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Abstract

Machine learning based intrusion detection systems monitor network data streams

for cyber attacks. Challenges in this space include detecting un- known attacks,

adapting to changes in the data stream such as changes in underlying behaviour,

the human cost of labeling data to retrain the machine learning model and

the processing and memory constraints of a real-time data stream. Failure to

manage the aforementioned factors could result in missed attacks, degraded de-

tection performance, unnecessary expense or de- layed detection times. This

research proposes a new semi-supervised network data stream anomaly detec-

tion method, Split Active Learning Anomaly De- tector (SALAD), which com-

bines our novel Adaptive Anomaly Threshold and Stochastic Anomaly Thresh-

old with Fading Factor methods. A novel Reconstruction Error based Distance

from Threshold strategy is proposed and evaluated as part of an active stream

framework to demonstrate reduc- tion in labeling costs. The proposed methods

are evaluated with the KDD Cup 1999, and UNSW-NB15 data sets, using the

scikit-multiflow framework. Results demonstrated that the proposed SALAD

method offered equivalent performance to full labeled and alternative Näıve

Bayes (NB) and Hoef- fiding Adaptive Tree (HAT) methods, with a labeling

budget of just 20%,



significantly reducing the required human expertise to annotate the network
data. Processing times of the SALAD method were demonstrated to be sig-
nificantly lower than NB and HAT methods, allowing for greatly improved
responsiveness to attacks occurring in real time.

Keywords: Active Learning, Online Learning, Autoencoders, Anomaly
Detection, Intrusion Detection System

1. Introduction

Autoencoders (AE) can be used as an unsupervised computer network
anomaly detector for cyber security use cases. Anomaly detection is typically
achieved by comparing the resulting AE Reconstruction Error (RE) value
for a given data item against a threshold value, with values below threshold
belonging to the normal population, and those above considered an anomaly.
Choosing a suitable threshold value is non-trivial for computer network data
streams, where the normal and anomaly distributions can overlap and change
overtime due to concept drift, meaning that achieving an optimal accuracy
is practically impossible where the threshold value is fixed. A number of
offline threshold methods such as average RE (Vaiyapuri and Binbusayyis,
2020), Näıve (Mirsky et al., 2018), Stochastic (Nicolau and McDermott, 2016;
Autoencoder et al., 2022; Aktar and Yasin Nur, 2023), and Density based
(Catillo et al., 2023), are proposed in the literature, but the area of online
threshold adaptation is under explored.

In our previous paper (Nixon et al., 2020) we introduced two AE thresh-
old methods for network data streams: Näıve Threshold Method with Decay
(NATD), which decayed the maximum observed RE threshold value over
time to force a new value to be adopted as the data stream evolves, avoid-
ing fixing the threshold at an unrealistic maximum during early training;
and Stochastic Anomaly Threshold (SAT) which selected a threshold that
achieved maximum accuracy, from between the mean RE and three standard
deviations from the mean, requiring data labels in order to calculate the ac-
curacy. Overall the SAT method achieved the higher accuracy and F1-score
over NATD, although was not able to outperform other supervised Näıve
Bayes (NB) and Hoeffding Adaptive Tree (HAT) methods, that were used
as a benchmark. A key finding of our previous work was that the perfor-
mance of the AE method is influenced by the selection of a suitable anomaly
threshold method, and that the running time is significantly lower than the
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benchmark NB and HAT, making the AE method highly desirable for online
data stream processing.

This work aims to test the hypothesis that the AE anomaly threshold
method can be further improved to adapt to the data stream with the in-
clusion of forgetting mechanism to balance the effects of gradual and abrupt
concept drift. A further aim is to explore a semi-supervised approach for
stream-based anomaly detection, with the inclusion of an Active Learning
(AL) framework to balance the labelling budget throughout the data stream
and test if this can further enhance performance by highlighting more rele-
vant samples for both training new AE models, in the event that the normal
population drifts, and selecting suitable threshold values.

We propose a semi-supervised Split Active Learning Anomaly Detection
(SALAD) method that combines the autoencoder anomaly detector with a
novel Adaptive Anomaly Threshold (AAT) or Stochastic Anomaly Threshold
with Fading Factor (SAT FF) threshold method which uses a memory based
fading factor method to incorporate previous data instances into threshold
decisions, allowing for short and long term change to be balanced. Secondly
the AAT method introduces a novel method to identify chunks of normal
data instances to improve overall detection accuracy.

The contributions of this paper are as follows:

1. Inclusion of a fading factor to extend our previous SAT method (Nixon
et al., 2020), SAT FF, allowing the effects of gradual and abrupt con-
cept drift to be accommodated when updating the anomaly threshold.

2. An Adaptive Anomaly Threshold (AAT) method that broadens the
threshold search range to the maximum observed RE value instead of
three standard deviations, allowing for chunks of normal instances to
be appropriately classified where values greater than three standard
deviations would have been missed by SAT.

3. AE anomaly detection is combined with an Active Stream Framework
(Žliobaitė et al., 2013), using a split strategy that combines the random
strategy with a novel RE based distance from threshold strategy. This
reduces the necessary labels to find an appropriate anomaly threshold
whilst improving overall performance of the AE method by allowing
retraining to occur on the most relevant normal samples to adapt to
drift.

The remainder of this article is organised as follows: Section 2, intro-
duces related work; Section 3, describes the proposed Split Active Learning

3



Anomaly Detector (SALAD) method; Section 4, presents the evaluation re-
sults; Section 5, discusses how SALAD provides a low cost anomaly detector
for network data streams; and Section 6, presents conclusions.

2. Related Work

2.1. Autoencoder Anomaly Detection

An autoencoder uses an encoding function to produce a latent code repre-
sentation of the input data, and a decoding function to reconstruct the input
from the code representation (Nixon et al., 2020). The mean square Recon-
struction Error RE between the reconstructed output X̂ and original input
X can be calculated using equation 1, where f is the encoding function, g is
the decoding function, and n is the number of samples (Nixon et al., 2020),
which can then be compared to an anomaly threshold to label a sample as
either normal or anomalous.

