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A B S T R A C T   

As materials undergo large-scale yielding or exhibit large sizes of fracture process zone in the crack tip region, 
multi-parameter fracture concepts should be employed to describe the complex crack-tip stress-strain fields. 
Fracture resistance curves (R-curves) are an established tool in characterizing the entire fracture process of such 
materials. However, for complex materials such as bituminous mixtures, the development of these curves is 
subject to experimental and computational intricacies. In this research, a framework is developed to automate 
the construction of R-curves for normal and rubberized asphalt concrete (AC) mixtures. AC mixtures are pro
duced using PG58–22 and PG58–28 binders. Limestone and siliceous aggregates are used, and three binder 
contents are considered for the mixtures. Single-edge notched beam (SE(B)) fracture testing is conducted on AC 
beams with two different notch patterns. A convolutional neural network (CNN) model is developed and trained 
over 1260 test images with varying temperatures, notch geometries, and setups. The CNN model was used to 
detect the growing crack on the beam surface and each crack-detected image was sent to an image processing 
framework to measure the crack length. Crack extension increments were calculated and synchronized with test 
time and magnitude of load, load-line displacement, and cumulative fracture energy, and the R-curve could be 
constructed. A training accuracy of 0.91 was obtained for the model and a loss of below 0.10 as a result of a 
hyperparameter tuning indicating reliable classifications by the CNN architecture. The R-curves showed desir
able agreement for control mixtures at temperatures of 0 ◦C and − 15 ◦C. As the mixtures are rubberized, the R- 
curves showed favorable agreement in the crack blunting phase, transition zone, as well as the unstable prop
agation phase at − 20 ◦C. Cohesive energy magnitudes were compared for the two methods with a Pearson co
efficient of 0.81 while fracture rate and fracture energy magnitudes showed favorably close magnitudes with 
coefficients of 0.89 and 0.98 respectively.   

1. Introduction 

Non-linear, inelastic materials undergo significant amounts of plastic 
deformation in the crack tip region when subject to loading [1]. In 
general, the size and extent of this plastic zone is influenced by the yield 
strength and toughness of the material [1,2]. This region influences the 
strain and stress fields ahead of the crack tip and mechanisms such as 
micro-void coalescence and shear banding are intensified within this 
zone. In cases where the plastic zone is small compared to all other 
pertinent dimensions of the cracked body (i.e., crack size, uncracked 
ligament), a K-controlled zone ahead of the crack tip can be a valid 

assumption. However, more advanced fracture concepts must be 
instrumented to describe the complex crack tip stress-strain region for 
materials with large-scale plastic zones and no stress singularity e.g., the 
J-integral. In this fashion, fracture resistance curves (R-curves) can 
represent the variation in fracture resistance of the material with the 
extension of the crack. The resistance can be expressed in terms of an 
energy-based parameter, often J-integral, to account for the nonlinear 
responses and offer insights into the realistic fracture trend of such 
complex materials. While extensive body of research is available for 
fracture analysis of metals [3,4], fracture and crack growth character
ization of bituminous mixtures using R-curves is still scarce due to 
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experimental intricacies. 
In 2015, Ghafari and Nejad [5,6] derived J-resistance curves for hot 

