Q1)

– (Q2). The proof of (Q1) follows the same line of reasoning used in the proof of

Theorem 7 in [22]; the proof of (Q2) is somewhat different.

Starting with condition (Q1), let r, r1 be any two possible worlds such that DiffpK, rq

Ă DiffpK, r1q and Diffpr, r1q XDiffpK, rq “ H. Then clearly, P´DiffpK, rq ‰ H. Let u

be a world in rKs that agrees with r on all variables in P ´ DiffpK, rq.17 Moreover, let

17To see that such a world indeed exists, consider the sentence ψ defined as the conjunction of all literals

in r that are built from variables in P ´ DiffpK, rq. Clearly then, r |ù ψ. Moreover,  ψ R K, for otherwise

DiffpK, rq would include variables from P´ DiffpK, rq, which is of course a contradiction. Hence there is a
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z be a K-world that differs in the least number of variables from r when restricted to

DiffpK, rq; i.e., |Diffpz, rqXDiffpK, rq| ď |Diffpz1, rqXDiffpK, rq| for all z1 P rKs. Define

w to be the world that agrees with z on the variables in DiffpK, rq and agrees with u on

the remaining variables. Clearly, Diffpw, rq Ď DiffpK, rq. Moreover, by the definition of

Diff, tDiffpK, rq, P´DiffpK, rqu is a K-splitting, and consequently from Lemma A and

the fact that z, u P rKs, we derive that w P rKs.

Consider now any world w1 P rKs. Since DiffpK, rq Ă DiffpK, r1q, there is at least

one sentence µ, built entirely from variables in P ´ DiffpK, rq, such that K |ù µ and

r1 |ù  µ. Hence from w1 P rKs, we derive that Diffpw1, r1q X pP ´ DiffpK, rqq ‰ H

and consequently, |Diffpw1, r1q X pP´ DiffpK, rqq| ą 0. Moreover, since r and r1 agree

on the variables in DiffpK, rq it follows that |Diffpw1, r1q X DiffpK, rqq| = |Diffpw1, rq X

DiffpK, rqq|. Consequently, |Diffpw1, r1q| “ |Diffpw1, r1q X DiffpK, rqq| ` |Diffpw1, r1q X

pP´DiffpK, rqq| ą |Diffpw1, r1qXDiffpK, rqq| “ |Diffpw1, rqXDiffpK, rqq| ě |Diffpw, rqX

DiffpK, rqq| “ |Diffpw, rq|. Hence we have shown that |Diffpw, rq| ă |Diffpw1, r1q| for

all w1 P rKs. This again entails that r ĂĲK r1 as desired.

For (Q2), let K be a consistent theory and let r, r1 be any two possible worlds such

that DiffpK, rq “ DiffpK, r1q and Diffpr, r1q X DiffpK, rq “ H. If DiffpK, rq “ P then

r “ r1 and (Q2) trivially holds. Moreover, if DiffpK, rq “ H, then r, r1 P rKs and

therefore (Q2) follows from the fact that ĎĲK is faithful to K. Assume therefore that

H ‰ DiffpK, rq Ă P.

Let Q be the set, Q = tDiffpu, rq : u P rKsu and let Diffpw, rq be a minimal element

of Q with respect of Ĳ; i.e., w P rKs and for all u P rKs, Diffpw, rq Ĳ Diffpu, rq.

Next we show that Diffpw, rq Ď DiffpK, rq. Assume on the contrary that Diffpw, rqX

pP´DiffpK, rqq ‰ H. Since r does not differ from K in any variables in P´DiffpK, rq,

we derive that there is a v P rKs that agrees with r on all variables in P ´ DiffpK, rq

(see Footnote 17). Define z to be the world that agrees with w on the variables in

DiffpK, rq and agrees with v on the remaining variables. Then Diffpz, rq Ă Diffpw, rq

u P rKs such that u |ù ψ. By the construction of ψ it follows that u agrees with r on all variables outside

DiffpK, rq.
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and moreover, since tDiffpK, rq, P´DiffpK, rqu is a K-splitting, by Lemma A, z P rKs.

This however contradicts our assumption that Diffpw, rq is Ĳ-minimal in Q. Hence

we have shown that Diffpw, rq Ď DiffpK, rq; i.e., w agrees with r over all variables in

P´ DiffpK, rq.

