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Abstract
This study evaluates models for predicting volatile fatty acid (VFA) concentrations in sludge processing, ranging from classi-
cal statistical methods (Gaussian and Surge) to diverse machine learning algorithms (MLAs) such as Decision Tree, XGBoost, 
CatBoost, LightGBM, Multiple linear regression (MLR), Support vector regression (SVR), AdaBoost, and GradientBoosting. 
Anaerobic bio-methane potential tests were carried out using domestic wastewater treatment primary and secondary sludge. 
The tests were monitored over 40 days for variations in pH and VFA concentrations under different experimental conditions. 
The data observed was compared to predictions from the Gaussian and Surge models, and the MLAs. Based on correlation 
analysis using basic statistics and regression, the Gaussian model appears to be a consistent performer, with high R2 values 
and low RMSE, favoring precision in forecasting VFA concentrations. The Surge model, on the other hand, albeit having a 
high R2, has high prediction errors, especially in dynamic VFA concentration settings. Among the MLAs, Decision Tree and 
XGBoost excel at predicting complicated patterns, albeit with overfitting issues. This study provides insights underlining 
the need for context-specific considerations when selecting models for accurate VFA forecasts. Real-time data monitoring 
and collaborative data sharing are required to improve the reliability of VFA prediction models in AD processes, opening 
the way for breakthroughs in environmental sustainability and bioprocessing applications.

Keywords Gaussian function · Surge functions · Anaerobic digestion · Volatile fatty acid · Machine learning algorithms 
(MLA)

Introduction

Sludge from wastewater, whether liquid or solid, is a com-
plex amalgamation of organic wastes with disagreeable 
smells and variable solid concentrations ranging from 0.25 
to 12% (Talaiekhozani 2019). The composition of sludge 
is usually the basis for the selection of the treatment and 
management processes (Mohee et al. 2012; Lim et al. 2016). 
According to Matsimbe et al. (2022), land application of 
sludge, involving thickening, stabilization, conditioning, and 
dewatering, is considered an environmentally acceptable 
and cost-effective disposal method. Alternatively, anaero-
bic digestion (AD), which involves hydrolysis, acidogenesis, 
and methanogenesis phases, is the most preferred approach 
for sewage sludge stabilization (Gahlot et al. 2022) because 
of the potential for resource and energy recovery. In the acid 
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phase of AD, microorganisms convert the products of the 
hydrolysis phase into more soluble organic matter, resulting 
in the generation of short-chain fatty acids which are mostly 
volatile (Zhang et al. 2016).

Recent research in AD processes has considered the 
economic and technological viability of organic waste 
management systems that produce commercially valu-
able VFAs (Zhang et al. 2020). Additionally, volatile 
organic compounds (VOCs), including VFAs, have been 
proposed as early warning signs for the instability of 
AD processes (Nie et al. 2023). Consequently, various 
researchers have examined the process of anaerobic 
digestion of sludge and the subsequent formation of 
volatile fatty acids (VFAs). Ding et al. (2017) assessed 
the efficacy of biological hydrolysis pretreatment on 
municipal secondary sludge digestion. They discovered 
that acetic acid was the main volatile fatty acid (VFA) 
produced during the pretreatment process with a corre-
sponding increase in readily available soluble organics. 
Rubio et al. reported propionic acid buildup when VFAs 
were monitored as a control measure during the ini-
tialization stages of an anaerobic co-digestion process 
(Rubio et al. 2022). The authors had to intervene by 
introducing high VFA-tolerant biomass into the system 
to ensure a stable process.

To get the most out of VFA production in anaero-
bic digestion processes, mathematical models can help 
with control strategies, predict the stability of pro-
cesses, and identify the best operational parameters 
(Kirchner 2006). The modified Gompertz equation, a 
popular model for forecasting VFA concentrations, has 
limitations when it comes to adjusting to different sub-
strates and situations (Momodu and Adepoju 2021). The 
Monod, first-order, and Contois models are common 
kinetic models that have been adopted in AD research, 
with the anaerobic digestion model (ADM) providing a 
comprehensive and sophisticated system for modeling 
AD processes (Xie et al. 2016; Baquerizo-Crespo et al. 
2021). However, the use of these models can become 
complex with heavy data requirements and several state 
variables and constants that need calibration, necessi-
tating the investigation of simpler models customized 
to specific conditions (Stiglic et al. 2020). Furthermore, 
prominent models for estimating VFA concentrations, 
such as the modified Gompertz equation, have limits in 
responding to varied substrates and changing conditions 
(Li et al. 2018).

This necessitates the consideration of Gaussian and surge 
functions (Ghoor 2019; Kushwaha et al. 2022) and machine 
learning models, which can contribute to the development 
of a simplified model for process monitoring and prediction. 

