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Abstract
Head acceleration events (HAEs) are acceleration responses of the head following external short-duration collisions. The 
potential risk of brain injury from a single high-magnitude HAE or repeated occurrences makes them a significant concern 
in sport. Instrumented mouthguards (iMGs) can approximate HAEs. The distinction between sensor acceleration events, 
the iMG datum for approximating HAEs and HAEs themselves, which have been defined as the in vivo event, is made 
to highlight limitations of approximating HAEs using iMGs. This article explores the technical limitations of iMGs that 
constrain the approximation of HAEs and discusses important conceptual considerations for stakeholders interpreting iMG 
data. The approximation of HAEs by sensor acceleration events is constrained by false positives and false negatives. False 
positives occur when a sensor acceleration event is recorded despite no (in vivo) HAE occurring, while false negatives occur 
when a sensor acceleration event is not recorded after an (in vivo) HAE has occurred. Various mechanisms contribute to 
false positives and false negatives. Video verification and post-processing algorithms offer effective means for eradicating 
most false positives, but mitigation for false negatives is less comprehensive. Consequently, current iMG research is likely 
to underestimate HAE exposures, especially at lower magnitudes. Future research should aim to mitigate false negatives, 
while current iMG datasets should be interpreted with consideration for false negatives when inferring athlete HAE exposure.

Key Points 

The ability of instrumented mouthguards to approximate 
head acceleration events accurately is constrained by 
technical limitations.

There are multiple mechanisms that contribute to false 
positives and false negatives.

Post-processing algorithms and video verification can 
virtually eradicate false positives, whereas there are less 
means for mitigating false negatives.

The presence of false negatives in instrumented 
mouthguard datasets leads to underestimations of 
approximated head acceleration event exposures.

1  Introduction

Short-term, medium-term and long-term consequences of 
brain injury are a concern across sports. Head acceleration 
events (HAEs) are defined as events resulting in an accel-
eration response of the head caused by an external short-
duration collision force applied directly to the head or indi-
rectly via the body [1]. A single HAE can result in an acute 
brain injury (e.g. concussion) [2]. Repeated HAEs that do 
not result in concussion symptoms [3] are also of interest 
because of the potential association with negative effects on 
cognition and other physiological outcomes [4], and may be 
considered as alternative injury mechanisms in themselves 
[5–8]. Measuring and characterising HAEs are important 
for guiding initiatives to reduce brain injury across sports.

Wearable devices instrumented with inertial sensors (e.g. 
accelerometers, gyroscopes) have the capability of approxi-
mating HAEs by measuring head acceleration. Inertial sen-
sors have been embedded in headbands [9, 10], helmets 
[11–14], skull caps [9], skin patches [14–16], mouthpieces 
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[17] and mouthguards [18–20], demonstrating varying 
degrees of accuracy, e.g., skin-based and skull cap-based 
sensors are displaced up to 4 and 13 mm from the ear canal 
during a soccer header whereas mouthguard sensors are dis-
placed by less than 1 mm [21]. A lack of coupling to the 
skull can lead to erroneous head impact counts and accel-
eration magnitudes [22]; thus, instrumented mouthguards 
(iMGs) have a high potential to accurately measure head 
kinematics[21].

The definition of an HAE is clearly outlined in the Con-
sensus Head Acceleration Measurement Practices (CHAMP) 
[23] as the in vivo occurrence of head acceleration follow-
ing a collision [1], irrespective of whether it is recorded. 
However, the term HAE is commonly used interchangeably 
with the iMG datum, a sensor acceleration event (SAE) [24]. 
An SAE contains sensor measurements that can be used to 
approximate the kinematics of HAEs (Fig. 1). The distinc-
tion between HAEs, the in-vivo event and iMG-recorded 
SAEs is made in the current article to discuss limitations 
associated with approximating HAEs using iMGs. For 
instance, SAEs can be recorded without an actual HAE 
occurring (i.e. false positives), or conversely, HAEs may 
occur without an SAE being recorded (i.e. false negatives) 
[1]. These errors can lead to misinterpretations of HAE 
exposure when using iMG data. Accordingly, this Cur-
rent Opinion explores the technical constraints of iMGs for 
approximating HAEs and discusses the conceptual consid-
erations for the interpretation of iMG data.