Now pick a world w1 P rKs such that Diffpw1, r1q is Ĳ-minimal in the set Q1 “

tDiffpu, r1q : u P rKsu. By a similar argument as the one above, we derive that

Diffpw1, r1q Ď DiffpK, rq.

Next we show that Diffpw, rq Ĳ Diffpw1, r1q. Assume towards contradiction that

Diffpw1, r1q Ÿ Diffpw, rq. Define z to be the world that agrees with w1 over the variables

in DiffpK, rq, and it agrees with w over all remaining variables. By Lemma A, z P rKs.

Moreover by construction, Diffpz, rq Ď DiffpK, rq. Hence, since r and r1 agree over

the variables in DiffpK, rq, and so do z and w1, we derive that Diffpz, rq “ Diffpw1, r1q.

From Diffpw1, r1q ŸDiffpw, rq we then derive that Diffpz, rq ŸDiffpw, rq. This of course

contradicts our initial assumption that Diffpw, rq isĲ-minimal in tDiffpu, rq : u P rKsu.

Thus we have shown that Diffpw, rq Ĳ Diffpw1, r1q. Since Diffpw1, r1q is Ĳ-minimal

in tDiffpu, r1q : u P rKsu we derive that Diffpw, rq Ĳ Diffpu, r1q, for all u P rKs.

Consequently, r ĎĲK r1.

By a totally symmetric argument we also derive that r1 ĎĲK r, thus proving (Q2). l

The next two properties satisfied by PD operators make connections between the

revision policies related to different theories. They arise from the fact that all faith-

ful preorders (over different theories) related to a PD operator ˚, are generated by a

common preorder over atoms Ĳ:

(N1) If  ϕ R K ˚ pϕ_ ψq and  ϕ R H ˚ pϕ_ ψq, then  ϕ R pK X Hq ˚ pϕ_ ψq.

(N2) If  ϕ P K ˚ pϕ_ ψq and  ϕ P H ˚ pϕ_ ψq, then  ϕ P pK X Hq ˚ pϕ_ ψq.

Both conditions are intuitive and easy to understand: (N1) says that if bringing

about ϕ is at least as easy as bringing about ψ, regardless of whether one starts at K or

at H, then this is also true when one starts at the belief set containing the beliefs that
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are common in K and H.

Condition (N2) is drawn from the same intuition: if it is (strictly) easier to bring

about ψ than it is to if bringing about ϕ, regardless of whether the initial belief set is K

or H, then this is also true for the belief set containing the common beliefs of K and H.

Theorem 9. Let ˚ be a PD operator and K, H consistent theories of L. Then for all

consistent ϕ, ψ P L, conditions (N1) – (N2) are satisfied.

Proof. Let Ĳ be the total preorder over atoms that generates the PD operator ˚.

Then, by definition, the faithful preorders that ˚ assigns to K and H are ĎĲK and ĎĲH

respectively.

For condition (N1), let ϕ, ψ be consistent sentences in L such that ϕ R K ˚pϕ_ψq

and  ϕ R H ˚ pϕ _ ψq. Then there exist worlds r, u P rϕs such that r ĎĲK v and

u ĎĲH v for all v P rψs. Consequently, there exist worlds w P rKs and z P rHs such that

Diffpw, rq Ĳ Diffpw1, vq, and Diffpz, uq Ĳ Diffpz1, vq for all w1 P rKs, z1 P rHs, and v P

rψs. Since Ĳ is total, Diffpw, rq Ĳ Diffpz, uq or Diffpz, uq Ĳ Diffpw, rq. Without loss of

generality we assume the former. Then, Diffpw, rq Ĳ Diffpw1, vq, for all w1 P rKs Y rHs

and all v P rψs. Consequently r ĎĲKXH v, for all v P rψs. Since by definition, ĎĲKXH is

the faithful preorder that ˚ assigns to K X H, we derive that  ϕ R pK X Hq ˚ pϕ_ ψq

as desired.