X̂ = g(f(X))

RE =
1

n

n∑
j=1

(Xj − X̂j)
2 (1)

Autoencoder based anomaly intrusion detection methods are well es-
tablished, whereby single layer denoising models (Nicolau and McDermott,
2016), Long Short Term Memory (LSTM), Recurrent Neural Network (Mirza
and Cosan, 2018; Kieu et al., 2019), ensembled stacked autoencoders (Mirsky
et al., 2018; Li et al., 2020), and sparsely connected networks (Chen et al.,
2017; Kieu et al., 2019) have been previously demonstrated across a range of
IDS data sets.

Several methods were proposed in the literature to determine the anomaly
threshold, an important parameter in deciding whether to label a sample
as a positive detection. The threshold can be set to the average RE value
observed during training (Vaiyapuri and Binbusayyis, 2020). Näıve Anomaly
Threshold (NAT) sets the threshold at the maximum observed RE during
training (Mirsky et al., 2018). Stochastic Anomaly Threshold (SAT) (Nicolau
and McDermott, 2016; Autoencoder et al., 2022; Aktar and Yasin Nur, 2023)
sets the threshold based on the best observed accuracy or F1-score when
stepping through threshold values within a range of the RE value distribution.
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Nicolau and McDermott (2016) proposed an anomaly threshold method using
Kernel Density Estimation. Catillo et al. (2023) proposed CPS-GUARD,
where the RE is calculated for sets of inliers and outliers and a threshold is
chosen that balances both sets in order to trade off between legitimate vs
anomalous outliers.

There are few examples of online threshold methods in the literature.
Odiathevar et al. (2022) developed a hybrid framework whereby an AE was
trained offline on high dimension network data, and the resulting latent repre-
sentation and median threshold used to select normal samples for incremental
training of an online 1-class SVM classifier. A drawback of this framework, is
that it requires both an offline and online model, which could add additional
processing time and memory requirements.

Aiming to find an optimal network configuration, we evaluated in Nixon
et al. (2020), an undercomplete autoencoder, regulated with connection dropout,
with a prequential online test using the KDD Cup 1999 and UNSW-NB15
data sets. Applying a single layer autoencoder with dropout probability of
0.1, using the Stochastic Anomaly Threshold method, provided an accuracy
of 98% and F1-score of 0.812, using the KDD Cup 1999 data set, with a sig-
nificantly improved running time compared to traditional Näıve Bayes (NB)
and HAT online methods. Evaluation on the UNSW-NB15 data set using a
3-layer network and dropout probability of 0.2 returned an accuracy of 79.1%
and F1-score of 0.703. The results showed that the SAT threshold performed
better than the NAT, and that more complex data sets benefit from experi-
menting with the number of layers and regularisation of the network.

2.2. Concept Drift Detection with Active Learning

Non-stationary network data streams may experience real concept drift
(Gama et al., 2014), whereby the posterior probability of classes will change
over time due to changes in network behaviors, the cause of which could be
either benign or adversarial in nature. The posterior probability is defined
as p(y|X) which represents the probability of class y given an observation X
(Gama et al., 2014). Autoencoders determine outliers using the RE-score,
based on the hypothesis that adversarial behaviour deviates from the learned
‘normal’ representation resulting in scores above the anomaly threshold. Real
concept drift presents a challenge that the aforementioned hypothesis will
weaken overtime, with changing benign data also scoring above threshold,
raising the false positive rate. Increasing the anomaly threshold does not
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present an optimal solution as although the false positive rate may lower,
the false negative rate could increase and so is not recommended.

Active learning (AL) aims to select the most relevant samples for training
based on the use of a learning strategy and restriction of the labelling cost to
a specified budget (Žliobaitė et al., 2013), which is useful where it is infeasible
to label the entire data set for training and choosing more relevant samples
should speed up convergence time. Tharwat and Schenck (2023) provides an
overview of state-of-the-art AL methods, covering membership query syn-
thess, stream-based, and pool-based scenarios, and related query strategies
for both information and representation-based approaches. DeepAL is pre-
sented as an advanced topic and further expanded on by Ren et al. (2022),
requiring batch based strategies to provide the volume of labels and diver-
sity required by deep learning training. The DeepAL methods are focused
on pool-based approaches and using the probabilistic output of the softmax
layer, which is not relevant to the AE approach.

Stream-based research has recently focused on partially-labelled data
streams and propose both Semi-Supervised (SSL) and AL as methods to
train classifiers in thses scenarios (Gomes et al., 2022; Fahy et al., 2023).
Adaptation to concept drift is highlighted as challenge, with statistical based
Confidence Distribution Batch Detection, and a performance based Active
Stream Framework (ASF) (Žliobaitė et al., 2013) both outlined. ASF com-
bines performance change detection with a labeling strategy and a fixed bud-
get B.

Žliobaitė et al. (Žliobaitė et al., 2013) discussed three requirements for
stream-based AL strategies:

1. balance the labeling budget B over infinite time
∑

D p(label|X)p(X) ≤
B;

2. detect changes anywhere in the instance space x ∈ D then p(label|X) >
0;

3. preserve the distribution of incoming data for detecting changes p(X|label) =
p(X).

A number of strategies were evaluated against the aforementioned, including
fixed uncertainty as demonstrated by Sethi and Kantardzic (2017), and un-
certainty with randomisation, whereby the sensitivity threshold is randomly
selected from a standard distribution to occasionally include samples outside
of the uncertainty margin. Fixed uncertainty is only able to satisfy require-
ment one, and randomised uncertainty satisfies requirement one and two, but
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neither can preserve the probability density of labelled data compared to the
original distribution, which can bias the model (Žliobaitė et al., 2013). A
further split strategy is introduced which satisfies all three requirements by
splitting the the data stream into two, using uncertainty and random strategy
exclusively on either stream. Both streams are used for training, but only the
randomised stream is used for change detection (Žliobaitė et al., 2013). Shan
et al. (2018) presents a split strategy, although in this approach adaptation
is blind, based on incrementally updating the ensemble members with both
uncertainty and random labels, offering no pro-active change detection, this
could reduce overall adaptation speeds (Gama et al., 2014).