2 � Potential iMG Applications

The implementation of iMGs within sports presents the 
opportunity to understand and reduce brain injury across 
different settings. Prior to iMG application, sports have 
modified rules to reduce potential brain injury risk, 

e.g., removing the shoulder charge in rugby league 
[25], lowering the tackle height in rugby union [26] and 
disallowing body checks in youth ice hockey [27, 28]. 
By understanding the technical features of a sport that 
result in HAEs, governing bodies may use iMGs to inform 
rules and policy changes, and coaches or practitioners 
may use them to guide contact load management and 
technique education. Critically, iMGs have the capability 
of approximating HAE exposure, enabling their use for 
guiding and evaluating initiatives aimed at reducing HAE 
exposure in sport.

At a team level, iMGs can be used to identify training 
activities associated with the greatest risk of HAEs to 
determine whether these are deemed essential from 
performance and player welfare perspectives [29–32]. 
Likewise, it is possible to monitor HAE exposure on 
a player-by-player basis and implement contact load 
management strategies to reduce unnecessary exposure. 
Given the energetic and physiological cost of collisions 
[33–35], periodising contact load may improve performance 
by balancing the minimal dose needed to condition players 
to contact whilst reducing HAE exposure.

At a clinical level, iMGs may have clinical applications 
for assisting clinicians with the diagnosis of brain injury. 
Injury tolerance thresholds for concussion using wearable 
sensors have been elusive [36, 37] owing to the numerous 
intrinsic (e.g. head size [38], age [39], previous concussion 
history [40, 41]) and extrinsic (e.g. head protection [42]) 
factors that confound the clinical response to a given HAE 
[43]. As such, diagnosing concussion solely based on iMG 
data is not recommended. Furthermore, the diagnosis of 
concussion should always be a medical decision made 
by a clinician. Despite this, iMGs may support clinical 
decision making by alerting clinicians to high-magnitude 
SAEs associated with an elevated risk of concussion [2]; 
subsequent clinical diagnoses can be made using a range of 

Fig. 1   A sensor acceleration 
event (SAE) approximates a 
head acceleration event (HAE) 
when a head acceleration trig-
gers an instrumented mouth-
guard (iMG) to record an SAE
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available information (e.g. clinical assessment [44], video 
footage).

Head kinematics of HAEs provided by iMGs can also 
be used to understand the mechanism of brain injuries. 
Field data collected using iMGs can approximate HAE 
exposures and magnitudes to inform laboratory-based 
designs for investigating the biomechanical mechanisms 
at the cell structure level [45–47] and brain biomechanical 
model simulations [48]. Understanding the biomechanical 
mechanisms of brain injury is important to establish which 
HAEs are most likely to lead to brain injury, as well as 
informing the design of personal protective equipment [49] 
for reducing brain injury incidence within and beyond sport.

3 � Head Acceleration Magnitude

Appropriate interpretation of iMG data is necessary to 
realise the potential applications of iMGs. Specifically, 
which HAEs are important to iMG applications or research 
questions should be identified for interpreting iMG data. 
From injury prevention and player welfare perspectives, 
HAEs that have the potential to be clinically significant 
may be of interest. However, this magnitude has yet to be 
determined.

Injury risk curves suggest that there is a 50% chance 
of concussion from a 63 [50] to 81 g [51] HAE, based on 
helmeted SAEs in American Football using helmet-based 
sensors. However, it is worth noting that a diagnosed 
concussion has been reported with an iMG-recorded SAE 
as low as 53 g [52]. Consequently, if iMGs are being used 
solely for concussion prediction, then focusing on HAE 
magnitudes near to this may be appropriate. Despite this, 
HAEs that do not result in a diagnosed concussion (i.e. 
subconcussive HAEs) may still present a clinical effect. 
Retrospective research of retired American Football players 
has demonstrated that repetitive exposure to HAEs above 
10–15 g is a better predictor than a concussion history of 
chronic traumatic encephalopathy pathology [7] and self-
reported executive dysfunction, depression, apathy and 
behavioural dysregulation [8]. Despite this, neither study 
accounted for magnitude, and therefore it is unclear whether 
HAEs (or SAEs) of 10 or 15 g are clinically significant, or 
that they simply correlate with higher magnitudes that are 
clinically significant.