The proof of (N2) is very similar. In particular, let ϕ, ψ be consistent sentences in L

such that  ϕ P K ˚ pϕ_ ψq and  ϕ P H ˚ pϕ_ ψq. Then there exist worlds r, u P rψs

such that r ĂĲK v and u ĂĲH v for all v P rϕs. Consequently, there exist worlds w P rKs

and z P rHs such that Diffpw, rqŸDiffpw1, vq, and Diffpz, uqŸDiffpz1, vq for all w1 P rKs,

z1 P rHs, and v P rϕs. Since Ĳ is total, Diffpw, rq Ĳ Diffpz, uq or Diffpz, uq Ĳ Diffpw, rq.

Without loss of generality we assume the former. Then, Diffpw, rq Ĳ Diffpw1, vq, for

all w1 P rKs Y rHs and all v P rϕs. Consequently r ĂĲKXH v, for all v P rϕs. Since

by definition, ĎĲKXH is the faithful preorder that ˚ assigns to K X H, we derive that

 ϕ P pK X Hq ˚ pϕ_ ψq as desired. l

We conclude this section with an axiomatic characterisation of Dalal’s operator
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which as already stated, has hitherto been perhaps the most popular concrete revision

operator in the literature.

Clearly, Dalal’s operator is a PD operator. Hence to characterise Dalal’s operator it

suffices to add to the conditions (D1) – (D6) the specific feature that separates it from

the remaining PD operators; namely, Dalal’s operator assigns the same epistemic value

to all atoms of the language: a ĲD b for all a, b P P.

Axiomatically, this can be expressed as follows:

(DL) For any propositional variables a, b P K, a R K ˚ p a_ bq.

Theorem 10. Let ˚ be an AGM revision function. Then ˚ is Dalal’s operator iff ˚

satisfies (D1) – (D6) and (DL).

Proof.

(ñ )

Assume that ˚ is Dalal’s operator. Then ˚ is a PD operator and hence by Theorem 6,

it satisfies (D1) – (D6).

For (DL), assume that K is a consistent theory and a, b are propositional variables

that belong to K. Let w be any world in rKs. Clearly, w |ù a, b. Define r to the world

that agrees with w in all atoms except a. Then, r |ù  a and |Diffpw, rq| “ 1.

Consider now any world r1 P r a_ bs and any w1 P rKs. Since r1 R rKs, it follows

that |Diffpw1, r1q| ě 1. Consequently, |Diffpw, rq| ď |Diffpw1, r1q| for all w1 P rKs and

r1 P r a _  bs. This makes r minimal in r a _  bs with respect to Dalal’s preorder

ĎK . Hence r P rK ˚p a_ bqs, which again entails that a R K ˚p a_ bq as desired.

(ð )

Assume that ˚ satisfies (D1) – (D6) and (DL). Then by Theorem 6, ˚ is a PD

operator, and therefore there exists a total preorder Ĳ over atoms that induces a family

of preorders tĎĲK uKPK , which in turn induces ˚. Given the construction of tĎĲK uKPK

from Ĳ, in order to complete the proof it suffices to show that all atoms have the same

epistemic value with respect to Ĳ.
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Assume towards contradiction that for some a, b P P, bŸ a. Let w be any possible

world in ra^ bs. Define r to be the world that differs from w only in b. Clearly then by

construction, Diffpw, rqŸDiffpw, r1q for all r1 P r bs´ tru and Diffpw, rqŸDiffpw, r2q

for all r2 P r as. Hence r is the only minimal world in tDiffpw, zq : z P r as Y r bsu.

Consequently, w˚p a_ bq “ r. This however contradicts (DL), since by construction

a P r. Hence a Ĳ b for all a, b P P, and therefore ˚ is Dalal’s operator as desired. l

7. Implementation Considerations and Previous Work

In this section we will briefly consider what would be involved in an implementa-

tion of AGM belief revision. We also review previous work on this topic, and we sketch

the benefits of using PD operators for such an implementation.18

An AGM belief revision solver would presumably answer queries of the form “does

ψ hold after the revision by ϕ?”. These queries will be assessed against a background

knowledge base B19 and a revision policy associated with B. Revision policies can be

modelled in different ways, however they are typically encoded as preorders ď either

over possible worlds (faithful preorders), or over sentences (epistemic entrenchments),

or sets of sentences (remainders). The problem is that the size of these preorders is, in

general, exponential to the number of atoms in the object language. This high repre-

sentational cost is one of the main obstacles in the development of real-world belief

revision applications.