Dynamic parameter optimization with the help of machine 
learning solves the problems that models like the modified 
Gompertz equation have when they try to adapt to different 
substrates and changing conditions (Jimenez et al. 2015). 
The initial processes in AD, hydrolysis, and acidogenesis are 
dynamic processes that lend themselves well to representa-
tion by machine learning models (Xiang et al. 2024). Machine 
learning approaches and Gaussian and surge functions can be 
useful tools to enable dynamically fine-tuned model settings, 
resulting in more accurate process predictions over a wide 
range of scenarios (Taye 2023). Recent use of machine learn-
ing algorithms like support vector machines (SVM), artificial 
neural networks (ANN), and ensemble approaches has helped 
advance the understanding of the complexities of anaerobic 
digestion and the prediction of the process (Zhang et al. 2019).

However, even though ANN is the most commonly used 
ML model well known for high predictive accuracy, some-
times the models can become data-driven with a high degree 
of complexity which often results in low interpretability of 
model outputs (Shaw et al. 2022). Therefore, other ML mod-
els should be evaluated to determine if a balance of accu-
racy and interpretability can be achieved, which is essential 
for understanding complex processes like anaerobic diges-
tion (Byliński et al. 2019). Also, in recent years, emerging 
machine learning models like generalized additive models 
(GAM) and the INLA model have gained prominence for 
their notable accuracy and interpretability (Williamson 
et al. 2022). Additionally, hybrid models, combining clas-
sical kinetics with machine learning, may have the capabil-
ity to realistically represent the complexities of anaerobic 
digestion (Narayanan et al. 2021). These models, for exam-
ple, may use the Gaussian and surge functions for steady-
state forecasts while employing machine learning to adapt 
to changing situations, maintaining accuracy in dynamic 
scenarios (Zhang et al. 2023b). Such models can improve 
predictive capabilities by taking into account dynamic sub-
strate features and process condition variations (Mobarak 
et al. 2023) and subsequently lead to substantial advances in 
the field by providing rigorous insights into acid concentra-
tion dynamics in anaerobic digestion systems.

Hybrid models could become significant tools for aca-
demics and practitioners, expediting predictions of anaerobic 
digestion processes. Therefore, the integration of machine 
learning, the Gaussian, and surge functions into AD process 
modeling may provide an advancement in the understanding 
of the intricacies of anaerobic digestion. This paper aims 
to provide a template for a dynamic model that possesses 
an adaptive representation of VFA concentration dynamics 
during anaerobic sludge reduction. This study should bridge 
the gap between conventional kinetic models and the com-
plicated realities of anaerobic digestion.
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Material and methods

This study used anaerobic bio-methane potential tests 
(Fig. 1) on wastewater treatment sludge, monitoring pH and 
volatile fatty acid (VFA) concentrations under various set-
tings. Statistical models (Gaussian and Surge) and machine 
learning methods (Decision Tree, XGBoost, CatBoost, 
LightGBM, Multiple linear regression (MLR), Support 
vector regression (SVR), AdaBoost, and GradientBoost-
ing) were used to evaluate the dataset. The best model was 
selected based on its statistical accuracy using R2, RMSE, 
SSE, and MAE as the selection criteria.

Bio‑methane potential (BMP) batch tests

For the bio-methane potential (BMP) batch tests, composite 
samples (5 L) of primary, and secondary sludge were obtained 
from various domestic wastewater treatment plants in Scot-
land through Scottish Water. Anaerobic microbial biomass, 
obtained from the anaerobic digester at the Hatton wastewa-
ter treatment plant in Arbroath, Scotland, underwent a 48-h 
degassing process at 37 °C. Before initiating the BMP tests, 
the substrates (primary and secondary sludge) and anaerobic 
biomass were characterized according to standard procedures, 
including measurements of initial total solids (TS), volatile 
solids (VS), pH, and volatile fatty acids (VFA) concentrations. 
A nutrient solution (NS) comprising specific mineral concen-
trations in distilled water was introduced to the BMP tests to 
provide essential micronutrients and trace metals for micro-
organism growth. The nutrient medium consisted of 75 mg/L 
ammonium bicarbonate (NH4HCO3), 400 mg/L potassium 

dihydrogen phosphate (KH2PO4), 5.0 mg/L magnesium sul-
fate (MgSO4), 5.0 mg/L iron (III) chloride (FeCl3), 5.0 mg/L 
calcium chloride (CaCl2), 5.0 mg/L potassium chloride (KCl), 
1.0 mg/L cobalt (II) chloride (CoCl2), 1.0 mg/L nickel chloride 
(NiCl2), and 500 mg/L sodium bicarbonate (NaHCO3). The 
BMP batch tests were conducted in 500-mL glass bottles, each 
sealed with thick rubber septum and aluminum caps, following 
recommended anaerobic digestion experiment methodologies 
(Angelidaki et al. 2009) and prepared in duplicate for each 
mixture according to the compositions provided in Table 1.