Magnitudes of up to 6, 8 and 10 g have been recorded 
during roller coaster rides [53], non-contact events in 
rugby union [54] and trampolining [55], respectively. Con-
sequently, it has been suggested that HAEs below these 
magnitudes are unlikely to have a clinical effect. However, 
thresholds for clinical significance should not solely rely 
on measures of peak linear acceleration (i.e. “g-force”), as 
variations in angular kinematics and pulse duration may 

occur even with similar peak linear acceleration values (see 
Fig. 2). Angular kinematics and pulse duration have been 
shown to influence brain tissue response in simulations 
[56–58]; therefore, they should be considered when infer-
ring clinical significance. As a result, the lower boundary of 
clinically significant HAEs remains unclear.

Future research will pursue a metric that can differentiate 
clinical significance, for cumulative or acute injury 
mechanisms. Until such a metric is identified, an appropriate 
approach to data collection using iMGs may be to optimise 
data collection to record SAEs across a broad range of 
magnitudes that may have the potential to be clinically 
significant.

4 � Approximation of Head Acceleration 
Events Using iMGs

The approximation of HAEs is made by recording SAEs, 
which are short periods of sensor measurements that are 
processed to approximate head kinematics during an HAE 
(Fig. 1). An SAE is recorded when inertial sensor measures 
exceed a pre-determined trigger threshold [1, 18, 23]. The 
key processing steps for approximating HAEs using SAEs 
include the filtering of inertial sensor signals to remove 
electrical noise that does not represent head movement [1, 
59]; the transformation of linear kinematics to the head 
centre of gravity (CoG) to best describe acceleration of 
the head [1, 60]; and the removal of false-positive SAEs 
that do not occur during an HAE [1]. False-positive SAEs 
include those triggered by non-head movement (e.g. biting 
down on the device or electrical noise), or simply head 
accelerations that are not caused by HAEs (e.g. voluntary 
head movements from running). These events are removed 
by video verification or post-processing algorithms [1, 61, 
62]. Typically, post-processing algorithms operate using 
machine learning to determine which SAEs are true positives 
and removing those that are not [1]. As a result, an HAE is 
only approximated by an iMG if both of the following occur: 
first, the sensor measures must exceed the trigger threshold 
to record an SAE, and second, the SAE must be retained 
following post-processing algorithms [1, 61, 62] and/or 
video verification [1] (i.e. must not be deemed to be a false 
positive).

5 � iMG Validity

The technical capability of iMG systems to approximate 
HAEs has been assessed in validation studies [18–20, 63]. 
A video analysis of SAEs has been conducted to report 
positive-predictive and sensitivity values [64]. Positive-
predictive values reflect an iMG system’s ability to collect 
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true-positive SAEs without recording false-positive SAEs, 
while sensitivity values measure the system’s ability of 
iMGs to collect true-positive SAEs without recording false 
negatives, respectively. The accuracy of head kinematics 
is typically assessed in vitro [18–20]. High kinematic 
accuracy (concordance correlation coefficient values of 
0.97–0.99 [18]) and positive-predictive values (positive 
predictive value of 0.99 in rugby union [65]) have been 
achieved by iMG systems. Tight coupling with the upper 
dentition [21] and filtering techniques [59] improve 
kinematic accuracy, while post-processing algorithms are 
effective for removing false positives. Reported sensitivity 
values have been relatively low, with a range from 0.40 
to 0.75 between iMG systems following rugby league 
collisions [18], and 0.80 from head contacts in American 
Football [66]. This suggests that iMG systems are more 
likely to suffer from false negatives than false positives.

6 � False‑Negative Mechanisms

False negatives may occur because of various factors. The 
misclassification of SAEs by post-processing algorithms 
can lead to false negatives [1], while the re-arming period 
may prevent SAEs from being recorded if they occur in 
quick succession of another SAE. The re-arming period is 
a brief interval following the recording of an SAE while 
the event is written to fixed memory; during this period, an 
iMG is unable to record head kinematics. Figure 3 shows 
scenarios where the re-arming period may cause false 
negatives and partially missed SAEs.