PD operators provide a very efficient solution to this problem: a single preorder Ĳ

over the atoms of the object language L (hence linear in the number of atoms) suffices

to determine the revision policy of every theory (or knowledge base) of L.

Observe that an added benefit of having a single preorderĲ generating the revision

policy for all theories is that we thus also solve the problem of iterated revision with

18We note that implementing a belief revision solver based on PD operators is outside the scope of this

article. See however [23] [24] for two such recent implementations.
19A knowledge base B is a finite set of sentences representing the initial belief set K; i.e., K “ CnpBq.
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no extra representational cost: the revision policy at K ˚ ϕ is fully determined by Ĳ, in

the same way it is determined for any other theory.

A similar approach has been used in [25], where the revision policy at any theory, is

determined by a single hierarchical order over all formulas of the language. This work

was further extended in [26], [27], and [28].

Previous work on computational approaches to AGM revision, called belief base

revision schemes in [29], are primarily syntax-based. We briefly review two of the most

influential such approaches and compare them to PD operators.20

The first one is based on the notion of ensconcement introduced in [31].

Formally, an ensconcement ď related to a belief base B is defined as a preorder

over the elements of B that satisfies the following constraints for all ϕ, ψ P B:21

(i) If |ù ϕ, then tψ P B : ϕ ă ψu |ù ϕ.

(ii) If |ù ϕ and |ù ψ, then ϕ ď ψ and ψ ę ϕ.

(ii) If |ù ϕ and |ù ψ, then ϕ ď ψ.

Intuitively, an ensconcement can be thought of as a succinct representation of an

epistemic entrenchment. Indeed, it was shown in [31] that any ensconcement ď over B

can be extended to an epistemic entrenchment related to CnpBq. Moreover, it is possible

to answer queries about the revision of CnpBq, working directly with the ensconcement

ď, rather than the induced epistemic entrenchment. This addresses the problem of the

representational cost, since the size of an ensconcement is linear to the size of the

knowledge base B.

A second influential belief base revision scheme, called linear belief base revi-

sion, was introduced in [32]. This approach partitions a knowledge base B into priority

classes B1, . . . , Bn. To revise B by a sentence ϕ, one removes an entire priority class Bi

20See [30] for more approaches that are likewise based on prioritised (belief) bases.
21The symbolď that we use herein for ensconcement will be used in the next section to compare numbers;

any ambiguity with this slight abuse of notation is resolved by the context.

41



if (one or more of) its sentences are responsible for a contradiction with ϕ, and none

of the lower priority classes can be blamed for the contradiction. It was shown in [32]

that this procedure induces revision functions that satisfy all the AGM postulates for

revision. Moreover, this approach also deals with the problem of the representational

cost since any partition of B is linear to the size of B.

Comparing ensconcement-based revision and linear belief base revision with PD

operators, one can immediately identify two advantages of the latter. Firstly the size

of a knowledge base is typically much larger than the number of atoms, and therefore

PD revision has (in principle) a lower representational cost. Secondly, and more im-

portantly, PD revision has an embedded solution to the iterated revision problem (at

no extra representational cost). This is missing from both ensconcement-based revi-

sion and linear belief base revision: in both cases, new preorders need to be provided

explicitly after each revision step (clearly a prohibitive requirement for real-world ap-

plications).

On the other hand, the formal results in [32], [31] seem to suggest that ensconcement-

based revision and linear belief base revision have a greater range of applicability than

PD operators. In particular, it has been shown that both these approaches can encode

any AGM revision function. In contrast, the class of PD operators is a proper subclass

of AGM revision functions (namely the subclass satisfying (D1) – (D6)). However a

careful reading of the results in [32], [31] reveals a somewhat different picture.

It is true that any AGM revision function can be generated from prioritised knowl-

edge bases with the method described by Nebel, but only if the belief base B is allowed

to vary according to the desired revision policy. More precisely, given a knowledge

base B and an AGM revision function ˚, it could well be the case that no prioritisation

of B produces the same results as ˚ at CnpBq. All that the results in [32] tell us is that,

in that case, there exists some other belief base B1 that is logically equivalent to B, for

which such a prioritisation can be found.

Yet, we argue, that a knowledge base B ought to be independent from the revision

policy employed. Adding to B (logically) redundant sentences, just to address the tech-
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nical requirements of a certain revision representation method, is not in our view an

elegant way to increase the range of applicability.