Preparation of the BMP batch tests

The BMP batch tests were conducted with meticulous attention 
to procedural rigor, following established standards for anaero-
bic digestion experiments (Angelidaki et al. 2009). Glass bottles 
with a capacity of 500 mL, sealed using a thick rubber septum 
and aluminum caps, were employed for the experiments, and 
each experimental condition was replicated. The pH of the final 
mixtures was carefully adjusted by the addition of a 10 M sodium 
hydroxide (NaOH) solution. The pH levels were maintained 
within the range of 7.51 to 7.88. Subsequently, 350 mL of each 
mixture was precisely measured and dispensed into appropriately 
labeled bottles (Table 2). To avoid pressure accumulation during 
methane production, a headspace of 150 mL was left in each bot-
tle. The bottles were securely capped, and the headspace under-
went a 2-min flush with pure nitrogen gas, ensuring oxygen-free 
conditions. Following these meticulous preparations, the bottles 
were placed in cabinet incubators set at 25 and 37 °C, initiating 
the commencement of the BMP batch tests.

Fig. 1  Schematic flowchart of the methodology
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Sample collection from BMP tests

For monitoring of the tests and subsequent parameter analy-
sis, sampling was performed through the septum cap, utiliz-
ing Plastipak® 2-mL disposable plastic hypodermic syringes 
paired with 21-gauge needles (Fisher Scientific, UK). Samples 
were collected from each test bottle in five 2 mL volumes and 
then composited to get a 10 mL sample from each bottle. The 
parameters analyzed were the following:

 i. pH: measured using a SensION3 pH probe and meter 
(Hach Company, Loveland Colorado, U.S.A)

 ii. VFA Concentration: quantified as acetic acid concentra-
tions (mg/L HOAC) within the range of 27–2800 mg/L and 
assessed using the ferric hydroxamate method (Hierholtzer 
et al. 2013), commonly known as the Montgomery method 
and also Method 8196 as outlined in the DR 5000 user man-
ual. The assessment was carried out using a DR 5000 Hach 
Lange spectrophotometer (Hach Lange, Salford Manchester, 
UK). The VFA analysis was performed in triplicates for each 
sample, with the average of the three measurements serving 
as the adopted VFA concentration for the respective sample.

Model description

The approach used for fitting the selected models to the 
volatile fatty acid (VFA) concentration data obtained from 
batch tests is based on regression analysis for the Gaussian 
function and the Surge function. While the machine learning 
models were developed based on conventional procedures. 
The models selected for this study were based on the below:

Gaussian function

This is a bell-shaped curve commonly used to represent con-
centration profiles (Eq. 1).

where CVFA is the concentration of volatile fatty acids (VFA) 
at time t, a is the amplitude parameter, representing the max-
imum concentration of VFA, e symbolizes Euler’s natural 
logarithm constant (2.7183), and t denotes the process time, 
measured in days, b is the parameter representing the time 

(1)CVFA = a ∗ e

(
−

(
t−b

c

)2
)

Table 1  Three hundred fifty 
milliliters BMP tests for 
domestic wastewater sludge

Test ID Temp. (°C) Substrate volume (mL) Anaerobic biomass 
volume (mL)

Nutrient solu-
tion volume 
(mL)

PS37 37 150 primary sludge 100 100
PS25 25 150 primary sludge 100 100
SS37 37 150 secondary sludge 100 100
SS25 25 150 secondary sludge 100 100
PSnol37 37 150 primary sludge - 200
PSnol25 25 150 primary sludge - 200
SSnol37 37 150 secondary sludge - 200
SSnol25 25 150 secondary sludge - 200
Blank 37 - 100 250
Blank 25 - 100 250

Table 2  Three hundred fifty 
milliliters BMP tests for 
domestic wastewater sludge

Test ID Temp. (°C) Substrate volume (mL) Anaerobic biomass 
volume (mL)

Nutrient solu-
tion volume 
(mL)

PS37 37 150 primary sludge 100 100
PS25 25 150 primary sludge 100 100
SS37 37 150 secondary sludge 100 100
SS25 25 150 secondary sludge 100 100
PSnol37 37 150 primary sludge - 200
PSnol25 25 150 primary sludge - 200
SSnol37 37 150 secondary sludge - 200
SSnol25 25 150 secondary sludge - 200
Blank 37 - 100 250
Blank 25 - 100 250
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at which the maximum concentration of VFA occurs, and 
c is the parameter that influences the width of the curve, 
affecting the rate at which the concentration of VFA changes 
over time.

Surge function

This incorporates both polynomial and exponential terms, 
providing flexibility in capturing diverse concentration pat-
terns (Eq. 2).

where CVFA is the concentration of volatile fatty acids (VFA) 
at time t, e symbolizes Euler’s natural logarithm constant 
(2.7183), and t denotes the process time, measured in days, 
a is a scaling factor that influences the overall magnitude of 
the curve, b is a parameter that affects the rate at which the 
exponential term decreases, and c is an offset parameter that 
shifts the entire curve up or down along the y-axis.