mix asphalt (HMA) mixtures and addressed the R-curve sensitivity to the 
varying factors in their research such as temperature and binder content. 
A rising R-curve was observed in their research for moderate to low 
temperatures and fracture instability (Jinst) magnitudes were deter
mined following an approach employed for metals. In later research [7, 
8], Ghafari and Nejad applied the J-R curve concept to study the effect of 
crumb rubber incorporation in asphalt concrete mixtures using 
warm-mix technology. They extracted parameters such as the peak load 
and the corresponding crack length and critical J-integral magnitudes as 
well as the rate of change in J-integral by crack extension in the 
post-peak region. They concluded that a 20% crumb rubber addition 
could significantly contribute to enlarging the stable crack growth zone 
at low temperatures (-20 ◦C in their research) and reshaping the R-curve 
to a progressively rising state. Efforts have been made to investigate the 
effect of additives or binder replacements [9] on the R-curve of bitu
minous mixtures. Yang and Braham [10] constructed the resistance 
curves of asphalt concrete mixtures employing semi-circular bend (SC 
(B)) testing at medium to low temperatures and investigated the effect of 
temperature, polymer modification, binder grade, gradation, and 
loading rate on these curves. They presented the R-curves in terms of 
cumulative fracture energy versus crack extension and extracted three 
quantitative parameters: cohesive energy, fracture energy, and fracture 
rate from the curves. They found that polymer modification had 
significantly affected crack initiation despite the lower grade of the 
binder. It was also observed in this study that higher testing tempera
tures result in higher creep energy during the fracture process which is 
more associated with the propagation phase than the crack initiation. In 
another research, Yang and Braham [11] investigated the effect of 
binder ageing on R-curves of HMA. According to this research, long-term 
ageing could significantly reduce the cohesive energy, fracture rate, and 
total fracture energy of the mixtures. Furthermore, R-curves were 
developed for mixed-mode (I/II) loading conditions for hot mix asphalt 
mixtures [12,13]. A single-edge notched beam (SE(B)) setup was utilized 
and the experiments were conducted in a range of moderate to low 
temperatures. Continuous acquisition of high-quality digital images was 
carried out during each test and the crack extensions were obtained by a 
manual crack length measurement in each image. They observed that 
the crack blunting zone of the R-curve is significantly influenced as the 
mode II loading component is increased. Moreover, unstable crack 
propagation of the mixtures was substantially reduced as mode II 
loading contribution dominated the tensile loading mode. 

Despite the advantages of R-curve analysis for bituminous mixtures, 
developing the fracture resistance curves for non-metal materials is 
known to be time-consuming, substantially complex, and having high 
experimental costs. Efforts have been made to develop compliance 
equations for asphalt concrete [14] to use a single-specimen technique 
using the unloading compliance method similar to metals for HMA as 
well. However, mixture-specific characteristics could potentially reduce 
the precision of the equations, therefore a massive dataset of mixtures 
would be required to develop reliable compliance equations. Further
more, Liu and Yang [15] proposed an alternative method for crack 
length extension in R-curve analysis of asphalt concrete. They applied 
the digital image correlation (DIC) technique to capture the displace
ment field around the crack tip on an SC(B) test setup and construct the 
R-curve of the mixtures using the crack opening displacement matrix 
(CODM) on the specimen surface. The displacements in the CODM were 
used as crack extensions to construct the R-curve. Moreover, using DIC 
has gained wide-spread attention among researchers in the past two 
decades as a robust technique to study stain mapping of asphalt mixtures 
[16–19]. Asghar and Khattak used the DIC to investigate the fracture 
and fatigue properties of a novel hot mix asphalt (HMA). They used 
crumb rubber and polyvinyl alcohol fibers in developing the HMA. 
Leveraging DIC, they observed that the HMA composite developed by 
rubber fiber had a larger strain distribution which led to crack bridging 

and higher fracture resistance in this material [20–22]. 
To further facilitate the use of R-curves for crack propagation anal

ysis of asphalt mixtures, authors developed a machine learning (ML) 
framework [23] to predict the fracture resistance curves of the mixtures 
using multi-gene genetic programming (MGGP). They used a wide range 
of variables such as binder grade, binder content, aggregate type, and 
temperature to develop a consistent dataset of mixtures and applied 
artificial neural networks (ANN). Even though a desirable agreement 
was observed between the predicted R-curve and the measured ones, 
however, a massive dataset is still required to rely on the ML model as a 
standalone framework for predicting R-curves. 

