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Efficient pneumonia detection 
using Vision Transformers on chest 
X‑rays
Sukhendra Singh 1, Manoj Kumar 1, Abhay Kumar 2, Birendra Kumar Verma 1, 
Kumar Abhishek 2 & Shitharth Selvarajan 3*

Pneumonia is a widespread and acute respiratory infection that impacts people of all ages. Early 
detection and treatment of pneumonia are essential for avoiding complications and enhancing 
clinical results. We can reduce mortality, improve healthcare efficiency, and contribute to the global 
battle against a disease that has plagued humanity for centuries by devising and deploying effective 
detection methods. Detecting pneumonia is not only a medical necessity but also a humanitarian 
imperative and a technological frontier. Chest X‑rays are a frequently used imaging modality for 
diagnosing pneumonia. This paper examines in detail a cutting‑edge method for detecting pneumonia 
implemented on the Vision Transformer (ViT) architecture on a public dataset of chest X‑rays 
available on Kaggle. To acquire global context and spatial relationships from chest X‑ray images, 
the proposed framework deploys the ViT model, which integrates self‑attention mechanisms and 
transformer architecture. According to our experimentation with the proposed Vision Transformer‑
based framework, it achieves a higher accuracy of 97.61%, sensitivity of 95%, and specificity of 
98% in detecting pneumonia from chest X‑rays. The ViT model is preferable for capturing global 
context, comprehending spatial relationships, and processing images that have different resolutions. 
The framework establishes its efficacy as a robust pneumonia detection solution by surpassing 
convolutional neural network (CNN) based architectures.

Pneumonia is a common respiratory infection caused by multiple types of bacteria, viruses, and fungi. It is the 
leading cause of morbidity and mortality worldwide, particularly among infants under the age of five and the 
elderly. According to  WHO1, 1.4 million pneumonia-related fatalities among children under five in 2018. Chest 
X-ray imaging is commonly used to diagnose pneumonia, as it can reveal important symptoms, such as increased 
lung opacity and consolidation. However, it can be difficult to interpret a chest X-ray (CXR) because pneumonia 
symptoms can be subtle and overlap with other lung diseases. Rapid and accurate diagnosis of pneumonia is 
essential for expediting treatment and improving patient outcomes. Radiological images, such as chest X-rays 
or CT scans, require specialized training and can be time-consuming to diagnose pneumonia.In recent years, 
there has been significant interest to develop model using machine learning techniques that assist physicians 
in diagnosing pneumonia using chest X-ray images. These techniques have shown promising results and may 
improve the efficacy and accuracy of pneumonia diagnosis.

By training a CNN on a dataset of chest X-ray images, Deep Learning (DL)2–5 has been utilized to detect 
 pneumonia6–10. As shown in Fig. 1, the CNN can learn to recognize patterns and associated features with pneu-
monia, such as clouded lung areas to detect pneumonia.The model can then be used to classify new X-ray 
images as normal or pneumonia. Multiple  studies11–14 have demonstrated the efficacy of this method in detecting 
pneumonia with a high degree of accuracy. Attention mechanism isn DL  refers15–21 to a technique used in neural 
networks to selectively focus on certain portions of an input as opposed to processing the entire input equally. In 
image detection and classification, attention mechanisms can be utilized to concentrate the network’s attention 
on specific regions of an image that are most important for making a classification decision. This can help the 
network to improve its accuracy and decrease its computation needs. ViT models are a variant of the Transformer 
 architecture22–26, which was originally designed for NLP applications. These models have been adapted for 
image classification tasks by handling an image as a sequence of image segments that are then processed by the 
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transformer’s attention mechanism. In addition, the ViT model outperformed state-of-the-art (SOTA) techniques 
on a broad variety of image classification tasks, making it an excellent candidate for the pneumonia diagnosis task.

Motivation
Vision Transformer architecture for pneumonia detection from CXR is motivated by the need for time to detect 
this severe respiratory disease. Globally, pneumonia is one of the big causes of mortality. Early diagnosis and 
treatment are crucial for improved patient outcomes. Traditional methods of evaluating CXR to diagnose pneu-
monia are time-consuming and require specialized medical knowledge, which can lead to diagnostic errors and 
treatment delays. In response to these challenges, DL techniques such as CNNs and RNNs have been developed 
to automate the detection of pneumonia from CXR. However, these methods are inadequate to analyze complex 
medical images. ViT architecture has demonstrated exceptional efficacy in a variety of vision tasks, including 
image classification and object detection. It is a viable candidate for pneumonia detection from CXR because 
it can extract global and local image features. Utilizing the power of self-attention mechanisms, ViT is able to 
effectively capture complex patterns and relationships in X-ray images, resulting in improved pneumonia detec-
tion accuracy and reliability. Therefore, the goal of utilizing ViT architecture for pneumonia detection from CXR 
is to surmount the limitations of conventional methods and improve the precision and efficacy of DL models 
for medical imaging analysis. Vision Transformer architectures are totally different from CNN architectures. 
Transformer-based architectures were initially designed for sequence-to-sequence tasks in natural language 
processing. CNN is primarily used for tasks like machine translation, text summarization, language modeling, 
and sentiment analysis. These architectures have been customized into Vision Transformer architecture so that 
they can be suitable for Image classification and analysis.

The contribution of work is summarized as follows.

• In this investigation, we propose a ViT-based architecture for pneumonia detection in CXR. This architecture 
will be designed to effectively manage the large and complex medical images that are typical in CXR and will 
be capable of detecting pneumonia with precision.