In current published research, iMG systems are con-
figured with trigger thresholds [1, 24]. This recording 
mechanism can contribute to false negatives if an HAE 
fails to produce sensor measurements exceeding the 

Fig. 2   Two sensor acceleration events recorded during a a ground reaction force during running [54] and b a body-to-body collision [65] in 
rugby union
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pre-determined threshold value. The iMG system config-
ured with the lowest trigger threshold in a recent validity 
study also had the highest sensitivity value [18]; there-
fore, lowering trigger threshold values should improve 
false-negative performance. However, it is worth noting 
that other devices in the study may also be capable of 
configuring lower trigger thresholds and achieving similar 
sensitivity values.

7 � Linear Acceleration Trigger Bias

It is common to assume that HAEs that fail to exceed 
trigger thresholds are inherently low in magnitude and 
may be considered as true negatives. However, this 
assumption is incorrect. Simulations have revealed that 
HAEs up to 30 g in magnitude may fail to exceed a 10 g 
trigger threshold because of the linear acceleration trigger 

bias [67]. It is crucial that researchers and iMG users 
recognise how the linear acceleration bias can contribute 
to false negatives with magnitudes higher than the trigger 
threshold.

The linear acceleration bias [67] occurs because trigger 
thresholds operate using linear acceleration measured at the 
iMG location, whereas the linear magnitude of HAEs (and 
SAEs) is described using resultant values transformed to the 
head CoG. Linear kinematics are transformed to the head 
CoG using the relative acceleration equation (Eq. 1). The 
magnitude of linear acceleration at the iMG location and 
the head CoG are not always the same [60]. For example, 
consider an HAE whereby the head merely rotates about the 
iMG location (Fig. 4); in such a head movement, there would 
be no linear movement at the iMG location and therefore no 
linear acceleration. Conversely, the head CoG would move 
from the start to the end position and therefore experience 
some degree of linear acceleration. In this way, HAEs can 
be low in linear acceleration magnitude at the iMG loca-
tion, but high in magnitude at the head CoG. In some cases, 
HAEs with high linear acceleration at the head CoG may fail 
to exceed a linear acceleration trigger threshold at the iMG 
location, thereby resulting in false negatives.

Simulations of HAEs across various head impact 
locations, each resulting in a 10 g linear acceleration at 
the head CoG, revealed that only 25% of impact locations 
exceeded a 10 g trigger threshold at the iMG sensor location 
[67]. The same simulations of 20 g HAEs (at the head 
CoG) resulted in 86% of impact locations exceeding a 10 g 
trigger threshold, while 99.9% of 30 g HAEs exceeded 10 g. 
Therefore, false negatives are less likely to occur at higher 
magnitudes.

Fig. 3   The re-arming period is a short period of time following the 
collection of a sensor acceleration event (SAE) when the instru-
mented mouthguard cannot record data. The re-arming period can 
lead to instrumented mouthguards missing (A) or partially missing 
head accelerations before (B) or after (C) the SAE

Fig. 4   Linear kinematics at the instrumented mouthguard (iMG) 
location are different to the linear kinematics at the centre of grav-
ity (CoG). In this example, there is no linear acceleration at the iMG 
location, but there is at the head CoG
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The relative acceleration equation, where ���⃗ah is the linear 
acceleration at the head CoG with respect to time, ���⃗am is the 
linear acceleration at the iMG sensor location with respect 
to time, �⃗𝛼 is the angular acceleration with respect to time, 
r
mh

 is the position vector from iMG sensor location to the 
head CoG, and ��⃗𝜔 is angular velocity with respect to time.

8 � Current Head Acceleration Exposures are 
Likely to be Underestimated

In current research, trigger thresholds operate exclusively on 
linear acceleration values, having been set at 5 [68], 8 [65], 
10 [24] and 13 [18] g, with 10 g being the most common 
[24]. Similarly, most research papers approximate HAEs 
by reporting SAEs of 10 g and above [24, 69]. Given that 
prior simulation demonstrates that HAEs as high as 30 g 
may fail to exceed 10 g at the iMG sensor location [67] and 
that a 10 g trigger threshold is most common [69], the rate 
of false negatives caused by the linear acceleration trigger 
bias is likely to be relatively high in current iMG studies, 
especially at lower magnitudes. Moreover, head impact 
locations to the front of the head have been shown to be 
more common using iMGs in some sports [66, 70], and 
simulations indicate that these impact locations are more 
likely to result in false negatives than rear-sided impacts 
[67]. Therefore, false-negative rates may be even higher in 
some sports than estimated in previous simulations, which 
simulated head impacts evenly across head impact locations 
around the northern hemisphere of the head [67].