As can be inferred, employing the R-curve concept can be signifi
cantly beneficial in characterizing the entire fracture process of bitu
minous materials subject to varying parameters in terms of mixture 
properties and environmental conditions. However, Determination of 
these curves for bituminous materials requires extensive experimental 
capacity and effort. The most reliable single-specimen method to 
develop R-curves includes capturing consecutive images during the test 
and manually calculating the crack extension increments which is 
excessively time-consuming and could be subject to human errors. 
Furthermore, manual (human) inspection of all the captured images is 
required in this method and images with the growing crack need to be 
screened and attributed to the corresponding magnitudes of load, load- 
line displacements (LLD), and finally fracture energy so the R-curve 
could be constructed. This research is aimed at leveraging an efficient 
convolutional neural network architecture to classify the images that 
contain the crack as the loading and crack growth continues. The 
cracked area is automatically cropped which will significantly reduce 
the noise occurring from the pores on the specimen surface. These im
ages are automatically synchronized with the corresponding magnitudes 
of load and LLD. The crack length is calculated through the image 
processing module and the pairs of (cumulative fracture energy, crack 
extension) can be plotted in an entirely automated process. Therefore, 
this framework will significantly reduce experimental time and costs for 
developing R-curves for bituminous materials offsetting the need for 
manual (human inspection of every captured image). 

Hot mix asphalt mixtures were produced using limestone and sili
ceous aggregates. Three binder contents were considered for the mix
tures and PG58–22 and PG58–28 grade bitumen were used. Mixtures 
with 20% crumb rubber and 3% warm-mix additive were developed in 
addition to control mixtures. Asphalt concrete beams were fabricated 
from slabs and SE(B) testing was carried out on them at temperature 
levels of 0 ◦C, − 15 ◦C, and − 20 ◦C. High-quality digital images were 
captured continuously during each test. The images were fed into a CNN 
model trained over 1260 images from SE(B) tests and the images with 
growing crack were classified and sent to the crack length measurement 
module. Crack lengths and extensions were calculated by processing the 
images and the results were synchronized with the time of test, magni
tude of load, load-line displacement, and the corresponding cumulative 
fracture energy. Cumulative fracture energy was then plotted versus 
crack extensions for each experiment and the R-curve could be 
constructed. 

2. Objective 

The impetus for this research was to harness a deep learning 
framework to offset the experimental and manual processing of data 
required to construct a fracture resistance curve for asphalt concrete. In 
line with this, convolutional neural networks are leveraged to carry out 
an automated image classification into cracked and uncracked images 
and export the cracked area to the image processing stage. This will 
replace the time-consuming manual inspection and screening of the 
acquired images and also significantly reduces the excessive noise 
detected due to beam surface pores as the images are auto cropped. Each 
image containing crack is then synchronized with the corresponding 
value of load (P) and load-line displacement (LLD) and the cumulative 
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fracture energy can be calculated and plotted versus the crack length to 
construct the R-curve. A visual illustration of the proposed framework is 
presented in Fig. 1 and the objectives can be concisely summarized as 
the following:  

• Developing a convolutional neural network model for real-time 
image classification to detect images with the growing crack dur
ing each test.  

• Automated cropping of the cracked area by the bounding box 
segmented by the CNN model. 

• Synchronizing the cropped image with the corresponding magni
tudes of load and load-line displacement.  

• Calculating crack extension increments from the cropped images 
exported to the image processing module.  

• Calculating cumulative fracture energy using the load and load-line 
displacements and plotting the R-curve in terms of cumulative frac
ture energy vs. crack extension. 

3. Materials and methods 

3.1. Materials and specimen preparation 

Asphalt concrete mixtures with siliceous and limestone aggregates 
were prepared in this research. Limestone aggregates were grey in color 
and crushed while siliceous aggregates were uncrushed with a variety of 
surface colors. The physical properties of the aggregates are presented in  
Table 1. PG 58–22 and PG 58–28 were used for preparing mixtures and 
the base binders with physical and rheological properties as in Table 2. 
The nominal maximum aggregate size for both mixtures was 19 mm as 
plotted in Table 3. The optimum binder content of the mixtures was 
determined using the Marshall method. This value was obtained to be in 
the range 4.5%±0.2% for different mixtures in this research. Therefore, 
the optimum binder content for all the mixtures were considered equal 
to 4.5%. Furthermore, a ±0.5% jump in the binder content was used 
(bringing the binder content to 4% and 5%) in developing the test 
specimens as contents below and above the optimum content are re
ported to have tangible effects on the fracture trend of the mixtures [24, 
25]. Specimens with lower binder contents are reported to undergo 
brittle fracture earlier than those with higher contents and the speci
mens with higher binder contents are reported to have larger transition 
zones (from crack blunting to unstable propagation) and a notable en
ergy dissipation in the unstable propagation zone [7,12]. Therefore, 
varying crack propagation characteristics in the mixtures attempted to 
investigate the performance of the automated framework on varying 