• We will evaluate the accuracy of the proposed ViT architecture to that of existing DL techniques. This will 
provide a thorough analysis of the benefits and drawbacks of our proposed approach compared to existing 
methodologies.

• We will evaluate the efficacy of the proposed ViT architecture using a CXR dataset that is publicly available. 
This will entail training and testing the model using a set of performance metrics, including accuracy, recall, 
precision, and F1 score, to measure its performance.

We will present the proposed ViT architecture’s performance evaluation findings and analysis. This will 
include a discussion of any limitations of the proposed model and recommendations for improving its efficacy 
through future work.

Organization of the paper
The rest paper is structured as Sect. 2 discusses the background and working principle of the proposed architec-
ture and other variants of Vision Transformer architecture. Section 3 presents recent applications and a review 
of related studies. Section 4 describes the dataset characteristics and proposed architecture. Section 5 discusses 
experiment specifications, results, and prospects of Vision Transformer architecture, followed by Sect. 6, which 
represents the conclusion.

Background and methodology
In this section, the paper builds the foundation for the proposed architecture.

Transformer architecture
The transformer architecture is a neural  network27 designed for natural languages, such as language transla-
tion, language modeling, and text summarization. The main concept of the transformer architecture is the self-
attention mechanism, which assess the relative relevance of various words or sub-phrases in a given input. This is 

Figure 1.  A sample CXR (normal and pneumonia) image.
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achieved by computing a "query," "key," and "value" for each word or sub-phrase, followed by adding a weighted 
sum on the similarity between the query and the keys. Additionally, the transformer architecture utilizes a multi-
head attention  mechanism28–30 to attend to various input positions. In addition to the self-attention  mechanism31, 
the feed-forward neural network process the output of the self-attention layer to produce the better result in 
Transformer model. The architecture also uses positional encoding to convey the position of the input image.

Vision transformer derived from generic transformer architecture
The Vision Transformer replaces the original transformer’s self-attention mechanism with a spatial attention 
 mechanism32 which is designed to govern images’ two-dimensional grid structure. This enables the model to 
analyze and comprehend the spatial relationships between different image regions. Itis an effective architecture for 
image classification and computer vision tasks. Images are processed through the Transformer model, consisting 
of spatial attention and a feed-forward neural network. The spatial attention mechanism applies the attention 
to the image pixels, followed by the feed-forward neural network to the output of the attention mechanism. In 
addition, this modeluses a patch-based strategy where an image is divided into smaller segments and learns 
to focus separately on each patch. This allows the model to extract granular features and improve its accuracy.

Working principle of Vision Transformer
The fundamental concept of a ViT is the self-attention mechanism, which exploits both global and local fea-
tures by focusing on distinct portions of the image. The self-attention mechanism is implemented by adding 
self-attention layers with multiple heads that are known as transformer blocks. Each patch is converted into 
corresponding 1-D vector and transmitted to the transformer. The transformer then uses self-attention to learn 
the relationships between the various regions, and the resulting representation is input into a feed-forward 
neural network to make a prediction.As the spatial resolution of the input does not constrain the self-attention 
mechanism, one of the main advantages of ViT is their ability to handle images of arbitrary sizes. This model 
can be trained on large images, such as high-resolution medical images, without downsampling or cropping. 
Additionally, this model has been improved in recent variants such as  DeiT33,34, Swin-T35,36, and  ReViT37 to 
enhance their performance, reduce the number of parameters and computational costs, and make them more 
efficient and scalable for practical applications.

Self‑attention mechanism in Vision Transformer for image detection and classification
A Vision  Transformer38,39 is a neural network that processes visual information using self-attention mechanisms. 
Similar to how the Transformer architecture is used in natural language processing (NLP), ViT employs attention 
mechanisms to evaluate the specific parts of an image in order to make accurate predictions. These networks 
excel at image classification and object detection.

Self attention techniques
Self-attention15 is a technique that enables a model to selectively concentrate its processing on particular regions 
of an image. Self-attention is typically applied to extracted feature maps generated by a CNN in the context of 
images. Self-attention allows the model to determine the relative importance of various image regions by com-
puting a set of attention weights for each region. These attention weights can then be applied to the feature maps 
before their transmission to the remainder of the network.There are numerous methods to incorporate self-
attention into images. A common technique is using a multi-head self-attention mechanism, in which the model 
computes multiple sets of attention weights for various regions of the image and then combines them. This allows 
the model to consider the entire image when making a prediction rather than just a specific region’s features. A 
further method for image processing is to use a transformer-based model in which the self-attention mecha-
nism focuses on various image regions when selecting a prediction. The transformer-based model is trained to 
understand the relationships between multiple image regions and makes predictions based on this information.

Self-attention in DL for image processing can be categorized into two main modules: channel attention and 
spatial attention.

Spatial attention networks. In contrast to conventional CNNs, which process entire images and extract features 
from them, spatial attention  networks32,40 process only particular regions of an image. This is accomplished by 
incorporating an attention mechanism that learns to weigh various image regions based on their significance to 
the current task. By selectively attending to the relevant areas of an image, spatial attention networks can achieve 
greater accuracy and efficiency when performing tasks such as image captioning, object detection, and visual 
question answering. In addition, the attention mechanism improves the interpretability of these networks by 
highlighting the regions of the image that the network is concentrating on for a given task.