Shan et al. (2018) also proposed a stream-based AL change detection
strategy based on margin uncertainty, ‘OALEnsemble’, however in this ap-
proach the ensemble members are trained on different windows of the data
set, with a stable classifier and a series of short window ‘dynamic’ classifiers
that are continually replaced as new blocks of the data stream are processed,
to balance the detection of both sudden and gradual concept drifts. Label-
ing is restricted to samples within the uncertainty margin, with the addition
of a random labeling algorithm to randomly include samples outside of the
margin where drift may also be occurring. The stable classifier is incremen-
tally trained with all new data, whilst dynamic classifiers are only trained
on the most recent block and given a weight, providing importance to more
recent data (Shan et al., 2018). Use of windows will result in larger memory
requirement compared to use of a fading factor as outlined by Gama et al.
(2013).

3. Methods

In our previous work (Nixon et al., 2020) we evaluated dropout proba-
bility, NAT with decay and SAT anomaly thresholds, and single vs stacked
network structure, to find optimal autoencoder parameters. Building on
this work, in this article, we further introduce a new Split Active Learn-
ing Anomaly Detector (SALAD) method, using a novel Adaptive Anomaly
Threshold (AAT) and Stochastic Anomaly Threshold with Fading Factor
(SAT FF) threshold methods. A novel Reconstruction Error based Distance
from Threshold AL strategy is evaluated with an AL based Active Stream
Framework (ASF) (Žliobaitė et al., 2013) with which we compare blind, ran-
dom, RE distance from threshold, variable distance from threshold and split
AL strategies. All methods are evaluated using a prequential, interleaved
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Table 1: List of Symbols used in this paper

Symbol Remarks

φ Anomaly threshold
α Fading factor
S Fading sum
N Fading number of instances
RE Reconstruction error
REµ Fading mean RE
REMAX Maximum RE
β Threshold sensitivity
B Labelling budget

b̂ Estimated budget
d Distance from anomaly threshold
θ Uncertainty confidence
v Step Size

test-then-train method (Gama et al., 2014), whereby the model is first tested
on previously unseen samples before training in a chunk wise fashion (Nixon
et al., 2020), after an initial period of pre-training. Results are compared
against traditional NB and HAT online learning methods using the KDD
Cup 19991 10% (Tavallaee et al., 2009) and UNSW-NB152 (Moustafa and
Slay, 2015) data sets.

The Keras3 neural networking (Chollet et al., 2015), version 2.3.1, and
Scikit-Multiflow4 stream learning (Montiel et al., 2018), version 0.4.1, frame-
works for Python were used for this evaluation. The experiments were ran
on a Windows 10 64bit PC with Intel i7 1.8GHz processor and 8GB RAM.

Observed metrics during evaluation included: accuracy, F1-score, kappa
and total running time. For prequential evaluation the scikit-multiflow de-
fault of updating evaluation metrics every 200 samples was used.

3.1. Stream-based Threshold Methods

Stochastic Anomaly Threshold with Fading Factor (SAT FF)

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
2https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-

data sets/
3https://keras.io/
4https://scikit-multiflow.github.io/
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Table 2: Threshold Method Comparison

Threshold
Method

Proactive Forgetting
Mecha-
nism

Comments

Average RE
(Vaiyapuri and
Binbusayyis, 2020)

No No Threshold blindly updates.

NAT (Mirsky et al.,
2018)

No No Threshold set too high during initial
training.

SAT (Nicolau and
McDermott, 2016)

Yes No Threshold selected based on accuracy
but does not consider previous data.

AAT (Proposed) Yes Yes Threshold based on accuracy, tries max
value first to simplify normal sample
processing, includes fading average so
threshold is based on previous data.

The challenge of a constantly changing data stream cannot be addressed
by the SAT threshold where only the most recent data chunk is considered
for update of the anomaly threshold. In order to represent the evolving data
stream then the SAT method should consider previously observed samples.
It is necessary to balance the influence of abrupt vs gradual change by use
of a forgetting mechanism, such as a sliding window or fading factor (Gama
et al., 2013). Fading factors are preferred as they are more memory efficient
as they do not require the storage of previous samples.

The Stochastic Anomaly Threshold method (Aygun and Yavuz, 2017)
was developed for offline learning and has been adapted to a novel SAT with
Fading Factor (SAT FF) method for online data streams, where data in-
stances are processed in a chunk wise fashion, so that previously observed
data instances can influence the threshold decision. The SAT FF method
uses a fading average RE value so that the relevance of previous samples can
be gradually forgotten based on a fading factor α (Gama et al., 2013). The
fading average, REµ, is calculated in lines 4 to 6 of algorithm 1, where S is
the fading sum RE, and N is the fading number of instances, and i is the
current sample number.

Adaptive Anomaly Threshold (AAT)
When dealing with chunks that contain only normal samples, where D

is the data stream and chunk C ⊂ D, and X ⊆ C is a subset of normal
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instances, then if |X| = |C| the predicted accuracy will be 100% for chunk
C when threshold φ ≥ max(predictRE(x ∈ C)), when applying the classifi-
cation function a provided by equation 2, where φ is the anomaly threshold
and β is the threshold sensitivity. Therefore the threshold update function
should assume the maximum RE value when the current accuracy is 100%.

a(RE) =

{
1, if RE ≥ φβ

0, otherwise
(2)

The proposed Adaptive Anomaly Threshold (AAT) method, extending
the previously outlined SAT FF method, is given in its entirety in algorithm
1. Lines 7 to 9 maintain REMAX throughout the data stream, lines 10 to
12 calculate the accuracy using REMAX as φ, and line 13 checks for perfect
100% accuracy to signify |X| = |C|, saving the need to iterate using SAT. If
accuracy is lower then SAT (Nixon et al., 2020) continues in lines 14 to 24 in
order to find an optimal φ. The proposed method is compared to previous
threshold methods in table 2.
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Algorithm 1: Adaptive Anomaly Threshold with SAT FF