trends of the fracture process in mixtures. Therefore, Mixtures were 
developed using 4%, 4.5%, and 5% binder content as an influential 
parameter on instability and brittleness of the mixtures [26] at low 
temperatures and hence inducing various crack orientations. All the 

Fig. 1. Automated R-curve construction framework for asphalt concrete mixture.  

Table 1 
Physical properties of the limestone and siliceous aggregates.  

Property Standard Limestone 
aggregate 

Siliceous 
aggregate 

LA Abrasion loss AASHTO 
T96–02 

20 19 

Fractured in one 
face 

ASTM 
D5821–13 

>98 >87 

Fracture in two 
faces 

ASTM 
D5821–13 

>98 93 

Flakiness BS 812–103.1 5 20 
Coating of 

aggregate 
AASHTO T184 98 95 

Sodium Sulphate 
loss 

AASHTO 
T104–99 

1.8 (fines) 0.7 
(coarse) 

2.8 (fines) 0.4 
(coarse)  

Table 2 
Physical and rheological properties of the binders.  

Property PG58- 
22 

PG58-28 Test Method 

Penetration at 25 ◦C, 0.1 mm  89  180 ASTM D5 
Softening point (◦C)  50.8  38 ASTM D36 
Ductility (15 ◦C, cm)  >100  >100 ASTM D113 
Flashing point (◦C)  290  230 ASTM D92 
Density  1.02  1.033 ASTM D70 
Kinematic viscosity (Centistoke, 135 ◦C)  370  300 ASTM D2170 
Kinematic viscosity (Centistoke, 160 ◦C)  130  135 ASTM D2170 
DSR (G*/sin(δ), kPa)  1.29  1.99 ASTM D7175  

Table 3 
Limestone and siliceous aggregate gradation for AC mixtures.  

Size (mm) Passing (%) 

25  100 
19  100 
12.5  95 
4.75 (Sieve No. 4)  59 
2.36  43 
0.3  13 
0.075 (Sieve No. 200)  6  
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mixtures were prepared unmodified (control mixtures) as well as 
modified by 20% crumb rubber by weight of the base binder. 

Ground crumb rubber particles with a maximum size of 0.6 mm 
(#30) were mixed with the base bitumen using 3% warm-mix additive 
(Sasobit) prior to blending with the aggregate. The mixing was carried 
out in a high-shear mixer applying a rotational velocity of 6000 rpm at 
160 ◦C for 15 minutes in the first stage. The temperature was then 
elevated to 180 ◦C and a steady state mixing continued for 30 minutes at 
a reduced velocity of 2000 rpm giving a homogenous rubberized binder 
[27–30]. The binder is then mixed with the heated aggregate and 
compacted in the slab mold at a temperature of 170 ◦C to a void ratio of 
4%±1%. 