Channel attention. Channel  attention41,42 pertains to a mechanism’s ability to focus on particular channels of 
the feature maps selectively. Typically, this is carried out by computing a set of attention weights for each channel 
of the feature maps. These attention weights can then be applied to channels before their transmission through 
the remainder of the network. This allows the model to concentrate its prediction on the channels that are most 
informative.The combination of channel and spatial attention empowers the model to predict using both spa-
tial information (the location of the specified portion within the image) and channel information (the features 
extracted by the CNN). This results in more robust and generalizable modelsfor images that have not been seen.
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Variants of Vision Transformer
Several customizations in ViThave been experimented with to improve its performance or fit certain applications. 
The main customization methods include.

Patch size. The ViT architecture linearly embeds fixed-size input image patches. Patch size affects model per-
formance. Larger patches capture global context but lose fine-grained details, while smaller patches may fail to 
capture global context. To find better performance, optimal patch size has been used.

Positional encoding. ViT incorporates spatial information into the model via learnable positional encodings. 
These encodings assist the model understand image patch placements. ViT performance can be improved with 
sine/cosine, spatial, or learned positional encodings.

Architectural variations. To improve ViT, researchers have tried several architectural variations. A Pyramid 
Vision Transformer (PVT) is a hierarchical modification that captures multi-scale information. The Convo-
luted Vision Transformer (ConvViT) combines self-attention and convolutional layers to use local and global 
information.

Training methods. ViT performance and convergence have been improved using various training methods. 
Data augmentation, regularization (dropout, weight decay), and advanced optimization algorithms (Adam, 
RMSprop) are examples. Pretraining on ImageNet and transfer  learning43,44 have also been used to initialize ViT 
models.

Hybrid models. Hybrid designs integrate Convolutional Neural Networks (CNNs) and Vision Transformers 
(ViTs) for tasks such as pneumonia detection in chest X-ray images, we first use a CNN as the feature extractor, 
removing its fully connected layers while retaining its convolutional and pooling layers. The CNN-generated fea-
ture maps are then separated into non-overlapping patches, and each patch is converted into a high-dimensional 
embedding vector. These embeddings, which depict local characteristics, are then fed into the ViT model in 
order to capture global dependencies and contextual information across the entire image. For final predictions, 
a classification head is appended to the ViT output. The entire hybrid model, comprised of the CNN feature 
extractor and the ViT model, is trained from beginning to end using labeled data, with fine-tuning strategies 
tailored to the specific dataset and computational resources available. This approach maximizes the extraction 
of both local and global information, optimizing performance for complex image analysis tasks.Transformers 
process CNN-extracted features. This hybrid strategy uses CNNs (local feature extraction) and transformers 
(global context modeling) to improve performance. Pyramid Vision Transformer (PVT captures multi-scale 
information hierarchically. Multiple steps process features at varying resolutions. The model effectively captures 
local and global information. A convoluted Vision Transformer (ConvViT) is a Self-attention mechanism with 
convolutional layers. Self-attention models global context, while convolutional layers catch local patterns. This 
combination improves the model’s local and global information handling.

Attention mechanism. ViT’s architecture relies on attention techniques. Attention mechanism customization 
may include Long-Range Arena (LRA) attention, Axial attention, and Shifted attention. LRA attention efficiently 
handles input image long-range dependencies. It helps the model capture global context even when patches are 
far apart.

Axial attention captures dependencies along image axes (rows and columns). Self-attention is modified to 
catch shifted or offset patch dependencies. This helps the model manage data spatial transformations.

To have state-of-the-art performance and improved convergence,researchers have experimented with the 
following pre-trained Vision Transformer architectures.

DeiT (data-efficient image transformers). DeiT34 uses self-attention mechanisms and patch-based processing 
to outperform CNNs in image tasks with less labeled training data. Self-attention computes attention weights on 
smaller image patches to efficiently capture long-range relationships and grasp the global context. The models 
are pre-trained on large, unlabeled datasets to learn general visual representations, then fine-tuned on smaller, 
task-specific datasets. Visual characteristics and hierarchical representations help the model transfer pre-trained 
knowledge to the target task. Dropout and data augmentation increase generalization. Data-efficient image 
transformers use self-attention, patch-based processing, pre-training, fine-tuning, transfer learning, and regu-
larization to perform well in picture tasks without labeled data.

Swin-T. Swin  transformer36,45, a new image understanding architecture, blends Transformers with CNNs. It 
converts the input image into non-overlapping patches using transformer layers. Swin Transformer’s hierarchi-
cal architecture organizes transformer layers into stages, making it unique. Lower stages process patch-level 
information, whereas later stages capture broader contextual information. The hierarchical model efficiently 
captures image local and global dependencies. Shift procedures help Swin Transformer model repair spatial 
links. Swin Transformer uses Transformers’ self-attention mechanism and CNNs’ efficient processing to achieve 
state-of-the-art results on image classification, object detection, and semantic segmentation with fewer compu-
tational resources than other transformer-based models.
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ReViT. The Vision Transformer (ViT) architecture can accommodate inputs of different resolutions with 
Resizable-ViT37. Traditional ViT models require fixed-size inputs, which can limit their adaptability in real-
world applications with varied image sizes. Resizable-ViT solves this problem with "token shifting" and "layer 
dropping." Token shifting requires scaling the input image and adapting position and token embeddings to the 
new resolution. For lower inputs, layer-dropping skips model architectural layers based on input resolution, 
reducing computing complexity. Resizable-ViT efficiently processes images of varied resolutions while doing 
well on image recognition tasks by dynamically adapting to input sizes.