The results in [31] also require a varying knowledge base, and therefore the same

comments apply.

8. Complexity of PD Operators

We now turn to the computational complexity of PD operators. First we need to

turn the computation of a PD operator into a decision problem.

We define a PD revision instance (or PDR instance for short) to be a tuple xP,R,K, ϕ, ψy

where,

- P is a nonempty set of propositional variables.

- R is a function P ÞÑ r1..|P|s, represented as a set of ordered pairs pp, iq where

p P P and 1 ď i ď |P|.

- K is a consistent set of clauses over the variables in P.22

- ϕ is a consistent set of clauses over the variables in P.

- ψ is a consistent set of clauses over the variables in P.

A PDR instance Q “ xP,R,K, ϕ, ψy represents a specific belief revision scenario.

In particular, P represents the set of propositional variables over which beliefs are ex-

pressed, K represents the (base of) the current belief set, ϕ is the sentence by which K

is revised, and ψ is the sentence we wish to test at the revised state (see below). The

function R is used to represent a preorder Ĳ over the variables in P; in particular, for

any p, q P P, p Ĳ q iff Rppq ď Rpqq. Clearly Ĳ generates PD preorders, which in

turn define a PD revision operator ˚. The decision problem associated with the PDR

instance Q, which we call the PD revision problem, is whether CnpKq ˚ ϕ |ù ψ.

22A clause is defined as a (finite) disjunction of literals.
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Observe that if Rppq “ 1 for all p P P, then ˚ reduces to Dalal’s operator ˝. In

[8], it was shown that deciding if CnpKq ˝ ϕ |ù ψ is PNPrOplog nqs-complete (see their

Theorem 6.9).23 Hence we immediately derive the following result.

Theorem 11. The PD revision problem is PNPrOplog nqs-hard.

An upper bound to the computational complexity of the PD revision problem is

given by the following theorem:

Theorem 12. The PD revision problem belongs to PNPrOp
?

n log nqs.

Proof. Let Q “ xP,R,K, ϕ, ψy be a PDR instance and let ˚ be the PD revision func-

tion associated with Q. We prove membership in the class PNPrOp
?

n log nqs by outlining

an algorithm that decides CnpKq ˚ ϕ |ù ψ with Op
?

n log nq calls to an NP oracle,

where n “ |P|.

The algorithm has three phases. In the first phase we compute the smallest number

k in the set t|Diffpw, rq|: w P rKs and r P rϕsu. Observe that k ď n. Hence we can use

binary search to determine k in log n steps, where at each step the question of whether

k ď j (i.e., whether there exist w P rKs and r P rϕs such that |Diffpw, rq| ď j), is

decided with a call to the NP oracle.24

Before proceeding with the second phase of the algorithm we need some further

notation and terminology.

Let P1, P2, . . . Pm be the equivalence classes induced from Ĳ (alias R); i.e., the Pi’s

are nonempty, pairwise disjoint sets, such that their union equals P, and moreover, for

23We recall that a decision problem Π belongs to the class PNP if it can be solved in polynomial time by

a deterministic Turing machine M with an NP oracle. If in addition M can solve any instance of Π of length

n, with no more than gpnq calls to its NP oracle, we say that Π belongs to PNPrgpnqs – see the review in [8]

for more details. For an excellent text on NP-completeness refer to [33].
24This first phase is identical to the first phase of the algorithm described in proof of Theorem 6.9 in [8].

As noted in [8], deciding whether k ď j is clearly in NP: a positive response can be verified by guessing two

worlds w, r, and confirming that, firstly, w |ù K, secondly, r |ù ϕ, and thirdly |Diffpw, rq| ď j. All this can

be done in (non-deterministic) linear time.
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any p, q P P, p Ĳ q iff p P Pi, q P P j and i ď j. Clearly, P1, . . . Pm can be computed in

deterministic polynomial time.

For a set of propositional variables S Ď P, define the profile of S to be the tuple

x j1, . . . , jmy, where j1 “ |S X P1|, . . ., jm “ |S X Pm|; that is, the profile of S is the

number of elements that S shares with each equivalence class P1, . . . , Pm. A crucial

observation, is that all Ĳ-minimal elements in tDiffpw, rq: w P rKs and r P rϕsu, have

the same profile. We call this profile, the minimal profile wrt K and ϕ and we shall

denote it by xy1, . . . , ymy. At the second phase our algorithm computes the numbers

y1, . . . , ym.