Input : autoencoder m, input X, labels y, anomaly threshold φ,
step size v ← [> 0], fading factor α

Output: φ
1 S0 ← 0;N0 ← 0;REmax ← 0;

2 Xy←0 ⊆ X;
3 REi ← predictRE(m, Xy←0);
4 Si ← REi + α ∗ Si−1;
5 Ni ← 1 + α ∗Ni−1;

6 REµ ← Si

Ni
;

7 if REi > REMAX then
8 REMAX ← REi;
9 end

10 φ← REMAX;
11 ŷ ← predict(m,φ,X );
12 accw ← calcAccuracy(ŷ,y);
13 if accw < 1.0 then
14 φw ← φ;
15 while φ > REµ do
16 φ← φ− v;
17 ŷ ← predict(m,φ,X );
18 acc← calcAccuracy(ŷ,y);
19 if acc > accw then
20 φw ← φ;
21 accw ← acc;

22 end

23 end
24 φ← φw;

25 end

3.2. Stream-based Active Learning Framework
A primary challenge with the proposed AAT method is the requirement

for supervised labels in order to calculate the accuracy value. This is not
practical for infinite data streams and so it is proposed to combine the AE
and AAT methods with a semi-supervised Active Learning approach in or-
der to reduce the labelling cost. In addition to this, the data stream can
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evolve and so a change detection method is required to identify drift occur-
ring within the normal sample space and retrain the AE anomaly detector
in order to adapt.

Active Stream Framework
Žliobaitė et al. (2013), proposed an Active Stream Framework, which com-

bines change detection with a labelling strategy and a fixed budget B, and
this framework is adopted for our evaluation. Algorithm 2 gives the frame-
work that was evaluated, where b̂ is the estimated budget. The labelling
budget and AL query strategy, line 4, determine if the label of a given chunk
should be queried. Lines 6 to 14 handle change detection, if a warning signal
is received then a new autoencoder (AEL) is trained with the most recent
examples, and when a change is signalled, the current model is replaced with
AEL, completing adaptation to the new concept. For this evaluation the
Drift Detection Method (DDM) (Gama et al., 2004) change detector is used.

The framework maintains a running estimate of label usage ûi over a
fading window, line 18, using equation 3, where w is the size of the fading
window and labeli is the labelling decision either 0 or 1 at time i. The
spending estimate b̂ is then calculated from ûi over w, given in equation 4
(Žliobaitė et al., 2013). During this evaluation, w was set to 1000.

ûi = ûi−1 ∗
(w − 1)

w
+ labeli (3)

b̂ =
ûi
w

(4)
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Algorithm 2: Active Stream Framework

Input : Autoencoder AE, Labeling budget B, budget window w,
strategy(parameters), Change Detector D

Output: AE
1 b̂← 0; û0 ← 0;

2 if b̂ < B AND strategy(parameters) = 1 then
3 Update label estimate ûi (equation 3) where labeli = 1;
4 AE ← partialFit(AE, Xi, yi);
5 ŷi ← predict(AE,Xi);
6 updateChangeDetector(D, yi 6= ŷi);
7 if AEL then
8 AEL ←partialFit(AELXi, yi);
9 if changeSignalled(D) then

10 Replace AE with AEL;
11 end

12 else if warningSignalled(D) then
13 Create new AEL;
14 AEL ←partialFit(AEL, Xi, yi);

15 else
16 Update label estimate ûi (equation 3) where labeli = 0;
17 end

18 Update spending estimate b̂ (equation 4);

3.3. Query Strategies
The AL query strategy is an important part of the framework as it deter-

mines whether or not the current data sample Xi should be labelled. In this
work we evaluate random, and information-based distance from threshold ,
and variable distance from threshold strategies, as well as combining both
random and uncertainty strategies into a split strategy. We propose a novel
distrance from threshold strategy that is adapted to the non-probabilistic
RE value.

Random Strategy
A random active learning strategy randomly selects a sample to label

based on Bernoulli probability with a given budget B. The method imple-
mented in this research is given in algorithm 3. The random strategy satisfies
all three objectives of (Žliobaitė et al., 2013).
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Algorithm 3: Random Strategy

Input : Labeling budget B
Output: label

1 p← random(0,1);
2 if p ≤ B then
3 label← 1;
4 else
5 label← 0;
6 end

Reconstruction Error based Distance from Threshold
As discussed by Tharwat and Schenck (2023) uncertainty strategies can

be based on least-confidence, margin, entropy, or more recently, partitioned
Gaussian Process (Lee et al., 2023), all of which utilise the predicted proba-
bility from the classifier P (yc|X) (Žliobaitė et al., 2013; Sethi and Kantardzic,
2017; Shan et al., 2018). AE methods instead provide an RE value which
requires a new approach in order to utilise an uncertainty strategy.

We propose a new Reconstruction Error based Distance from Threshold,
whereby the RE squared difference from the anomaly threshold φ is used as
a measure of uncertainty, equation 5, where di is the squared distance, as-
suming the hypothesis that the lower the difference compared to the average
of the population, then the greater the uncertainty for the sample.

The difference is squared to make all values positive, resulting in a right-
tailed distriburion. The absolute value |φ− REi| could also be utilised at a
higher computational cost, and may provide more stability by removing the
exponential effect of larger distances.

di = (φ−REi)2 (5)

In order to accommodate changes in the data stream and avoid a scenario
where the strategy stops learning due to high variance, a fading factor α was
used to produce a fading average of differences davg, calculated using equation
6. This allowed for the more recent samples to have a greater bearing on the
strategy outcome.
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Si = di + α ∗ Si−1
Ni = 1 + α ∗Ni−1

davg =
Si
Ni

(6)

Using davg the fading standard deviation dstd of the stream is calculated
using equation 7, where Vi is the fading sample variance.