All of these variants have been shown to enhance the performance and efficiency of Vision Transformers 
and have been applied to a variety of tasks, including image recognition, object detection, and medical imaging, 
with SOTA results.

Recent applications of Vision Transformer architecture
Vision Transformer (ViT) has attracted great interest in computer vision duties due to its capacity to process 
images with high precision and efficiency. Recent developments and applications have been made to the ViT 
architecture. The DeiT model, which enhances the training of ViT models using data augmentation and dis-
tillation techniques, is one of the most significant innovations. The Swin Transformer model, which employs 
hierarchical representations to enhance the performance of ViT models on large-scale image datasets, is another 
innovation.Recent Vision Transformer architectures research has centered on a variety of applications, including.

Object detection and instance segmentation
ViT architecture is promising for object detection and instance segmentation because it possesses several essen-
tial characteristics that make it suitable for these tasks. First, the self-attention mechanisms in ViT enable the 
model to learn global relationships between various image components, which can be used to identify and 
localize objects. ViT can be trained on large datasets with many labeled examples, which is essential for these 
tasks because they require a large amount of data to learn the involved complex patterns. Finally, ViT can be 
fine-tuned for specific object detection or instance segmentation  tasks46, allowing it to achieve high accuracy by 
adapting to the requirements of these tasks.

Dense predictions
Dense prediction is the task of predicting a pixel-wise output for an input image, such as semantic segmenta-
tion, where each pixel is designated as a specific object or background. The input image is divided into a series 
of non-overlapping segments for dense prediction, which is then flattened and fed into the ViT architecture. 
Self-attention allows ViT to record spatial information across these regions, and the output is shaped into a grid 
corresponding to the original image. One of the benefits of employing ViT for dense prediction is that it can 
learn to distinguish between objects of varying sizes and shapes without explicit object proposals or region-
based attributes. ViT attends to all regions in the input image and learns to weigh their contributions based on 
the significance of their contributions to the output. In addition, ViT can be trained end-to-end with large-scale 
datasets like ImageNet to acquire general features that can be applied to subsequent tasks like a dense prediction. 
In situations with limited labeled data, this makes ViT an attractive design for dense prediction.

Self‑supervised learning
Even without human annotations, ViT can be used for self-supervised  learning47,48. Self-supervised learning 
teaches input data meaningful representations for classification, detection, and segmentation. Training the model 
on a pretext task is one method to use ViT for self-supervised  learning49. Pretext tasks allow the model to learn 
key characteristics from input data. Data augmentation to generate multiple perspectives of the same image 
and training the ViT model to predict which views match is a common pretext challenge. Contrastive learning 
teaches the ViT model to distinguish between similar and distinct images. Two arbitrary images are supplied to 
the ViT model. The model is then trained to predict whether or not two images are identical.In both cases, the 
ViT model discovers features that are independent of viewpoint, illumination, and other factors that affect the 
appearance of input data. These learned characteristics can be used to establish supervised model weights or to 
refine subsequent tasks.

Multi‑modal learning
Recent  research50 has examined the use of transformer-based architectures for multimodal unsupervised learn-
ing from raw video, audio, and text. Using self-supervised learning techniques, the plan is to implement a 
transformer-based architecture capable of handling multiple modalities and capable of predicting the next frame, 
audio, or text given the current one.

Efficient ViT architectures
Recent efforts have been made to make Vision Transformer models more effective in terms of computation time 
and memory consumption. Multiple architectures, such as Separable Vision Transformer (SepViT)51 and Revers-
ible Vision Transformer (RViT)37,52, have been proposed by researchers that are capable of achieving comparable 
or superior performance than conventional ViT models while being more energy-efficient. SepViT blocks employ 
separable convolutions rather than conventional convolutions. This update minimizes the self-attention mecha-
nism, the most computationally expensive component of ViT. Separable convolutions separate conventional 
convolutions into depthwise and pointwise convolutions, requiring fewer parameters and computations. RViT 
augments ViT design with reversible residual blocks. These blocks recreate input features from output features, 
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which increases the efficiency of gradient calculation during backpropagation. Reversible blocks enable models 
with limited memory to be larger.

Explainable AI
ViT can be utilized in Explainable  AI33 to provide insight into how an image classification decision is made. By 
using attention maps generated by ViT, it is possible to visualize which aspects of an image are most crucial to 
the classification decision. This information can be used to clarify the model’s decision when communicating 
with humans.

In Table 1, the article summarizes recent contributions made for a range of tasks using Vision Transformer 
architecture.

Material and methods
Dataset characteristics
In the investigation, we used a publicly available chest X-ray (CXR) dataset from  Kaggle57,58. The same dataset 
has also been utilized in numerous other investigations. The dataset consists of three sections: train, test, and 
validation. Each section contains subfolders for Pneumonia and Normal CXRs. There are 5863 X-ray images 
in total as shown in Table 2. The X-ray images used in the dataset were acquired at the Women and Children’s 
Medical Center in Guangzhou from children aged one to five.These images were taken as part of the children’s 
routine medical examinations.To assure the quality of the X-ray images used in the analysis, they were screened 
by specialists for low-resolution or unreadable images. The remaining images were then evaluated by two physi-
cian specialists, with any discrepancies resolved by a third specialist. This procedure was performed to teach an 
AI system to make precise diagnoses.80% of the dataset has been allocated to the training set, 10% to the test 
set, and 10% to the validation set, as shown in Table 3.