Define x1 “ |P1|, . . ., xm “ |Pm|. Hence, xi ą 0 and
řm

i“1 xi “ n. Moreover,

0 ď yi ď xi, for all 1 ď i ď m; also it is not hard to see that
řm

i“1 yi “ k.

The second phase of the algorithm starts with the computation of y1. Observe that

y1 is the maximal size of Diffpw, rqXP1 under the constraints that w P rKs, r P rϕs and

|Diffpw, rq| “ k. Hence y1 can be computed with binary search in log x1 steps, where

at each step the question whether y1 ě j (i.e., whether there exist w P rKs and r P rϕs

such that |Diffpw, rq| “ k and |Diffpw, rq X P1| ě j), is decided with a call to the NP

oracle.

Now the rest of the yi’s can be computed based on the following observation: yi`1

is the maximal size of Diffpw, rq X P j`1, under the constraints that w P rKs, r P rϕs,

|Diffpw, rq| “ k, and |Diffpw, rq X P j| “ y j for all 1 ď j ď i. Hence yi`1 can be

computed with binary search in log xi`1 steps, where at each step the question whether

yi`1 ě j is decided with a call to the NP oracle.

The whole minimal profile xy1, . . . , ymy can then be computed in polynomial time

with log x1 ` . . . ` log xm calls to an NP oracle. Given that
řm

i“1 xi “ n, from the

inequality of arithmetic and geometric means we derive that log x1 ` . . . ` log xm ď

1
2

?
n log n. Hence in the first two phases our algorithm makes at most Op

?
n log nq

calls to the NP oracle.

The third phase involves only one extra call to the oracle. In particular, the algo-

rithm tests, with the aid of the NP oracle, whether there are worlds w P rKs and r P rϕs
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such that Diffpw, rq has profile xy1, . . . , ymy and moreover r |ù  ψ. If the answer is pos-

itive, the algorithm returns “no” to the original question ‘CnpKq ˚ ϕ |ù ψ?2; otherwise

it returns “yes”. l

Theorems 11, 12 show that the PD revision problem belongs to the second level of

the polynomial hierarchy. This is the same level where (the computation of) Dalal’s op-

erator belongs. Hence the added expressivity of PD operators doesn’t have any drastic

effects in time complexity.

We conclude this section by considering the restriction of the PD revision problem

to the special case of Horn clauses.

In particular, let Q “ xP,R,K, ϕ, ψy be a PDR instance such that all clauses in K, ϕ

and ψ are Horn clauses.25 We shall denote by ||K||, ||ϕ||, ||ψ||, the size of K, ϕ, and ψ

respectively. Eiter and Gottlob showed in [8] that in this case and for Dalal’s operator

˝, the query “CnpKq ˝ ϕ |ù ψ?2 can be computed in Op||K|| ¨ ||ψ||q time, provided that

the size of ϕ is bounded by a constant.

This result can be extended, with some adjustments, to apply to any PD operator,

using the same line of reasoning adopted in the proof of Theorem 8.3 in [8].

In particular, we show that when K, ϕ, and ψ are sets of Horn clauses, then for

any PD operator ˚ the query “CnpKq ˝ ϕ |ù ψ?2 can be computed in time Op||K||2 ¨

plog2p||K||q ` ||ψ||qq, provided that the size of ϕ is not larger than logp||K||q.

Hence, compared to Theorem 8.3 in [8], Theorem 13 below, firstly, relaxes the re-

quirement on the size of ϕ (from bounding it by a constant to bounding it by logp||K||q),

and secondly, it applies to any PD operator (not just to Dalal’s).

On the other hand this generalisation comes at a price: the time complexity of de-

ciding whether CnpKq˝ϕ |ù ψ, though still polynomial, is higher than that in Theorem

8.3 in [8] (yet see Corollary 3 at the end of this section).