Vi = (di − davg)2 + α ∗ Vi−1

dstd =

√
Vi
Ni

(7)

Finally, the strategy returns a labeling decision of 1 where di < davg −
dstdθ, equation 8, requiring a sample to be below the average by so many
θ standard deviations, where θ is the confidence threshold. θ = 2 should
capture samples where the difference is the lowest 5% of all samples.

labeling =

{
1, di < davg − dstdθ
0, otherwise

(8)

The distance from threshold strategy is given in algorithm 4, whereby the
autoencoder AE model is used to predict the RE for sample Xi, line 2, and
the fading average and standard deviation of the difference from the anomaly
threshold φ over the stream used to provide a label output of 0 or 1 based
on equation 8, lines 3 to 8. On its own, an uncertainty-like strategy cannot
satisfy all three active learning objectives as: the number of labeled samples
will depend on the amount of uncertainty within the data stream and could
vary above the intended budget, this is instead limited by line 2 of algorithm
2; only samples within the uncertainty margin are labeled, changes occurring
outside of the margin will be missed; and change detection will be based on
the distribution of uncertain samples (Žliobaitė et al., 2013). The strategy
should reflect regions where real concept drift is occurring as higher uncer-
tainty could reflect a change, resulting in faster adaptation times (Sethi and
Kantardzic, 2017; Shan et al., 2018).
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Algorithm 4: Reconstruction Error based Distance from Threshold

Input : Confidence θ, Fading Factor α, input X, autoencoder AE,
Threshold φ

Output: label

1 S0 ← 0;N0 ← 0;V0 ← 0; label← 0;

2 REi ← predictRE(AE, Xi);
3 Calculate difference di of REi from φ, using equation 5;
4 Calculate the fading average difference davg, using equation 6;
5 Calculate the fading standard deviation of differences dstd using

equation 7;
6 if di < davg − dstdθ then
7 label← 1;
8 end

Variable Distance from Threshold Strategy
Variable Distance from Threshold is based on the distance from thresh-

old strategy, but instead of using a fixed confidence θ, this is instead varied
depending on the amount of labeling that is being requested from the strat-
egy, so that more labels will increase the confidence and fewer will decrease
to attenuate the labeling and better manage budget (Žliobaitė et al., 2013).
This approach also has the benefit that it is not limited to a fixed labeling
ceiling and can better utilise higher budgets to accurately identify concept
drift (Shan et al., 2018). Similar to the uncertainty strategy this also does
not satisfy all three requirements (Žliobaitė et al., 2013).

The strategy evaluated in this research is given in algorithm 5. Here
higher θ will result in fewer labels as a higher confidence reflects a smaller
proportion of samples below the average difference from φ, where θ = 2 would
be approximately 5% and θ = 3 1% of samples. To avoid scaling to ∞, the
algorithm is bounded from 0 to 3, where 0 would be equivalent to all samples
that are below the average difference. θ is adjusted in the step size s ∈ (0, 1],
with the recommended value of 0.01 used in the experiment (Žliobaitė et al.,
2013; Shan et al., 2018).
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Algorithm 5: Variable Distance from Threshold

Input : Confidence θ, Fading Factor α, X, autoencoder AE,
Threshold φ, Step s

Output: label

1 label← distanceFromThresholdStrategy(θ,α,Xi, AE, φ);
2 if label = 1 then
3 if θ < 3.0 then
4 θ ← θ(1 + s);
5 end

6 else
7 if θ > 0.0 then
8 θ ← θ(1− s);
9 end

10 end

Split Strategy
The split strategy, combines the random and variable distance from thresh-

old strategies to benefit from their respective strengths of accessing the entire
stream distribution for change detection, and adapting to potential change
in higher regions of uncertainty. Due to the incorporation of the random
strategy, this also meets all three requirements of Žliobaitė et al. (2013).

Algorithm 6, was evaluated as a simplistic form of the strategy. The
probability of an uncertain sample being selected by the random strategy
is P (label) = B, where B is the selected budget, which is the same for all
members of X, therefore the random strategy is checked first as this is the
lowest time cost, and the variable distance from threshold strategy second if
random strategy does not label.
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Algorithm 6: Split Strategy

Input : Label Budget B, Confidence θ, Fading Factor α, X,
autoencoder AE, Threshold φ, Step s

Output: label

1 label← 0;

2 if randomStrategy(B) = True then
3 label← 1;
4 else if varDistanceFromThresholdStrategy(θ,α,Xi, AE, φ,s) =

True then
5 label← 1;

3.4. Split Active Learning Anomaly Detector (SALAD)

Table 3: Active Learning Method Comparison to Žliobaitė et al. AL Requirements.

AL Method Req.
1

Req.
2

Req.
3

Comments

MD3 (Sethi and
Kantardzic, 2017)

No No No MD3 only compares margin distribu-
tions.

OALEnsemble
(Shan et al., 2018)

No Yes Yes No budget constraint, performs blind
change adaptation.

AL for IDS (Dang,
2020)

No No No Labelling occurs on instances with
biggest probability change. No pro-
active change detection.

Open-CNN AL
(Zhang et al.)

No No No Uncertainty strategy is used, budget is
not constrained, no pro-active change
detection.

SALAD (Proposed) Yes Yes Yes Proposed method utilises a split strat-
egy to ensure coverage of whole distri-
bution. Budget is constrained by a bud-
get parameter.