Proposed architecture
The proposed Architecture uses patch embeddings, positional encodings, several Transformer encoder layers, 
self-attention, feed-forward neural networks, and a classification head to classify and analyze imageswhich are 
shown in Fig. 2.

Input embedding
It requires reshaping the input image into patches as shown in Fig. 3 and applying a linear transformation in 
order to obtain the embeddings. Let’s denote the input image as X ∈ R

(H×W×C) re H, W, and C, respectively, 
represent the height, breadth, and number of channels. Each patch has a dimension of P × P, and there are N 
patches in total. The input embedding can be represented the as E ∈ R

(N×D) where D is the number of dimen-
sions of the embeddings.

Positional encoding
The input embeddings include positional information to capture the relative and absolute positions of the patches. 
The positional encoding matrix P ∈ R

(N×D) added to the input embeddings E element by element.

Transformer encoder
Each layer of the Transformer Encoder is constituted of a multi-head self-attention mechanism and a position-
wise feed-forward network as shown in Fig. 4.

(a) Multi-head self-attention: The attention weights between the input embeddings are computed by the multi-
head self-attention mechanism. It entails three linear transformations: Query (Q), Key (K), and Value (V), 
with Q, K, and V ∈ R

(N×D) Using the attention weights, the output of the self-attention mechanism is the 
weighted sum of the values. The attention weights are calculated by Eq. (1).

where Dh represents the dimension of each attention head.
(b) Position-wise feed-forward network: The position-wise feed-forward network employs two linear trans-

formations separated by a nonlinear activation function (such as ReLU). Let’s designate the attention 
mechanism’s output as A ∈ R

(N×D) The representation of the position-wise feed-forward network is as 
according to Eq. (2).

where W1 ∈ R
(D×dFFN), b1 ∈ R

(1×dFFN),W2 ∈ R
(dFFN×D), b2 ∈ R

(1×D).

These two sub-layers are applied parallel to the input sequence and then combined to generate the encoder 
layer’s output. The process is repeated multiple times to form a stack of encoder layers, where each encoder layer 
builds upon the representation learned by the preceding encoder layer, enabling the model to learn increasingly 
complex and generalized representations of the input sequence.

(1)Attention(Q,K ,V) = softMax

((

QK
T

)

/
√
(Dh)

)

V

(2)FFN(A) = max(0,A×W1+ b1)×W2+ b2
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Table 1.  Insight into related recent research.

Article references Approach Major findings
Gap identified and future direction for 
enhancement

“An Image is Worth 16 × 16 Words: Trans-
formers for Image Recognition at Scale”53

Each segmented patch is linearly projected 
into a high-dimensional embedding space 
that result is then input into the Trans-
former encoder.They replaced the tradi-
tional CNN backbone with a Transformer 
encoder-decoder framework, thereby 
enabling a more unified framework across 
modalities obtained cutting-edge perfor-
mance on benchmark datasets with fewer 
computational resources than traditional 
CNN-based methods

results can be improved by adjusting the 
number of layers, the dimensionality of the 
embeddings, or the design of the attention 
mechanism and by fine-tuning the archi-
tecture to strike a balance between model 
capacity and computational efficiency

Transformers demand more processing 
power and memory than convolutional 
neural networks (CNNs), and the article 
does not elucidate how to address this. 
Transformers are less interpretable than 
CNNs, and interpretability strategies are 
not discussed in the article. Patch size, 
computational efficiency, and performance 
compromises are not considered. Resolving 
these issues could facilitate the scalability 
of image recognition methods based on the 
Transformer

“Show, attend and tell: Neural image caption 
generation with visual attention”17

The authors demonstrate the effectiveness of 
incorporating a visual attention mechanism 
into the caption generation process. The 
attention mechanism allows the model to 
focus on various portions of the image while 
generating each word in the caption, thereby 
improving the alignment between the image 
content and the generated text

superior caption quality in comparison to 
previous methods. By focusing on pertinent 
image regions, the model generates more 
accurate and descriptive captions that 
capture the image’s most important objects, 
actions, and relationships

The approach lacks fine-grained attention 
because it employs a mechanism for soft 
attention that assigns weights to image 
regions rather than concentrating on par-
ticular objects or attributes. This hinders 
the capability of the model to generate cap-
tions with precise details. The article does 
not discuss strategies or techniques for 
fine-tuning the interpretation and control 
of the attention mechanism, thereby limit-
ing the adaptability and interpretability

“Deep MRI Reconstruction with Generative 
Vision Transformers”54

Deep generative network GVTrans trans-
lates noisy variables and latent onto high-
quality MR images. Multi-layer architecture 
improves image resolution. Cross-attention 
transformer modules receive up-sampled 
feature maps in each layer. MR images are 
masked using the same sampling pattern as 
the under-sampled acquisition for test data 
inference. Optimized network parameters 
ensure that reconstructed and original 
k-space samples match

better image quality than CNN-based 
reconstructions with and without self-
attention processes and can adjust to indi-
vidual test subjects. GVTrans may improve 
deep MRI reconstruction applicability and 
generalizability

Using a larger dataset of fully-sampled 
MRI acquisitions for training GVTrans, 
incorporating additional information, such 
as patient demographics or clinical history, 
into the training process, and developing 
a more efficient training algorithm for 
GVTrans can improve the performance of 
the proposed architecture GVTrans.Train-
ing in the proposed GVTrans architecture 
is computationally intensive.GVTrans 
may be unable to reconstruct images with 
high levels of noise or anomalies, as well as 
images with very low sampling rates