The molds were cooled to room temperature for 7 hours and AC slabs 
were then extracted from the molds. Three AC beam specimens were 
fabricated from each slab having a height (B) of 40 mm, a width (W) of 
80 mm, and a gross span length of 380 mm (net span length of 
S=320 mm). AC beam dimensions were selected based on ASTM 
E1820–20b instructions giving a notch length of 16 mm (S=4 W, W/ 
B=2, a/W=0.2). Two different methods were employed to fabricate the 
mechanical notch in the AC beams. For the specimens with limestone 
aggregates, an 8 mm base was first cut through the height of the beam 
using the automated water-cooled saw having a blade thickness of 
5 mm. The remaining 8 mm was then cut using a hand saw having a 
1 mm thick blade. AC beams with limestone aggregate and the two-stage 
mechanical notch can be seen in Fig. 2. This two-stage notch fabrication 
could minimize excessive blunting and branching at the notch tip as the 
crack initiates [31,32]. For the specimens with siliceous aggregates, the 
entire 16 mm notch length was cut using an automated saw with a blade 
thickness of 2.5 mm. A handsaw with a blade thickness of 1 mm could 
not be used for these samples due to the significant resistance of the 
siliceous aggregate against the blade. AC beams with siliceous aggregate 
having a range of grain colors can be seen in Fig. 2. 

3.2. SE(B) test with image acquisition and classification 

Single-edge bend tests are carried out in this research to construct the 
fracture resistance curves for asphalt concrete mixture at low tempera
tures. The test setup and configurations including fixture dimensions, 
AC beam dimensions, etc. fundamentally comply with ASTM E399–20a 
[33] and ASTM E1820–20b [34] instructions. The experiments were 
conducted in a universal testing machine (UTM) capable of various 
modes of loading equipped with an environmental chamber capable of 
providing customized monotonous low temperatures. The AC beam 
samples were conditioned inside the environmental chamber at least 
4 hours prior to being mounted on the beam support. Two 
high-resolution digital cameras were installed on the two sides of the 
fixture focusing on the center of the beam span to capture the propa
gating crack during the tests. Tests were run with and without infrared 
illumination. The illumination was provided using Infra-red light 

emitting diode (IR LED) bulb pads on the two sides of the fixture without 
disturbing uniform temperature distribution across the chamber. 

A preload of 0.1 kN was applied to the beam on the mid-span to 
ensure consistent seating of the sample on the supports. The test was 
then initiated using a vertical loading rate of 5 mm/min for most of the 
conditions. The two digital cameras were triggered to capture contin
uous images of the specimen surface during the test. Each test continued 
up to the failure of the specimen or where the load magnitude reached a 
value of approximately 0.1 kN. A code was developed to extract and 
interpret EXIF data of the images as well as to read the feedback from the 
UTM actuator linear variable digital transformer. Object arrays con
sisting of images, capture time and date, magnitude of load, and load- 
line displacement were then generated by the code. Images with the 
corresponding values of load and load-line displacement at an interval of 
1 s for each test were batched and introduced to the CNN model as a new 
dataset for each test to screen cracked samples from uncracked images. 
The values of the load and load-line displacement (LLD) were used to 
calculate the cumulative fracture energy [35–40] and the images con
taining a crack were then classified by the model and were input to the 
image processing module to calculate the length of the propagating 
crack. The results from the image processing module were then popu
lated with the corresponding value of cumulative fracture energy as a 
two-element array representing a unique point in the R-curve plot. 

3.3. Convolutional neural network (CNN) 

3.3.1. CNN model architecture 
The CNN model developed comprises multiple convolutional and 

pooling layers, with connected (dense) layers at the end for classifica
tion. The model is designed for binary image classification and the de
tails and architecture are presented in Table 4 and Fig. 3 respectively. 

3.3.2. Convolutional layer 
In CNN, the convolutional layer plays the fundamental role in the 

sense that it learns the features from the captured image. The input 

Fig. 2. Notch patterns for specimens: a) with limestone aggregate b) siliceous aggregate.  

Table 4 
Details of the CNN model structure and the image dataset.  