The proposed Split Active Learning Anomaly Detector (SALAD) method
is depicted in figure 1. This method reduces the labeling cost of the data
stream to a fixed budget by adopting a split active learning strategy to deter-
mine which labels should be updated, satisfying the requirements of Žliobaitė
et al. (2013). The output of the anomaly detector is monitored for real con-
cept drift by a change detector (Gama et al., 2014). Where real concept drift
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Figure 1: Split Active Learning Anomaly Detector

occurs, the current anomaly detector is replaced with a new one that has
been trained on samples since a warning signal was produced. The result
of this method is faster training of the anomaly detector and the ability to
quickly adapt to changes occurring in the data stream. The proposed method
is compared to other reviewed cyber AL methods in table 3.
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4. Results

4.1. α and β Parameter Tuning

Fading Factor (α) was found for the SAT FF method by comparing the
accuracy during prequential evaluation of different values of α (shown as FF
in the figure), as given in Figure 2. α = 0.4 demonstrated the marginally
highest accuracy. Note that higher values of α, at 0.6 and 0.9, resulted in
significantly lower accuracy, most likely due to slow reaction to changes in
the data stream. α = 0.4 is adopted as the comparable benchmark for all
experiments in this paper.

Figure 2: SAT FF Fading Factor (α) Accuracy

The mean accuracy produced by different values of β are given in figure
3. Here is can be seen that β values between 1.05 and 1.20 produced the
highest accuracy, with 1.40 and 1.80 showing a significant degradation.

4.2. Adaptive Anomaly Threshold

The accuracy and F1-score of the Adaptive Anomaly Threshold method
was compared to the SAT FF, HAT and NB algorithms. The parameter
values for the autoencoder methods are given in table 4, where p represents
the dropout probability; l is the number of hidden layers, h is the ratio of
hidden units to visible units; opt is the optimiser used to train the network
with n learning rate; β is the threshold sensitivity; α is the fading factor; and
v is the step size. These parameters were found by exhaustive search. NB
and HAT algorithms used the scikit-multiflow default parameters (Montiel
et al., 2018).
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Figure 3: SAT FF Threshold Sensitivity (β) Accuracy

Table 4: Evaluation Parameters

Method Parameters
Prequential Evalu-
ation

batch size = 100, pretrain size =
10000

Autoencoder l = 1, p = 0.1, h = 0.6, opt =
adagrad (n = 0.01)

SAT FF β = 1.1, v = 0.001, α = 0.4
Adaptive Anomaly
Threshold

β = 1.18, v = 0.001, α = 0.4

The accuracy and F1-scores with the KDD Cup 1999 data set are plotted
in figure 4. SAT FF and AAT are close to HAT in terms of mean performance,
with better kappa and F1 metrics when taken as an average across all batches,
as shown in table 5. SAT FF and AAT were also significantly faster with
a total running time (RT) of 14.04s and 19.18s, compared to 510.93s and
794.76s with NB and HAT, respectively. Note that running time will vary
based on the underlying system performance and frameworks used, however
the time of SAT FF is an order of magnitude better compared to both NB
and HAT algorithms. Overall AAT returned the best mean accuracy and
kappa results, an important metric for data stream learning. The accuracy
results for both SAT FF and AAT (98.8%), outperform Näıve Threshold with
Decay and SAT reported by Nixon et al. (2020), which achieved an accuracy
of 95.4% and 98.0% respectively.

As demonstrated in our previous work (Nixon et al., 2019), the UNSW-
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(a) Accuracy (b) F1-score

Figure 4: KDD Cup 1999 AAT, SAT FF, NB and HAT accuracy and F1-score

Table 5: KDD Cup 1999 AAT, SAT FF, NB and HAT Results

Algorithm Accuracy % Kappa F1-score RT
µ±SD µ±SD µ±SD (s)

AE AAT 98.78±7.88 0.954±0.202 0.802±0.395 19.18
AE SAT FF 98.16±8.65 0.854±0.360 0.812±0.387 14.04
NB 93.34±20.22 0.721±0.445 0.810±0.380 510.93
HAT 98.57±0.60 0.820±0.379 0.811±0.383 794.76

NB15 data set proved to be more challenging for online learning, requiring
the number of network layers and dropout probability to be adjusted to
better provide separation between normal and anomaly class distributions,
with l = 3 and p = 0.2 being selected. The accuracy and F1-score results of
the AAT method compared to SAT, SAT FF, NB and HAT are plotted in
figure 5. Table 6 gives average accuracy of the SAT and SAT FF algorithms as
70.39% and 62.96%, respectively, which is considerably lower than that of NB
and HAT. AAT wIth a 3 layer AE (AE AAT L3) returned the highest overall
accuracy, compared to single layer (AE AAT L1) and SAT FF, although
kappa was lower, demonstrating reduced confidence in the anomaly decision
for all methods. The results show that AAT is able to provide near equivalent
performance to NB and HAT methods with a significantly lower running time.
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(a) Accuracy (b) F1-score

Figure 5: UNSW-NB15 AAT, SAT, SAT FF, NB and HAT accuracy and F1-score

Table 6: UNSW-NB15 AAT, SAT, SAT FF, NB and HAT Results

Algorithm Accuracy % Kappa F1-score RT
µ±SD µ±SD µ±SD (s)

AE AAT L3 86.31±16.32 0.298±0.411 0.767±0.335 18.55
AE AAT L1 81.20±24.65 0.472±0.465 0.714±0.366 17.3
AE SAT 70.39±32.71 0.364±0.443 0.613±0.390 12.14
AE SAT FF 62.96±38.95 0.420±0.458 0.528±0.418 11.01
NB 83.69±28.99 0.399±0.480 0.832±0.343 350.39
HAT 92.85±11.19 0.436±0.479 0.813±0.340 610.94

4.3. Active Stream Framework

4.3.1. Labeling Budget

The effects of the labeling budget was evaluated with the random strategy
as this is the only strategy to maintain the sample distribution of the stream
so as to not add any bias to the results. Budget B was evaluated at values
of 0.2 (20%), 0.5 (50%) and 1.0 (100%). The results are given in table 7 and
mean accuracy was plotted against the blind adaption AAT approach for
comparison in figure 6. The greater the labeling budget, typically the higher
the accuracy, kappa and F1-scores, the exception being UNSW-NB15 where
B = 0.5 has a slightly higher accuracy and kappa. The difference in accuracy
between 20% and 100% labels is 0.76% (KDD’99) and 2.69% (UNSW-NB15),
demonstrating a small loss in performance for an 80% saving in labeling cost
and approximate running time reduction of 54-62%; this reflects the results
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Table 7: Random Strategy Budget Size: KDD’99 and UNSW-NB15 Comparison