“A Simple Single-Scale Vision Transformer 
for Object Detection and Instance Segmen-
tation”46

Universal Vision Transformer (UViT), an 
intuitive and efficient Vision Transformer 
architecture, was proposed for object detec-
tion and instance segmentation

UViT is a simple yet efficient model that 
achieves competitive performance on the 
COCO benchmarks for object detection 
and instance segmentation

On some tasks, such as dense predic-
tion, UViT may not attain the same level 
of performance as more complex Vision 
Transformer architectures. UViT may not 
be as effective as models for object detec-
tion and instance segmentation that are 
more specialized

“Training data-efficient image transformers 
& distillation through attention”34

A large, pre-trained convolutional neural 
network (CNN) is used as a teacher to train 
a smaller, more efficient transformer-based 
student model in this method. The student 
model gains knowledge from the teacher 
by observing the instructor’s output, which 
is represented by a distillation token. The 
distillation token is added to the input of the 
student model and is utilized to direct the 
attention mechanism

DeiT-B model obtains 85.2% top-1 accuracy 
on ImageNet with 86 M-parameterwhen 
trained with 100 epochs and 16 GPUs

The distillation token can be computation-
ally expensive to compute, which is a limi-
tation. Another limitation is that the distil-
lation token can result in a reduction in 
the attention weights’ diversity.It would be 
possible to enhance the distillation token 
by employing a more efficient method for 
computing it. The distillation token could 
be modified to promote attention weights 
with greater diversity. The method could be 
applied to additional tasks, including object 
detection and segmentation

“Analyzing Transfer Learning of Vision 
Transformers for Interpreting Chest Radi-
ography”55

utilizing a standard Vision Transformer 
architecture and training it on a large col-
lection of natural images. Using a limited 
number of labeled examples, they then 
refined this model using the CheXpert or 
Pediatric Pneumonia dataset

A model’s performance on a medical image 
classification task can be considerably 
enhanced by transfer learning from a previ-
ously trained Vision Transformer. There is 
no significant effect on the efficacy of the 
model by fine-tuning

Domain adaption and other transfer 
learning methods may improve Vision 
Transformers’ medical image classification 
performance in future research. The mod-
el’s performance can further be improved 
using larger fine-tuning datasets

“Introducing Convolutions to Vision 
Transformers”56

a novel design called Convolutional Vision 
Transformer (CvT) that increases Vision 
Transformers (ViTs) performance and 
efficiency by adding convolutions.A con-
volutional token embedding layer replaces 
the token embedding layer. This enables 
the CVT to discover spatial relationships 
between tokens, thereby enhancing the 
model’s capacity to represent complex visual 
patterns. Convolutional attention operation 
replaces the attention operation. This ena-
bles the CvT to efficiently compute attention 
weights across vast spatial regions, thereby 
enhancing the model’s capacity to capture 
global context

CvT outperforms ViTs on a variety of image 
classification tasks while requiring fewer 
parameters and FLOPs. For instance, the 
CvT achieves a top-1 accuracy of 89.4% on 
the ImageNet-1 k dataset, which is compa-
rable to the state-of-the-art performance of 
ResNet-50 despite employing only 1/10th of 
the parameters and 1/100th of the FLOPs

CvTs are harder to train and slower at 
inference hen compared with ViT’s. Using 
deeper and broader CvT models to further 
improve performance, adding residual con-
nections between CvT layers to improve 
training stability, and employing dilated 
convolutions and group convolutions to 
improve the model’s ability to represent 
long-range dependencies can further 
improve the proposed model
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Classification layer. This layer utilizes the encoder layers’ output to predict pneumonia’s presence or absence. 
This prediction may be made using a fully connected or convolutional layer.

Loss function. This component evaluates the model’s efficacy based on the predicted and actual labels. In this 
endeavor, binary cross-entropy loss is a common loss function.

Ethical standards
No human participants were involved in the study. Dataset is available on Internet.

Result and discussions
Performance indicators
Various evaluation metrics are used to measure the effectiveness of machine learning models, and each has its 
benefits and drawbacks. The most prevalent metrics include.

Table 2.  Class distribution of the dataset.

Class No of images

Pneumonia (P) 4273

Normal (N) 1583

Table 3.  Partitioning of training, testing, and validation datasets.

# of images # of images from P class # of images from N class

Training data 4684 3205 1479

Validation data 586 360 226

Test data 586 330 256

Figure 2.  The proposed system design architecture.
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Accuracy
This is the most important metric for evaluating a model and is defined as the proportion of correct predictions 
to the total number of predictions made by the model. It is evaluated using Eq. (3).

Figure 3.  Dataset input image in the form of smaller patches.

Figure 4.  Internal design of a transformer encoder.
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Precision
Higher-precision classifiers produce fewer false positives. High accuracy reduces the likelihood of misclassifying 
negative instances as positive in numerous applications where false positives have severe consequences. Preci-
sion is calculated by Eq. (4).

Recall (sensitivity or true positive rate)
Classifiers with higher recall have fewer false negatives. The classifier captures positive cases and reduces false 
negatives. A classifier with lower recall has more false negatives. The recall is determined by Eq. (5)

F1 Score
The F1 Score is the harmonic mean of precision and recall, indicating patterns between them and calculated 
using Eq. (6).