The presence of false negatives may lead to an 
underestimation of HAE exposure, whereas false positives 
can lead to an overestimation. As video verification and post-
processing algorithms virtually eradicate false positives, and 
current trigger mechanisms result in false negatives, research 
using iMGs is more likely to underestimate HAE exposures. 
It is crucial that the interpretation of iMG datasets is made 
with consideration for the presence of false negatives, 
particularly at lower magnitudes (< 30 g). One approach may 
be to design research questions to account for limitations 
of iMG systems. For example, given that false negatives 
may occur up to 30 g when using a 10 g trigger threshold 
[67], future research questions could be designed to focus 
only on HAEs above 30 g, acknowledging that HAE with 
magnitudes lower than this are harder to detect using iMGs.

9 � Reducing False Negatives

Various approaches have been recommended for reducing 
false negatives by mitigating the linear acceleration 
trigger bias [67]. Angular trigger thresholds have been 

(1)���⃗ah = ���⃗am + �⃗𝛼 × r
mh

+ ��⃗𝜔 ×

(

��⃗𝜔 × r
mh

)

.

recommended as an alternative to linear-based triggers 
because angular kinematics are the same at the sensor 
location and head CoG under the assumption that the head 
is a rigid body. However, angular-based sensors can have 
slower response rates, which may delay triggering and 
potentially result in more false negatives.

False negatives can be reduced simply by lowering trigger 
thresholds. This would result in more SAEs being collected 
and reduce the number of false negatives [67]. However, 
lowering the trigger threshold would not eradicate the 
bias and would present additional challenges, including an 
increased burden on video verification and post-processing 
algorithms, an increased likelihood of missed HAEs because 
of the re-arming period, and battery life and storage capacity 
limitations. An alternative method to avoid false negatives 
entirely is to continually record and store head kinematics 
and extract SAEs from a continuous kinematic signal 
whenever an HAE is identified; however, this approach 
was ineffective in a recent validation study because of the 
low sampling rate required to preserve battery life and 
accommodate storage limitations [18]. Future research 
should focus on improving iMG design to reduce false 
negatives.

10 � Conclusions

With the ability to approximate in vivo head accelerations, 
iMGs present the opportunity to monitor HAEs during 
sport. These data can have a multitude of applications across 
medical, performance and sporting governance settings. 
To realise this potential, stakeholders (i.e. practitioners, 
researchers, iMG manufacturers) should consider the 
conceptual considerations for approximating HAEs in sport 
using iMGs. For the purposes of this article, the distinction 
is made between HAEs, the in vivo acceleration event and 
SAEs, the recorded datum of an iMG for approximating 
HAEs, to describe how the accuracy of approximation is 
constrained by technical limitations of iMG systems. Future 
iMG studies may use the term HAE interchangeably with an 
SAE; however, they must recognise the technical constraints 
on iMGs for approximating HAEs outlined in this article.

There is a risk of overestimating HAE exposures 
if there are a high number of false positives; however, 
current post-processing algorithms and video verification 
virtually eradicate these events. Conversely, mitigating 
false negatives poses a greater challenge, as indicated by 
relatively lower sensitivity values observed in validations 
[18, 65]. This suggests that iMGs are more likely to 
underestimate HAE exposures than to overestimate 
them. The most pertinent mechanism of false negatives 
is the linear acceleration trigger bias [67], which can 
result in HAEs up to 30 g failing to exceed a 10 g trigger 
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threshold. Consequently, it may be appropriate to focus 
research questions on magnitudes where iMG systems 
can sensitively detect HAEs by accounting for the linear 
acceleration trigger bias. It is crucial that future research 
mitigates the linear acceleration bias. Until then, the 
interpretation of existing iMG datasets should be made 
with consideration for the presence of false negatives, 
particularly at lower magnitudes (< 30 g).
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