Machine learning models

Unlike the analytical functions, these models do not adhere 
to a predefined mathematical form (Mowbray et al. 2021); 
instead, they are developed into complex patterns and rela-
tionships by training and testing with available data. There-
fore, in this study, supervised learning was adopted for the 
ML models, and the dataset used for this study consisted of 
sludge volume, nutrient solution (NS) volume, biomass vol-
ume, temperature, time in days, solid mass, and pH as input 
variables and VFA concentrations as the output variable. 
ML model development was achieved using the splitting of 
available data into training, validation, and testing subsets. 
The ML models were developed and trained on a 70% train-
ing dataset, validated on a 10% subset, and tested on a 20% 
subset (Nikolaou et al. 2021).

Model fitting and performance evaluation

The fitting of the Gaussian and Surge functions followed a 
methodology employing the MATLAB curve fitting toolkit 
(Asadi 2022). For the machine learning model, a suitable 
algorithm (e.g., regression, neural networks) was chosen, 
and hyperparameter tuning was performed to optimize its 
performance (Nematzadeh et al. 2022). In this study, the 
hyperparameter optimization techniques used were Bayes-
ian optimization, grid search, and random search to enhance 
model structures (Ali et al. 2023). The performance evalua-
tion metrics used in this study were root mean square error 
(RMSE), mean absolute error (MAE), error sum of squares 
(SSE), and coefficient of determination (R-squared) as rep-
resented in Eqs. 3, 4, 5, and 6.

(2)CVFA = a ∗ t3 ∗ e−b∗t + c

where n is the number of observations, yi is the actual value 
of the dependent variable for observation i, ŷi is the predicted 
value of the dependent variable for observation i, and ȳi is 
the mean of the actual values of the dependent variable.

Results

VFA concentrations

This study sought to comprehend and describe the acido-
genic phase of AD, which is essential for evaluating the 
effectiveness of the process (Paranjpe et al. 2023), using 
BMP tests and modeling of observed data. The BMP inves-
tigations showed a significant conversion of primary and 
secondary sludge into intermediate compounds and changes 
in the pH of the experiments (Fig. 2).

Figure 2a, b indicates a decline in concentrations of 
volatile fatty acids in the tests without anaerobic biomass 
after the first 10 days of the experiment. This decline in 
VFA concentrations ceased after the 15th day of the exper-
iment even though high concentrations of VFA remained 
in the tests (greater than 600 mg/L for the PS nol. 25 °C, 
300 mg/L for the SS nol. 37 °C, 150 mg/L for the SS nol. 
25 °C, and 1000 mg/L for the PS nol. 37 °C after day 
40). The decline in VFAs can be attributed to the produc-
tion of methane, which normally starts after a lag phase 
of 7–10 days (Rahim et al. 2014). The decline in VFAs 
over time is consistent with the findings of other studies, 
where VFA concentration decreased as methane was pro-
duced (Rizzioli et al. 2024). Tests with anaerobic biomass 
(Fig. 2a, b) did not indicate a similar decline in VFAs to 
tests without biomass; this is likely because microorgan-
isms in the biomass continued to produce VFAs after the 
initial methane production lag phase (Magdalena et al. 
2019).

For the tests with anaerobic biomass, observed VFA concentra-
tions after the 40th day of the experiment were less than 200 mg/L 
(Fig. 2a, b). The VFA concentrations indicate three stages in the 

(3)RMSE =

√
[
1

n

∑n

i=1
(yi − ŷi)

2]

(4)MAE =
1

n

∑n

i=1
|yi − ŷi|

(5)SSE =
∑n

i=1
(yi − ŷi)

2

(6)R − squared = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
�yi − yi�
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process (Fig. 2a, b), with the first stage being the period during 
which a continuous increase in intermediate compound concentra-
tions was observed along with a decrease in pH values (Fig. 2c, d), 
lasting for up to 10 days for all the tests. This stage was followed 
by the depletion of acid concentrations over a short period of time, 
between 4 and 8 days (Fig. 2a, b). It shows that the concentration 
of VFA remains relatively stable during the third stage until the 
end of the experiment. These stages indicate a curve that is similar 
to several functions, for example, the Gaussian function, which 
represents the normal distribution of data in the standard “bell” 
shape curve, and the surge function, which represents the nature of 
several natural processes such as the response of human bodies to 
drug injections. The pH values (Fig. 2c, d) were within the range 
of 6.0 to 8.0 for all the tests, indicating there was no inhibition of 
methanogenesis because of pH variation.

Experimental datasets for fit analysis

The statistical description of the datasets recorded during 
the 40-day BMP tests is presented in Table 3. The conditions 
monitored included the sludge volume, nutrient solution and 
biomass added, temperature, solids mass, pH, and VFA con-
centrations [mg/L].

VFA concentration fit to the Gaussian function

The VFA concentration data was subjected to statistical 
analysis and fitted to Eq. 1, and the correlation was evalu-
ated using RMSE, SSE, and R2 as metrics (Fig. 3).

The coefficients of determination (R2) values show 
if the model can predict the process across time (Palmer 
and O'Connell 2009). If R2 is close to 1.0, the function can 
forecast acid concentrations. If the R2 value is near 0.0, the 
function cannot predict acid concentrations or laboratory 
measurement errors affect the function’s fit to the data. 
Figure 3a shows that all R2 values are above 0.90, indicating 
a good correlation between the Gaussian function and VFA 
concentration data for all experiments. Figure 3b shows the 
Gaussian function constants with a 95% confidence range 
indicating how the Gaussian function coefficients relate to 
VFA concentration data presented in Fig. 2a, b.