ROC curve
ROC curves evaluate binary classification models. The model separates positive and negative events across clas-
sification thresholds. ROC curve form and position indicate model discrimination. The ROC curve shows the 
trade-off between positive and negative identification when the classification threshold changes. AUC increases 
discrimination and model performance.

Confusion matrix
The confusion matrix tabulates classification model performance. It compares predicted labels to real labels and 
shows different classification outcomes. The confusion matrix reveals model performance. True positives (TP) 
and true negatives (TN) are situations that were accurately predicted. False positives (FP) and false negatives (FN) 
are cases of misclassification. These values allow us to generate model performance metrics including accuracy, 
precision, recall, and F1 score.

Model’s training
To demonstrate our proposed architecture, we experimented with a benchmark dataset of CXR images, one of 
the most frequently downloaded datasets for testing on Kaggle. Using these studies and datasets for binary clas-
sification. Python 3.7, Anaconda/3, and CUDA/10 are installed on a Windows server with an i5 CPU, 2 GB GPU, 
and 8 GB RAM, as well as an Anaconda/3 distribution. In addition to the parameters listed above, the Python 
libraries Pytorch, OpenCV, matplotlib, os, math, and NumPy are used. During training, the data is partitioned 
into batches, and the model’s parameters are modified based on each cohort’s average loss. The group size dictates 
the number of samples utilized during each update phase. A larger sample size can speed up the training rate but 
may require additional memory. CrossEntropyLoss was chosen as the experiment’s loss function. During training, 
the model minimizes this loss function. It computes the negative log-likelihood of expected class probability and 
actual labels. The training algorithm modifies the parameters of the model. In an experiment, the Adam opti-
mizer was used to alter the learning rate for each parameter based on gradient estimates of the first and second 
moments. Pytorch was used for the implementation, and training was conducted in a GPU environmentThe 
learning rate establishes how much model parameters are updated with each optimizer iteration. The multiplica-
tive factor of the learning rate is used to modify the learning rate at each epoch or phase, enabling more granular 
control of the learning rate during training. The learning rate’s multiplicative factor can help the model converge 
on a superior solution. Table 4 demonstrates the experiment’s hyperparameter settings. The novelty of our work 
lies in the application of the Vision Transformer (ViT), specifically utilizing the DEIT_Base_Patch16_224 pre-
trained weights, to the domain of medical imaging for pneumonia detection. While ViT has shown promise in 
various fields, its adaptation to medical imaging, especially chest X-ray analysis, is relatively unexplored. Our 
approach capitalizes on ViT’s ability to capture intricate spatial relationships in images, offering advantages over 
traditional methods. We demonstrate improved performance and potential for enhanced pneumonia detection 
accuracy, marking a significant contribution to the field of medical image analysis.

A model’s performance depends on these hyperparameters and others. To enhance model performance, 
selecting hyperparameter values requires careful analysis and experimentation. For optimal performance, hyper-
parameters must be explored and fine-tuned based on task, dataset, and model architecture.

(3)Accuracy =
(True Positives+ TrueNegatives)

(True Positives+ TrueNegatives+ False Positives+ False Negatives)

(4)Precision =
True Positives

(True Positives+ False Positive)

(5)Recall =
True Positives

(True Positives+ False Negatives)

(6)FScore =
2 ∗ (Precision ∗ Recall)

(Precision_Recall)
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Performance evaluation
The model’s train-validation accuracy against the epoch curve shows its learning and generalization. If training 
accuracy increases but validation accuracy plateaus or falls, it indicates overfitting. Convergence and excellent 
accuracy for both curves show learning and generalization efficacy. The train-validation loss versus epochs curve 
shows model optimization. The model initially matches data better when training and validation loss decreases. 
Overfitting occurs when training loss decreases with increasing validation loss. Convergence and low loss suggest 
error minimization and good generalization for both curves.

Table 5 presents the performance delivered by the proposed approach and Figs. 5 and 6 show the relationship 
between accuracy and epoch and loss and epoch, respectively. Figures 5 and 6 show that during training, valida-
tion accuracy gradually improves along with test accuracy and reaches 97.61 and other performance indicators 
are also indicating outperforming results.

Confidence intervals test
This is statistical tool used to estimate the range within which a performance metric, such as accuracy, sensitivity, 
or specificity, is likely to lie. They provide a range of values that likely contains the true value of the parameter, 
along with a level of confidence.

Confidence interval (CI) is calculated using the formula described using Eq. (7)

Z is the z-score corresponding to the desired confidence level. For example, for a 95% confidence level, the 
Z-score is approximately 1.96.

(7)AccuracyCI = Accuracy ± Z×

√

Accuracy× (1− Accuracy)

sample size

Table 4.  Hyper-parameter setting used in the experiment.

Hyperparameter Value

Batch size 16

Criterion CrossEntropyLoss

Learning rate 1e − 05

Optimizer Adam

Device Cuda

Image resize 224 × 224

The multiplicative factor of the learning rate 0.995

Table 5.  Performance delivered by the proposed model.

Epoch Split ratio Loss (train) Accuracy (train) Loss (test) Accuracy (test) Sensitivity Specificity F score AUC 

30 0.20 0.057 98.04 0.069 97.61 0.949 0.981 0.952 0.966

Figure 5.  Accuracy variation vs epoch curve.
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Interpretation
The accuracy reported as 97.61% with a 95% confidence level, the confidence interval is between 96.2 and 98.9%. 
This means we can be 95% confident that the true accuracy of our proposed model lies within this range.