Model and Dataset Properties Values 

Convolution3D 3 
Maxpooling3D 3 
Flatten 1 
Dense 1 
Image dataset 1260 
Cracked images 844 
Uncracked images 416 
Raw image resolution 2592×1944 
Image size 1.5–3.0 MB  
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image size introduced to the model is considered to have 256 pixels in 
height, and 256 pixels in width with RGB channels. The input shape is 
only required in the top convolutional layer. In the sequential model 
constructed, 16 kernels were defined for each convolutional layer. 
Therefore, 16 filters are applied to the input image for detecting 
different patterns. The convolved image is the result of a convolution 
process in which each pixel in the input image is matrix-multiplied by 
the kernel which is a small-size matrix (3×3 pixels here). The convo
lution operation can be expressed as in eq. 1: 

O =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

∑n

i=1

[
∑n

j=1
cijdij

]

∑n

i=1
cij ∕= 0

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

Where: 
O: Output pixel value 
n: Kernel dimension (i.e. 3×3 here) 
cij: Coefficient element in the kernel matrix 
dij: Image matrix element 
As a result, this process obtains local patterns, and a feature map can 

be generated. In the initial convolutional layers, the introduction of the 
filters leads to the detection of low-level features e.g., edges, and cor
ners. By stacking multiple convolutional layers, higher-level filters 
combine, and more complex patterns can be identified. 

3.3.3. Activation function 
An activation function is assigned to each neuron in a neural network 

which is a mathematical function. This mathematical function in
troduces non-linearity to the network i.e., intricate relationships can be 
modelled between the inputs and outputs. These functions contribute 
significantly to the efficiency of the model as they perform neuron-wise 
to determine the outputs. The Rectified Linear Unit (ReLU) activation 
function is used for the convolutional layers while the Sigmoid is used 
for the output layer. 

ReLU is one of the most commonly used activation functions in 
convolutional neural networks due to its efficiency. The mathematical 
expression for ReLU can be found in eq. 2: 

f (x) = ReLU(x) = max(0, x)

Where: 
x: Input to the function. 
The function returns 1 for any positive input. In the case of using 

gradient-based learning scenarios for training the ANNs, as the gradients 
may turn into vanishingly small values, they can prevent the weights 
from changing values and consequently, the neural network may pre
maturely stop training [41,42]. This issue can be alleviated by using the 
simple but computationally efficient ReLU activation function. 
Furthermore, the entire efficiency and convergence of the model is also 
enhanced. 

The Sigmoid activation function is used in the output layer which is a 
popular function used in binary classifications i.e. the neuron output 
classes are assigned probabilities. The mathematical expression of the 
Sigmoid activation function is presented in eq. 3: 

f (x) = Sigmoid(x) =
1

1 + exp(− x)

Where: 
x: Input to the function. 
The Sigmoid activation function transforms the input into a value 

ranging from 0 to 1, which can be interpreted as the probability of the 
input belonging to a certain class. One advantage of the Sigmoid acti
vation functions is that backpropagation can be conducted by them since 
they are differentiable with regard to the input. However, they can 
potentially halt the network from further learning as a vanishing 
gradient problem is likely to occur while using them [43]. 

3.3.4. Pooling 
Pooling layers inserted between successive convolutional layers play 

a key role in reducing the spatial dimensions of the inputs. These layers 
down-sample the feature maps generated by each convolutional layer. 
Max pooling is used here as the most common type and strategy in deep 
convolutional networks. In this technique, the pooling operation is 
applied to different regions of the feature map and the maximum value 
from each local neighborhood of the input is extracted. Therefore, the 
spatial dimensions of the feature map are reduced, and a representative 
pixel value (maximum) is selected. This operation will reduce the 
computational complexity for the proceeding layers of the model while 
leading to improved processing efficiency [44]. A pooling window with 
a size of 2×2 is specified in this model. 

3.3.5. Flatten layer 
Flatten layers are typically used in deep CNN architectures before the 

dense layers. The main purpose of introducing flatten layers is to reshape 
the feature maps output from the convolutional layers since dense layers 
require 1-dimensional inputs. In other words, the feature maps resulting 
from convolutional layers, are transformed into 1-dimensional tensors 

Fig. 3. Graphical illustration of the CNN model architecture.  
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spatially before being input to the subsequent dense layers. The pre
dictions are then made based on the flattened features. 