The Gaussian function normally provides a “bell-shaped” 
probability distribution of a variable, with the coefficients rep-
resenting process constants. According to Toutiaee and Miller 
(2020), the Gaussian function only describes the data distribu-
tion of a process and does not provide any information on process 
dynamics. The coefficient “a” in the function represents the pos-
sible maximum concentration, which will help manage and design 

Fig. 2  a Volatile fatty acids (VFA) conc. (mg/L) from the BMP 
test of domestic wastewater sludge with anaerobic biomass. b VFA 
(mg/L) from the BMP test of domestic wastewater sludge with-
out anaerobic biomass. c Observed pH values from the BMP test of 

domestic wastewater sludge with anaerobic biomass. d Observed pH 
values from the BMP test of domestic wastewater sludge without 
anaerobic biomass
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anaerobic digestion processes. Similar observations may be made 
for the coefficient “b,” which denotes the maximum concentra-
tion time. The coefficient “c” indicates the distribution of data 
points with respect to “b,” the curve’s middle point. Therefore, 
the Gaussian function mainly provides an assessment of the data 
in terms of the distribution and does not appear to provide any 
information in terms of the kinetics of the process; this was simi-
larly reported by Toutiaee and Miller (2020). However, additional 
studies that explore the extended characteristic of the Gaussian 
function, such as its fractional derivatives, may be useful for signal 
processing and control applications (Toutiaee and Miller 2020).

VFA concentration fit to Surge function

The VFA concentration data was also fitted to Eq. 2, and 
the correlation was evaluated using RMSE, SSE, and R2 as 
metrics (Fig. 4). The R2 results in Fig. 4a show that the Surge 

function can accurately forecast volatile acid concentra-
tions for two test conditions: primary sludge with anaerobic 
biomass at 37 °C and secondary sludge without biomass. 
However, the R2 values for the other 6 test scenarios in this 
study all fell between 0.75 and 0.87, indicating a poor Surge 
function fit to VFA concentration data (see Fig. 4). This poor 
fit may indicate data quality rather than model reliability in 
forecasting VFA concentrations in anaerobic digestion batch 
experiments. Figure 4b shows the expected Surge function 
constants with 95% confidence.

From Fig. 4b, coefficient “a” is a system-specific factor, 
the coefficient “b” is the acid concentration decay or growth 
rate, and the coefficient “c” is the acid concentration retained 
at the end of the experiment. It shows that the model pre-
dicts minimum values below zero for the SS37 test’s “a” 
and “c” coefficients within the 95% confidence ranges. All 
surge function coefficients should be positive (> 0); hence, 

Table 3  Descriptive statistics of 
the dataset

Sludge type Variables N Minimum Maximum Mean Std. deviation

Primary sludge Sludge volume (mg/L) 150 150 150 150 0.0
NS volume (mg/L) 100 200 150 50.35
Biomass volume (mg/L) 0.0 100 50 50.35
Temp (°C) 25 37 31 6.04
Days 0.0 40 11.11 10.43
Solids mass (mg/L) 9.30 23.98 16.01 3.55
pH 6.13 7.83 6.86 0.36
VFA (mg/L) 0.0 1846 1116.79 480.95

Secondary sludge Sludge volume (mg/L) 150 150 150 150 0.0
NS volume (mg/L) 100 200 150 50.35
Biomass volume (mg/L) 0.0 100 50 50.35
Temp (°C) 25 37 31 6.04
Days 0.0 40 11.11 10.43
Solids mass (mg/L) 12.65 25 18.17 3.34
pH 6.62 7.85 7.08 0.28
VFA (mg/L) 0.0 1079 462.31 274.10

Fig. 3  Heatmaps for a curve fit statistics and b Gaussian function coefficients
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the surge function cannot accurately describe VFA con-
centrations during secondary sludge anaerobic digestion at 
37 °C. The surge function determines acid concentration by 
time, which is typical of batch anaerobic systems. When the 
coefficient “b” is large, then the rate of change is high, and 
the function will predict a process decay by decreasing acid 
concentration. The surge function can be useful in determin-
ing the ideal digesting period for each system by analyzing 
residual acid concentration.

VFA concentration fit with machine learning 
algorithm analysis

Data preparation is a crucial step in machine learning, as 
it heavily relies on the specific data within each dataset. 
To ensure a meaningful comparison across functions and 
algorithms, the MLA analysis was performed without any 
data cleansing or additional regularization techniques. This 
provides a common framework for comparing the findings 
obtained from the MLA, Gaussian, and surge function fit 
models.