We note that having that the size of revision input ϕ to be small compared to the

25We recall that a Horn clause is a disjunction of literals such that at at most one of them is an atom.
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size of the initial knowledge base K (in particular, logarithmically smaller), is a natural

assumption; the new input ϕ is typically the result of direct observation or feedback

from a reliable source, which is nowhere near in size to the size of the initial belief

corpus K.26

Theorem 13. Let xP,R,K, ϕ, ψy be a PDR instance and let ˚ be the PR revision op-

erator induced by it at CnpKq. Assume that K, ϕ, and ψ are sets of Horn clauses,

and that ||ϕ|| ď logp||K||q. Then, deciding if CnpKq ˚ ϕ |ù ψ can be computed in

Op||K||2 ¨ plog2p||K||q ` ||ψ||qq time.

Proof. As already mentioned, our proof follows the same line of reasoning as the proof

of Theorem 8.3 in [8].

First some notation. For any literal x, we define the variable of x, denote xv as

follows: if x P P then xv “ x; if on the other hand x “  y for some y P P, then xv “ y.

Moreover, for a set of literals A, by Av we denote that set of variables of the literals in

A; i.e., Av “ txv : x P Au.

Let X be the set of all variables that appear (with or without negation) in ϕ. Since

||ϕ|| ď logp||K||q, it clearly follows that there are at most logp||K||q variables in X.

Let Ĳ be the preorder over P induced from R and let w be any world in rKs. A

crucial observation is that all worlds in rϕs that differ minimally from w (wrt Ĳ), agree

with w over all variables outside X. To see this, consider any r P rϕs such that for

some q P P ´ X, q P Diffpw, rq. Define r1 to be the world that agrees with r in all

variables except q. Clearly then, since r P rϕs and q does not appear in ϕ, we derive

that r1 P rϕs. Moreover, by construction, |Diffpw, r1q| ă |Diffpw, rq| and therefore,

Diffpw, r1q Ÿ Diffpw, rq. Hence r doesn’t differ minimally from w among the worlds in

rϕs.

We shall denote by n the size of K. As noted earlier there are at most log n atoms

26On the other hand, this assumption will prevent the use of a belief revision solver in the context of belief

merging, [34]. We thank the anonymous reviewer for raising this point.
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in X. Hence there are at most n sets of literals A such that Av “ X. We shall denote this

set byMX; i.e.MX = tA : A is a set of literals such that Av “ Xu.

Since ϕ is Horn, we can check whether A is consistent with ϕ in time Oplog nq, for

any A PMX. Notice that by construction, it holds that for any A PMX, A is consistent

with ϕ iff A |ù ϕ. Hence we can construct the set of all elements ofMX that satisfy ϕ,

denoted rϕsX , in time Opn log nq.

Likewise, for any B P MX, can check whether B is consistent with K in time

Opnq. Hence we can construct the set of all elements ofMX that are consistent with K,

denoted rKsX , in time Opn2q. Observe that by construction, for any B PMX, B P rKsX ,

iff there is a w P rKs such that B Ď w.

For any A, B PMX, let us denote by DiffXpA, Bq the set of variables over which A

and B disagree; i.e. DiffXpA, Bq “ tx P X : x P A and  x P Bu Y tx P X :  x P A and

x P Bu. Moreover, by rϕsmin
X we shall denote the set of all elements in rϕsX that differ

minimally wrt Ĳ from some B P rKsX; i.e. rϕsmin
X “ tA P rϕsX : for some B P rKsX ,

DiffXpA, Bq Ĳ DiffXpA
1, B1q, for all A1 P rϕsX and B1 P rKsXu.

Clearly, for each A P rϕsX and B P rKsX , DiffXpA, Bq can compute in time Oplog2nq.

Moreover, it is not hard to see that for any S , S 1 Ď X to compute whether S Ĳ S 1 never

takes longer than Oplog2nq time. Hence, rϕsmin
X can be computed in time Opn2 log2nq.

In the next step we shall use K and rϕsmin
X to construct a sentence K1 such that

CnpK1q “ CnpKq ˚ ϕ.

For this step we adopt the procedure described in the proof of Theorem 8.3 in [8].

In particular, for every element A P rϕsmin
X we shall construct a conjunction of Horn

clauses DA; K1 will then be defined as the disjunction of all DA, such that A P rϕsmin
X .