3.3.6. Batch normalization 
Cross-entropy loss is a commonly used loss function in classification 

problems in deep learning [44]. In this fashion, the binary cross-entropy 
loss function is used when implementing binary classification tasks, 
where it is intended to predict only one class. The function determines 
the dissimilarity or error between the predicted probability by the model 
and the true binary label for each sample. The binary cross-entropy 
function is presented in eq. 4:  

Where: 
yi : The actual class 
p
(
yi
)
: The probability of 1 

In the cracked beam detection problem two classes labeled 1 
(cracked) and 0 (uncracked) beam images are defined. The binary cross- 
entropy function penalizes the model if the prediction is close to 0 in the 
case of a cracked beam image while the penalization is triggered again if 
the prediction is near 1 for an uncracked image. The loss is then 
calculated as the average of these penalizations over the batch of sam
ples. As the model is trained across the dataset, the binary cross-entropy 
loss is to be minimized, hence, the accuracy of model predictions is 
improved. 

3.3.7. Model training 
The CNN model was trained on 1260 test images. The images 

included uncracked samples, loaded beam samples prior to the initiation 

of a visible crack, samples with the propagating crack as well as samples 
at test termination. Fig. 4 presents sample images used to train the model 
for uncracked conditions. 

Varying illumination conditions were used for the tests. Most of the 
samples were tested under the UTM-provided lighting. Nevertheless, 
some of the samples were tested under infrared illumination. AC beam 
samples were developed from limestone and siliceous aggregates. A two- 
stage notch was fabricated for limestone samples while a simple notch 
(16 mm) was cut in the siliceous samples (Fig. 2). 85% of the samples 
were beams painted in white while 15% were unpainted samples. Fig. 5 
shows sample cracked AC beams used for training the model. 

3.3.8. Hyperparameter tuning 
Hyperparameter tuning is considered a crucial step in the develop

ment of machine learning models, including Convolutional Neural 
Networks. It entails systematic exploration of different hyperparameter 
values to optimize the performance of the model on a given task. 
Hyperparameters, are settings that are set before training commences, 
therefore, are not learned during training and could potentially play a 
significant role in model performance and behavior. The hyper
parameters in an image classification CNN include learning rate, opti
mizer type, kernel size, batch size, dropout rate, etc. Several methods are 
available for hyperparameter tuning, including grid search, random 
search, Bayesian optimization, etc. A grid search approach was 
employed for hyperparameter tuning in this research, to explore 
possible enhancements to the accuracy of the CNN image classification 
model. 

A grid of hyperparameters: learning rates, optimizers, and kernel 
sizes was defined for this research forming the search space as the 
following: 

Fig. 4. Sample uncracked annotations.  

Binary Cross − Entropy Loss = −
1
n
∑n

i=1
[yilog[p(yi) ]+ (1 − yi)log[1 − p(yi)]]
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Learning rates: [0.001, 0.01, 0.1] 
Optimizers: rmsprop, adam 
Kernel sizes: [(3, 3), (5, 5), (7, 7)] 
Where adam (adaptive moment estimation) and rmsprop (adaptive 

moment estimation) are two widely used optimization algorithms 
commonly used in training neural networks, including CNNs: rmsprop is 
an adaptive learning rate optimization algorithm that addresses some 
limitations of AdaGrad [45]. It maintains a moving average of the 
squared gradients for each parameter, adjusting the learning rate based 
on the average of the recent gradients. This allows rmsprop to dynam
ically adapt the learning rate for each parameter, improving conver
gence and stability during training. Adam combines the benefits of two 
other optimization techniques: AdaGrad and rmsprop. It maintains 
adaptive learning rates for each parameter by computing individual 
adaptive learning rates for different parameters. Adam also incorporates 
momentum, which helps accelerate the optimization process by accu
mulating gradients from past iterations [44,46]. 

The dataset is split into training, validation, and possibly test subsets 
and cross-validation is carried out to assess model performance while 
mitigating overfitting and data leakage issues. The model is trained and 
evaluated using various hyperparameter combinations and the config
uration yielding the best performance on the validation set is selected. 
The process was carried out utilizing GridSearchCV in scikit-learn 
library. 