The hyperparameter tuning

The hyperparameter tuning findings from the ML models 
applied to the primary and secondary sludge dataset pro-
vide interesting insights into the models’ complexities and 
ideal configurations (see Fig. 5). Notably, the decision tree 
model, which is non-linear, preferred a shallow tree struc-
ture with a moderate minimum sample split. This reflects a 
strategic balance between model complexity and predictive 
performance, which is consistent with decision trees’ natural 
interpretability (Florez-Lopez and Ramon-Jeronimo 2015).

For the XGBoost model, which is a robust ensemble 
approach in ML models, the ideal configuration indicated 
a small number of estimators, shallow trees, and a moder-
ate learning rate. The model’s emphasis on simplicity and 

computing economy demonstrates its ability to find a prag-
matic balance between complexity and forecast accuracy 
(Hansen 2020). The CatBoost model, designed to handle 
categorical variables with ease, preferred a larger number of 
estimators and a deeper tree structure. This setting highlights 
the model’s capacity to exploit more extensive data relation-
ships while still balancing the trade-off between complexity 
and efficiency. Another gradient-boosting approach, the Light-
GBM model, preferred a small number of estimators, shallow 
trees, and a moderate learning rate. This mirrors the efficiency 
and simplicity characteristics that characterize boosting meth-
ods. Multiple Linear Regression (MLR), a linear modeling 
approach, on the other hand, did not require adjustment of 
standard hyperparameters. Instead, the chosen configuration 
represents MLR’s fundamental settings, emphasizing its natu-
ral simplicity and interpretability. The ideal parameters for 
the support vector regressor (SVR) with a radial basis func-
tion (RBF) kernel comprised a regularization parameter (C) 
of 1.0 and an epsilon parameter of 0.1. This configuration 
achieves a careful balance between model smoothness and 
forecast accuracy. AdaBoost emphasized a larger number of 
estimators and a lower learning rate by using decision trees 
as weak learners. This smart hyperparameter configuration 
option attempts to iteratively reduce mistakes and improve 
predictive performance (Bischl et al. 2023).

Finally, the gradient boosting model, which used a deci-
sion tree ensemble, preferred a moderate number of estima-
tors, deeper trees, and a greater learning rate. This setup 
indicates the model’s preference for faster convergence and 
higher predicted accuracy. These hyperparameter combi-
nations expose varied preferences within each model, sug-
gesting a difficult balance between model complications and 
predictive efficiency (Hutter et al. 2015). These insights are 
precious for practitioners looking to adjust these models to 
specific objectives and restrictions in the context of both 
VFA concentration predictions, ultimately contributing to 
advances in wastewater treatment procedures.

Fig. 4  Heatmaps for a curve fit statistics and b Surge function coefficients
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Performance evaluation of machine learning models (MLA)

The performance metrics of multiple machine learning mod-
els used to forecast volatile fatty acid (VFA) concentrations 
in the production process utilizing primary and secondary 
sludge are presented in Fig. 6. The XGBoost model stands 
out for primary sludge because it yields particularly low 
errors, with a training RMSE of 0.000261 and a test RMSE 
of 0.333350. Furthermore, it achieves an accurate fit with 
a perfect R-squared value of 1.0 in training and a moderate 
 R2 value of 0.902 in testing, exhibiting strong generalization 
(Fig. 6a, b).

The model’s precision is further emphasized by the low 
mean absolute error (MAE) numbers. LightGBM, on the 
other hand, shows a significant disparity between training 
and testing performance, with an R2 value near zero in test-
ing, indicating overfitting. Proceeding on to the secondary 
phase, the Decision Tree model performed well, with an R2 
value of 0.989 in training and 0.916 in testing, demonstrating 

high predictive skills. While maintaining competitive perfor-
mance, the XGBoost model has a larger disparity between 
training and testing R2 values than the primary method, indi-
cating potential overfitting. Notably, the LightGBM model 
performs poorly in both types of sludge, with a minimal 
R2 in testing. AdaBoost and GradientBoosting consistently 
produce near-perfect results across both sludge types, dem-
onstrating robust and stable model performance.

Selection of the best MLA model

The accuracy test offers a comprehensive examination of 
eight distinct models utilized for predicting VFA concentra-
tions in sludge processing. The analysis primarily focuses 
on three performance measures (RMSE, R2, and MAE). 
However, choosing the optimal model requires a thorough 
evaluation that considers factors such as interpretability, 
computing economy, and forecast accuracy (Hansen 2020). 
Models such as XGBoost, AdaBoost, and GradientBoosting 

Fig. 5  Heatmap of tuning 
hyperparameter values for the 8 
MLA models

Fig. 6  A comparison of the model accuracy test results for the eight MLA models a primary and b secondary sludge
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consistently provide high prediction performance in terms 
of interpretability. Nevertheless, their collective nature can 
render them challenging to understand (Demir and Sahin 
2023). When conveying findings on the MLA with vary-
ing accuracy and capability, model predictability is crucial. 
In contrast, the Multiple Linear Regression (MLR) model 
offers a clearer explanation of its coefficients due to its linear 
nature. The reliability of the model is crucial, particularly 
when conveying findings on the MLA with varying accuracy 
and capability (González et al. 2020).