Strategy B Accuracy
%

Kappa F1-score RT

µ±SD µ±SD µ±SD (s)
KDD Cup 1999
Random 0.2 98.32±8.50 0.932±0.217 0.811±0.381 55.9
Random 0.5 98.94±7.27 0.956±0.182 0.821±0.376 85.8
Random 1.0 99.08±7.02 0.962±0.176 0.825±0.374 145.4
Blind 1.0 98.78±7.88 0.954±0.202 0.802±0.395 19.18
UNSW-NB15
Random 0.2 87.07±19.48 0.598±0.376 0.752±0.350 55.5
Random 0.5 90.85±12.16 0.619±0.265 0.791±0.338 84.0
Random 1.0 89.76±12.74 0.549±0.431 0.793±0.334 121.2
Blind 1.0 86.31±16.32 0.298±0.411 0.767±0.335 18.55

of Žliobaitė et al. (Žliobaitė et al., 2013), where a small loss of accuracy
was observed between a B of 100% and 10% when tested with a number of
non-cyber data sets.

Comparing to the blind adaptation of previous experiments, whereby no
active learning is used, a labeling budget of 0.5 achieved a higher accuracy
and F1-score for half of the labeling cost on both data sets. ASF RAND 1.0
is equivalent to the blind approach with full labels, but with the addition
of change detection, where average accuracy and F1-score were improved
across both data sets, although they lower towards the end of the UNSW-
NB15 stream as shown in figure 6b. Note the lower running time of the blind
approach due to use of a chunk size of 100 vs 10 which influences the number
of gradient updates and hence training time of the network.

4.3.2. Active Learning Query Strategies

The results of each active learning strategy with a budget of 0.2 (20%)
are given in Table 8, with accuracy and F1-score for both data sets plotted
in figure 7, where ‘ASF R’ is random, ‘ASF U’ is fixed RE based distance
from threshold, ‘ASF VARU’ is variable distance from threshold, and ‘ASF
S’ is the split strategy. Each strategy was executed 5 times with the average
and standard deviation presented. The worst performing strategy was the
fixed distance from threshold strategy, reflecting the results of Žliobaitė et al.
(Žliobaitė et al., 2013), which was expected as the algorithm is biased only
towards uncertain samples and cannot vary the amount of samples labeled,
meaning that change occurring outside of the fixed margin will be missed. It
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(a) KDD’99 Accuracy (b) UNSW-NB15 Accuracy

Figure 6: Labeling Budget Accuracy Comparison for Random Strategy

is also possible that the RE-value of normal samples outside of the margin
may increase as the AE is trained more on uncertain samples, leading to
higher false positives and lower F1-score.

The split strategy, returned the best results across both data sets, com-
bining random and variable distance from threshold strategies. Note that
the total running time is between that of the random and variable distance
from threshold strategies, indicating time complexity savings where uncer-
tain samples were first selected by the random strategy. The Kappa of the
split strategy was observed as 0.717 (table 8) for the UNSW-NB15 data set,
this is much higher than the performance of the blind AAT, NB, HAT and
other AL strategies, indicating a higher level of confidence in the anomaly
decisions.

An absoulte value distance based RE based distance from threshold strat-
egy was also tested as part of the split strategy, using |φ−REi|, represented
as ‘Split Abs’. Accuracy and F1-score are slightly improved compared to
the original squared difference approach but at a much larger running time
penalty.

4.4. Change Detection Results

In order to determine the effectiveness of change detection, The SALAD
method was evaluated against a blind version, SALAD NOCD, whereby no
proactive change detection algorithm was used. The F1-score results for each
data set are plotted in figure 8. The performance was similar for the KDD
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Table 8: Active Learning Strategy Comparison (DfT = Distance from Threshold)

Strategy Accuracy % Kappa F1-score RT
µ±SD µ±SD µ±SD (s)

KDD Cup 1999
Random 98.32±8.50 0.932±0.217 0.811±0.381 55.9
DfT 93.32±23.40 0.892±0.303 0.762±0.422 81.6
Var DfT 98.61±8.65 0.951±0.194 0.817±0.379 74.1
Split 98.85±7.55 0.947±0.199 0.819±0.378 69.6
UNSW-NB15
Random 87.07±19.48 0.598±0.376 0.752±0.350 55.5
DfT 83.95±16.40 0.348±0.304 0.762±0.334 53.8
Var DfT 87.51±16.26 0.452±0.368 0.768±0.339 64.6
Split 90.88±14.96 0.717±0.363 0.791±0.343 63.3
Split Abs 91.18±12.34 0.617±0.345 0.799±0.338 89.5

(a) KDD’99 Accuracy (b) UNSW-NB15 Accuracy

Figure 7: ASF Strategy Comparison, B = 20%

Cup 1999 data set, but was lower for the blind method with UNSW-NB15,
suggesting that the change detection method can add advantage depending
on the nature of the data stream.

4.5. Attack Category Results

The ROC-AUC of known attack categories are plotted for both data sets
in figure 9. The proposed method performed well in all categories for KDD
Cup 1999, with U2R being the lowest performer. For the UNSW-NB15
data set, SALAD performed well for Exploits, DoS, Backdoor, Analysis and
Generic attacks, but performed poorly for all other attack categories. This
poor performance is most likely explained by the overlapping RE distribution
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(a) KDD’99 F1-Score (b) UNSW-NB15 F1-Score

Figure 8: SALAD Change Detection vs No Change Detection F1-Score

for normal and anomaly data shown in figure 10 and further investigation
would be required into features that would better separate individual classes.