Matthews correlation coefficient (MCC)
The Matthews correlation coefficient (MCC) is a measure used in machine learning to evaluate the quality of 
binary classification. The formula for MCC is described in Eq. (8).

From the confusion matrix on the test data.
TP = 152, TN = 420, FP = 6, FN = 8

MCC ≈ 0.9396
The Matthews correlation coefficient (MCC) typically ranges from − 1 to + 1:

+ 1 indicates a perfect prediction,
0 suggests a random prediction,
− 1 indicates a total disagreement between prediction and observation.

In this case, an MCC of approximately 0.9396 indicates a very strong positive correlation between the pre-
dicted and actual classifications. This suggests an excellent classification performance for the model used.

The confusion matrix in Fig. 7 shows that out of 586 samples in the test data, our proposed model showed 152 
cases of TP and 420 cases of TN and 6 cases of FP,and 8 cases of FN which indicates a test accuracy of 97.61%. 
Variation of precision and recall is represented by Figs. 8 and 9, which indicates that recall converse after 15 epocs 
while precision converse after 35 epocs. The ROC of the suggested architecture, depicted in Fig. 10, indicates 
an AUC value of 0.96. It denotes the capability of our proposed model to identify the presence or absence of 

(8)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Figure 6.  Loss vs epoch curve.

Figure 7.  Confusion matrix based on test data for the proposed model.
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Figure 8.  Model precision with epocs.

Figure 9.  Model recall with epocs.

Figure 10.  ROC curve with AUC 0.96 of proposed work.
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pneumonia. A precision-recall value of 0.94, depicted in Fig. 11, suggests that the model demonstrates a notable 
capacity to accurately predict positive instances while capturing a substantial proportion of the true positive 
instances. The precise interpretation may differ depending on the domain of application and the particular 
objectives of the classification endeavor.

Discussion
Table 6 presents the performance of pre-train CNN architectures keeping all hyper-parameters values the same 
to make a comparison on the same datasets. It shows that Vision Transformer architecture offersa great improve-
ment over all other architectures, The proposed architecture offers an accuracy of 97.61% and an AUC of 0.96 
but this more extraordinary performance is obtained by compromising on training time because the training 
was a bit time taking when compared with different architectures.

Research prospects in Vision Transformer
Vision Transformer (ViT) architecture research prospects for image classification hold tremendous potential 
for advancing the field. Future research can concentrate on enhancing the performance of ViT models by opti-
mizing their architecture, refining training strategies, and investigating novel techniques to improve precision, 
robustness, and efficiency. In addition, efforts can be focused on developing interpretability methodologies for 
ViT models, allowing for a better comprehension of their decision-making process. It is possible to investigate 
efficient training and inference methods to reduce computational complexity and accelerate model deployment. 

Figure 11.  Precision–recall curve of the proposed method.

Table 6.  Performance evaluation relative to other architectures utilizing the same dataset.

Sr no. Architecture Refs. Accuracy F-score # of trainable parameters
# of non-trainable 
parameters

1 VGG16 59 92.14 0.9234 50,178 14,714,688

2 VGG19 60 90.22 0.8999 50,178 20,024,384

3 ResNet50 61 82.37 0.8281 200,706 23,587,712

4 ResNet101 62 75.96 0.7593 200,706 42,658,176

5 ResNet152 63 87.18 0.8734 200,706 58,370,944

6 ResNet50V2 64 89.26 0.8937 200,706 23,564,800

7 ResNet101V2 65 92.62 0.9250 200,706 42,626,560

8 ResNet152V2 66 92.94 0.9312 200,706 58,331,648

9 InceptionV3 67 89.42 0.8937 102,402 21,802,784

10 InceptionResNetV2 68 90.70 0.8989 200,706 58,331,648

11 DenseNet121 69 91.82 0.9171 100,354 7,037,504

12 DenseNet169 70 88.78 0.8874 163,074 12,642,880

13 DenseNet201 71 91.83 0.9171 188,162 18,321,984

14 NASNetLarge 72 88.14 0.8812 975,746 84,916,818

15 Quaternion Residual Network 73 93.75 0.9405 560,769 8,576

16 Vision Transformer Proposed in the paper 97.61 0.9500 85,800,194 0
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Adapting ViT to scenarios with limited data using semi-supervised and few-shot learning techniques will increase 
its applicability. In addition, domain-specific extensions, hybrid architectures that combine ViT with other 
models, and real-world deployments will contribute to the advancement and practical application of ViT in 
image classification tasks.

Conclusion
The article conducts a thorough analysis of a Vision Transformer (ViT) framework for pneumonia detection in 
chest X-rays. ViTs’ ability to analyze complex image relationships is showcased, demonstrating superior per-
formance over traditional CNNs and other advanced techniques. ViTs excel in capturing global context, spatial 
relations, and handling variable image resolutions, leading to accurate pneumonia detection. The study aims to 
assess this method’s effectiveness by comparing it to state-of-the-art models on a diverse CXR dataset. The results 
reveal ViT’s superiority with an accuracy of 97.61%, sensitivity of 95%, and specificity of 98%. In conclusion, the 
ViT-based approach holds promise for early pneumonia detection in CXRs, offering substantial development 
potential in this field. However, limitations include data scarcity and the need for real-world validation. Future 
directions encompass enhancing interpretability, addressing model robustness, and conducting clinical trials 
for practical deployment.

Data availability
In this work, a public dataset of CXR (https:// data. mende ley. com/ datas ets/ rscbj br9sj/2) has been used.
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