Computational efficiency is another crucial factor that 
affects the choice of a model. XGBoost, LightGBM, and 
CatBoost are very efficient algorithms that offer competi-
tive performance while requiring shorter training sessions. 
Linear models, such as multiple linear regression (MLR), 
are renowned for their computational efficiency. However, 
support vector regression (SVR) may entail greater process-
ing demands. Considering both interpretability and compu-
tational efficiency, XGBoost emerges as a robust choice for 
the best model. The consistent and excellent performance of 
this method on both primary and secondary sludge datasets, 
along with its ability to balance interpretability and com-
putational efficiency, makes it highly suitable for practical 
implementation. However, the final choice of model should 
align with the specific requirements and limitations of the 
sludge processing application. In cases where interpretabil-
ity is crucial, MLR can be employed, even if there is a slight 
decrease in predictive accuracy. Idri et al. (2016) provided 
that if there are limitations on computational resources, it 
may be more practical to use simpler models like multiple 
linear regression (MLR) or ensemble methods like AdaBoost 
(Idri et al. 2016). For this paper, the best ML model, based 
on its interpretability, computing efficiency, and the unique 
requirements of the application, is the XGBoost model, as 
it demonstrates better model interpretability, computational 
efficiency, and clearer performance in both primary and sec-
ondary sludge when used as VFA sources.

Performance comparison of the models

When comparing the fit statistics of the Gaussian, surge, 
and various machine learning algorithm (MLA) models 
across different test scenarios, both the R2 and RMSE must 
be considered (Rahman et al. 2021). These metrics provide 
information on how well the models capture volatility in the 
data and how accurate their predictions are. Starting with 
the Gaussian model, it consistently achieves high R2 val-
ues ranging from 0.8796 to 0.9430 across all test scenarios. 
According to the R2 values, the Gaussian model explains a 
considerable percentage of the variance in the observed data. 
Furthermore, the matching RMSE values, which range from 
46.28 to 167.60, imply rather modest prediction errors. The 
Gaussian model excels in circumstances such as SS25 and 
SSnol37, where it gets high R2 and low RMSE at the same 
time (see Fig. 7).

The surge model has a wider range of R2 values rang-
ing from 0.6849 to 0.9312. While the R2 values are reason-
ably high, the accompanying RMSE values, which range 
from 68.22 to 214.10, show larger prediction errors than the 
Gaussian model. In SSnol37, the surge model performs well, 
with a high R2 value; however, the related RMSE is consid-
erably greater. When comparing the MLA models, each has 
benefits and disadvantages under distinct test settings. The 
Decision Tree model routinely achieves very high R2 values 
(0.979284 to 0.985136) and low RMSE values (0.117851 
to 3.242994), indicating that it excels at detecting patterns 
in data. The XGBoost model is further distinguished by 
perfect R2 values (1.0) and low RMSE values (0.33335 
to 0.886), indicating a high level of accuracy. Among the 
MLA models, CatBoost, LightGBM, MLR, SVR, AdaBoost, 
and GradientBoosting perform differently in different con-
texts. Notably, AdaBoost obtains high R2 values (0.9312 to 
0.9649) in numerous circumstances but has higher RMSE 
values in comparison. Gradient boosting has a high R2 score 
(0.9012) in SSnol37 but a relatively larger RMSE (Fig. 7).

Fig. 7  Comparison of the 
accuracy test of the Gaussian 
function, Surge function, and 
machine learning algorithm 
(MLA) models
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It is critical to evaluate the unique aims and priorities of 
the study while choosing between the Gaussian, Surge, and 
MLA models. If reducing prediction errors is the primary 
goal, the Gaussian model could be a great contender, espe-
cially given its consistent performance across diverse condi-
tions. If attaining the best potential R2 is a priority, the Deci-
sion Tree and XGBoost models outperform the competition. 
Other MLA models, such as CatBoost, LightGBM, MLR, 
SVR, AdaBoost, and GradientBoosting, perform differently 
in different contexts. AdaBoost, for example, achieves high 
R2 values but has higher RMSE values. Gradient boosting 
outperforms in terms of R2 but has a slightly higher RMSE 
in SSnol37 (Fig. 7). Finally, the Gaussian model regularly 
exhibits robust performance with high R2 and low RMSE 
across a variety of settings, making it a reliable choice for 
accurate predictions. While the Decision Tree and XGBoost 
models have excellent explanatory power, the Gaussian 
model achieves a good mix of accuracy and simplicity 
(Zhang et al. 2023a). As a result, the Gaussian model is the 
ideal choice for this specific research due to its consistent 
and reliable performance.