For any A P rϕsmin
X , define KA to be the set of Horn clauses that is produced from

K by replacing every variable in X with the truth value T (true) if x P A, and with

F (false) otherwise. KA can of course be simplified by removing all clauses containing

the truth value T (or containing F), and deleting the truth value F from the remaining

clauses. Clearly, (the simplified) KA is a set of Horn clauses. DA is then defined as the
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conjunction of all clauses in (the simplified) KA with A. Since A is a conjunction of

literals, DA is a Horn formula (i.e. a conjunction of Horn clauses). Moreover, from the

construction of DA, is it clear that it can be computed in time Opn log nq.

Hence K1, defined as the disjunction of all DA where A P rϕsmin
X , can be computed

in time Opn2 log nq.

From the construction of K1, it is not hard to see that it is indeed logically equivalent

to CnpKq ˚ ϕ; i.e. CnpK1q “ CnpKq ˚ ϕ.

Therefore CnpKq ˚ ϕ |ù ψ is equivalent to K1 |ù ψ. Moreover, since K1 “
Ž

tDA :

A P rϕsmin
X u, K1 |ù ψ, iff there is an A P rϕsmin

X , such that DA |ù ψ. Given that both

DA and ψ are Horn formulas, and moreover, by construction, the size of DA is at most

n ` log n, it follows that we can compute whether DA |ù ψ in time Opn ¨ ||ψ||q. Then

we can compute whether K1 |ù ψ in time Opn2 ¨ ||ψ||q.

Summarising the complexity of the steps involved in computing the answer to the

query CnpKq ˚ϕ |ù ψ, we need at most Opn log nq time to compute rϕsX , Opn2q time to

compute rKsX , Opn2 log2nq time to compute rϕsmin
X , Opn2log nq time to compute K1, and

Opn2 ¨ ||ψ||q to compute whether K1 |ù ψ. Since these steps occur sequentially, the time

complexity of the overall procedure is at most Opn2 ¨ plog2n ` ||ψ||qq, or equivalently

Op||K||2 ¨ plog2p||K||q ` ||ψ||qq l

We note that if ||ϕ|| is bounded by a constant, then by following the exact same

steps as in the proof above, we derive the corollary below:

Corollary 3. Let xP,R,K, ϕ, ψy PDR instance and let ˚ be the PR revision operator

induced by it at CnpKq. Assume that K, ϕ, and ψ are sets of Horn clauses, and that

||ϕ|| ď k for some constant k. Then, deciding if CnpKq ˚ ϕ |ù ψ can be computed in

Op||K|| ¨ ||ψ||q time.

Clearly, from the above corollary it follows that if the size of ψ is also bounded by

a constant, then deciding if CnpKq ˚ ϕ |ù ψ can be computed in time linear to the size

of K.
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9. Conclusion

To deal with the problem of the high representational cost required by any general

AGM belief revision solver, in this paper we introduced and studied a new family of

concrete AGM revision operators called PD operators.

Any PD operator can be constructed from a single preorder over atoms. Moreover

PD operators are expressive enough to encode challenging belief revision scenarios

discussed in the literature.

In addition to the semantic definition of PD operator (essentially a generalisation

of Dalal’s approach), in this article we provided an axiomatic characterisation of PD

operators. Moreover a number of attractive properties of PD operators were established,

including their compliance with Parikh’s notion of relevance-sensitive belief revision.

Finally we have studied the computational complexity of PD operators showing

that they lie at the same level of the polynomial hierarchy as Dalal’s operator (despite

the extra expressivity). In the special case of Horn formulas, PD operators become

tractable provided that the size of the new evidence is small compared to that of the

initial knowledge base. The complexity further reduces to linear time to the size of

the initial (Horn) knowledge base, if the size of the revision queries is bounded by a

constant.

A different direction for tackling the high complexity of belief revision has been

proposed by Pfandler, et. al, in [35]. Although the authors focus on Satoh’s operator,

[12], which does not satisfy the AGM postulates for belief revision, their techniques

may nevertheless be applicable to PD Operators. This is a interesting avenue for future

work.

Another promising direction for future work future work is to investigate the pos-

sibility of evolving the preorder Ĳ over atoms that defines a PD operator, in response

to the new information received.27 This ought to be done with no or very little addi-

27In this paper we have assumed that Ĳ is not affected by new evidence.
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tional representational and computational cost, for otherwise the benefits of using PD

operators would be cancelled.
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