(a) KDD’99 ROC-AUC (b) UNSW-NB15 ROC-AUC

Figure 9: Attack Category ROC-AUC Comparison

5. Discussion

This research evaluated online anomaly detection in the form of a pre-
quential evaluation method whereby the model is first tested on the next
sample or chunk in the stream before training. The adaptive anomaly thresh-
old (AAT) was introduced as a stream-based novel hybrid of the näıve and
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Figure 10: UNSW-NB15 RE Distribution

stochastic methods in order to better adapt to chunks of normal or anomaly
samples based on initial observed accuracy. Overall AAT outperformed other
methods and is a recommended contribution of this research to be explored
further.

The results observed with the KDD’99 data set and AAT threshold method
provide strong evidence that the hypothesis of effective anomaly detection for
network data streams can be supported by the autoencoder method with both
strong detection and run time performance compared to traditional methods.
UNSW-NB15 results could be strengthened by further design choices.

The AAT method makes use of blind adaptation, whereby the model is
trained on all labeled samples. This has the drawback of high cost due to
full labels and slow adaptation times to change occurring in the data stream.
The research further explored change detection and active learning strategies,
as outlined by Žliobaitė et al. (2013), to further improve performance for a
lower overall cost.

An ASF framework was implemented along with the random, distance
from threshold, variable distance from threshold and split active learning
strategies. A new Reconstruction Error based Distance from Threshold Strat-
egy for AE was proposed, whereby the average RE difference from the thresh-
old is used as a baseline to detect samples with high uncertainty, defined as
being in the proportion of the population with the smallest difference, tuned
by a confidence parameter.

The use of ASF demonstrated that better accuracy, kappa and F1-scores
can be achieved for stream based anomaly threshold methods, compared
to blind adaptation, with just 20% of the labeling cost, enabled by active
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learning of the most important samples to accelerate the learning process
(Žliobaitė et al., 2013). The results align to those presented by Žliobaitė
et al. (2013), with a split strategy being recommended as this fulfils all three
active learning requirements to maintain a fixed budget, access to all samples
within the stream and preserve the distribution of incoming data for detecting
changes. Unlike Žliobaitė et al. (2013), this research recommends inclusion
of the uncertain samples with the change detection to improve per class
performance.

Overall we have demonstrated that finding an optimal anomaly thresh-
old for stream-based learning is possible using a fading factor based AAT
method, and the labeling cost and performance of this method improved
when combined with an AL approach, using a novel RE based uncertainty
strategy. The use of ASF allows for change detection and re-training of the
AE and anomaly threshold to adapt to real concept drift occurring in the nor-
mal sample space, demonstrated by enhanced performance when compared
to the same approach with no pro-active change detection. We achieve near
equivalent performance to the supervised online HAT method, at a greatly
reduced running cost, making this a viable method for future stream-based
semi-supervised applications.

6. Conclusion

The aim of this research was to explore semi-supervised online autoen-
coder methods for the task of anomaly intrusion detection on non-stationary
network data streams, adapting to concept drift over time, with minimal
labeling cost, by adopting an active learning change detection strategy. A
unique contribution of this research was to compare a selection of anomaly
threshold methods, proposing memory adaptations for data streams and a
hybrid Adaptive Anomaly Threshold method which demonstrated superior
performance. One of the more striking findings of the research is that the
processing time of the autoencoder anomaly detector method is significantly
lower when compared to traditional online learning techniques, making it
well adjusted for high speed online network data streams, demonstrating an
ability to detect an equivalent number of cyber attacks to traditional online
learning methods, in a significantly reduced time frame. An area of future
research would be to explore alternative threshold methods, such as cluster-
ing, which may allow for better identification of classes that overlap with
normal samples and multi-label classification.
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A further contribution of this research was to evaluate the autoencoder
method with an Active Stream Framework, allowing the labeling cost of the
data stream to be significantly reduced to a budget of 20%. A novel RE
based variable distance from threshold strategy was proposed for autoen-
coders where the posterior probability is not available, instead tracking the
distribution of sample RE distances from the anomaly threshold to determine
uncertainty. An area of future research should be how to efficiently annotate
samples, possibly by unsupervised clustering methods such as those demon-
strated by Cataltepe et al. (2016).

Overall this research has demonstrated that the proposed Split Active
Learning Anomaly Detector (SALAD) method can demonstrate high levels
of performance with network data streams, which significantly reduced the
labeling cost. The results are not perfect however, and it would be recom-
mended to combine in a hybrid intrusion detection model whereby misuse
detection is used before or after the anomaly detector to further identify
classes, reduce false positives and better identify minority classes. Multi-
label classification would be a further research area to expand on this work
and provide additional context to detections.
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Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A., 2014. A
survey on concept drift adaptation. ACM computing surveys (CSUR) 46,
44.

Gama, J., Medas, P., Castillo, G., Rodrigues, P., 2004. Learning with drift
detection, in: Brazilian symposium on artificial intelligence, Springer. pp.
286–295.

Gama, J., Sebastião, R., Rodrigues, P.P., 2013. On evaluating stream learn-
ing algorithms. Machine Learning 90, 317–346.

Gomes, H.M., Grzenda, M., Mello, R., Read, J., Le Nguyen, M.H., Bifet,
A., 2022. A Survey on Semi-supervised Learning for Delayed Partially La-
belled Data Streams. ACM Computing Surveys 55. doi:10.1145/3523055,
arXiv:2106.09170.

Kieu, T., Yang, B., Guo, C., Jensen, C.S., 2019. Outlier detection for time
series with recurrent autoencoder ensembles, in: 28th international joint
conference on artificial intelligence.

Lee, C., Wang, K., Wu, J., Cai, W., Yue, X., 2023. Partitioned Ac-
tive Learning for Heterogeneous Systems. Journal of Computing and
Information Science in Engineering 23, 1–27. doi:10.1115/1.4056567,
arXiv:2105.08547.

31



Li, X., Chen, W., Zhang, Q., Wu, L., 2020. Building auto-encoder intrusion
detection system based on random forest feature selection. Computers &
Security , 101851.
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