Discussion

The Gaussian model regularly demonstrates high R2 in many 
test settings, suggesting its ability to explain a significant 
portion of the variability in VFA concentrations. The asso-
ciated RMSE values exhibit a comparatively low magni-
tude, indicating precise predictions. Gaussian models are 
renowned in literature for their simplicity and resilience in 
capturing fundamental patterns in diverse datasets, render-
ing them well-suited for situations of moderate complexity. 
Nevertheless, constraints may occur when the fundamental 
distribution of VFA concentrations greatly diverges from 
a Gaussian distribution (Zhang et al. 2023a). Although the 
Surge model has very high R2 values, it has larger prediction 
errors, as evidenced by higher RMSE values compared to the 
Gaussian model. Research indicates that surge models, com-
monly used in time-series research, can be very responsive 
to outliers and may have difficulties in accurately capturing 
nuanced fluctuations in intricate datasets. The fundamen-
tal properties of the surge model may impede its efficacy, 
especially in circumstances with a broader spectrum of VFA 
concentrations. Researchers must consider the limits of the 
surge model when dealing with different and dynamic VFA 
concentration patterns.

Within the many MLA models, the Decision Tree model 
constantly demonstrates exceptional performance, as evi-
denced by its notably high R2 values and low RMSE values. 
This highlights the model’s strong capability to accurately 
capture complex patterns in VFA concentrations. Deci-
sion Trees are widely recognized in the literature for their 

interpretability and versatility, which makes them highly 
important in environmental modeling. Nevertheless, it is 
important to consider the apprehensions regarding overfit-
ting, particularly in situations involving data that is prone 
to noise. Furthermore, the intricacy of Decision Trees can 
restrict their capacity to be applied to unfamiliar datasets. 
XGBoost, a widely used ensemble approach, has impecca-
ble R2 values and minimal RMSE values; hence, displaying 
its exceptional accuracy in forecasting VFA concentrations. 
The academic literature emphasizes the efficacy of XGBoost 
in managing non-linear connections and capturing intricate 
interactions among variables. Nevertheless, the opaque 
structure of the system presents difficulties in terms of com-
prehensibility, underscoring the importance for researchers 
to strike a compromise between predicted precision and 
model clarity. CatBoost, LightGBM, MLR, SVR, AdaBoost, 
and GradientBoosting demonstrate diverse performance in 
different scenarios. AdaBoost achieves high R2 values, but at 
the cost of increased RMSE values, highlighting the trade-
off between explanatory power and prediction accuracy. Gra-
dientBoosting demonstrates superior performance in terms 
of R2 in certain situations, while it may result in slightly 
higher prediction inaccuracies.

Although these models provide useful insights, they 
nonetheless have inherent limits. Overfitting, a frequent 
occurrence in machine learning algorithms (MLAs), can 
undermine the ability of models to generalize to unfamiliar 
datasets. The performance of the model may be affected by 
the quality, representation, and biases of the dataset. The 
presence of non-linear interactions and unpredictable fac-
tors presents difficulties, particularly in the field of environ-
mental studies where the dynamics of systems are intricate. 
Moreover, the interpretability of models, which is essential 
for decision-making, may be undermined in highly accurate 
but intricate models such as XGBoost.

Ultimately, the examination of VFA concentrations fore-
cast accuracy from the Gaussian, Surge, and MLA models 
yields a comprehensive comprehension of their respective 
advantages and constraints. Researchers must carefully 
select models based on the study’s goals, considering the 
compromises between accuracy, interpretability, and gener-
alizability. Continuous progress in improving model accu-
racy, validation methods, and incorporating specialized 
expertise is crucial for addressing existing constraints and 
improving the reliability of VFA prediction models.

Conclusion

The examination of models for forecasting volatile fatty 
acid (VFA) concentrations in sludge processing has pro-
vided significant insights into their respective strengths and 
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limitations. The Gaussian model consistently demonstrated 
solid performance, with high R2 values and low RMSE 
across a variety of scenarios, making it a reliable choice 
for minimizing prediction mistakes. However, when VFA 
concentrations deviate greatly from a Gaussian distribu-
tion, extreme caution is advised. While the Surge model had 
good R2 values, it had greater prediction errors, indicating 
possible difficulties in capturing varied changes, especially 
with a wider range of VFA concentrations. This empha-
sizes the importance of exercising caution when using the 
Surge model to varying and dynamic VFA concentration 
patterns. Among the machine learning algorithm (MLA) 
models tested, the Decision Tree and XGBoost consistently 
outperformed others, highlighting their applicability for 
scenarios requiring the best R2. Concerns with overfitting 
and the trade-off between model complexity and generali-
zation, especially given XGBoost’s opaque structure, must 
be addressed in any future study. AdaBoost and Gradient-
Boosting both displayed distinct strengths, such as high R2 
values, but at the penalty of increasing RMSE, illustrating 
the trade-off between explanatory power and prediction 
accuracy. Other models, such as CatBoost, LightGBM, 
MLR, and SVR, performed inconsistently in various set-
tings, needing careful assessment based on the study’s objec-
tives. Finally, the paper gives a thorough assessment of the 
strengths and limits of several models in projecting VFA 
concentrations, paving the way for future advances in envi-
ronmental sustainability and bioprocessing applications. The 
study also identified critical gaps and research opportuni-
ties for improving the reliability of VFA prediction models, 
such as rigorous validation on separate datasets, real-time 
monitoring systems, and collaborative data-sharing activities 
among research institutions are essential.
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