4. Results and discussion 

4.1. Convergence 

During the training process, the convergence and efficiency of the 
model is governed by multiple parameters such as the validation loss, 
validation accuracy, and number of epochs. In a convolutional neural 
network architecture, the convergence of the model typically means 
attaining a steady state during the training process where the model 
learns and updates its weights and biases through optimization algo
rithms. An optimal number of epochs of 150 was selected for the model. 
Parameter updating is conducted during each epoch as the model iter
ates across the entire dataset. 

4.2. Validation accuracy 

A validation process is carried out during the training process with a 
fraction of 15% of the training dataset. The validation accuracy reveals 
the ability of the model to make correct classifications from the vali
dation subset. The model has not previously been exposed to the data 
selected for this subset during the training process. A high validation 
accuracy indicates a desirable training of the model in which the pat
terns are efficiently learned by the model and robust predictions are 
made for unseen (validation) without overfitting. However, low or 
declining values of validation accuracy typically indicate overfitting or a 
poor determination of the patterns by the model to predict the correct 
class from the unseen data. Here, a validation accuracy of above 0.97 
was obtained after 150 epochs. 

4.3. Validation loss 

Validation loss can serve as another controlling metric for the 
overfitting of the model. The validation loss expresses the difference 
between the correct classification (true labels) and the prediction of the 
model quantitatively. A growing (increasing) validation loss could 
potentially indicate overfitting. Whereas a decreasing validation loss is 
typically indicative of the robustness of training and the ability of the 
model to learn patterns from the dataset and predict the correct label 
from the unseen validation set. 

4.4. Training loss 

The discrepancy (error) between the predictions of the model and the 
correct classifications (true labels) is revealed by the training loss. As 
previously addressed, minimizing the loss is the goal of the model and 
lower values of training loss can be associated with a desirable fitting of 
the training data for each epoch. The minimization is carried out by 
refining the weights and biases in the model and iterating over. 
Descending training loss is a desirable trend in the training process 
(remaining below 0.15 for the last 30 epochs here), however, this cannot 
be selected as the sole parameter to judge the effectiveness and perfor
mance of the model. 

Fig. 5. Samples used for cracked beam annotations.  
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4.5. Training accuracy 

Training accuracy is a quantitative indication of the fraction of 
correct classifications by the model in the training dataset. This accuracy 
parameter represents the percentage of the correct predictions (classi
fications) across the training dataset during each epoch. Iteratively and 
as the training process proceeds and the model updates its weights, the 
training accuracy is expected to increase. Otherwise, the desirable per
formance might not be attained. The training accuracy can be used in 
conjunction with validation accuracy to give a definitive judgement of 
the efficiency of the model since the validation accuracy derives the 
metric over unseen data. A training accuracy of above 0.84 was obtained 
in this research after 150 epochs. Fig. 6 presents accuracy and loss values 
of the CNN during model validation and training procedures. 

4.6. Hyperparameter tuning results and enhancements 

The best-performing model was evaluated using a separate test 
dataset that was not used during the hyperparameter tuning process. 
This ensures an unbiased evaluation of the performance on unseen data. 
Hyperparameter configurations and the evaluation metrics are pre
sented in Table 5. The mean_test_score in this table refers to the average 
accuracy of the model evaluated on the validation set across all splits of 
the cross-validation process. In the tuning process, the dataset is divided 
into multiple splits. The model is trained on a combination of these splits 
and evaluated on the remaining ones. This process is repeated multiple 
times, with each split being used as the validation set exactly once. The 
mean_test_score is then calculated as the average accuracy (serving as a 
performance metric) across all splits. Moreover, the std_test_score 
measures the intensity of the metric variation across these subsets and 

provides an indication of the consistency or stability of the performance 
of the model across different subsets of the data. Low values std_test_
score indicate that the performance of the model is relatively consistent 
across different subsets, suggesting that the selected hyperparameters 
generalize well to unseen data. The mean_test_precision is a measure of 
the accuracy of the positive predictions made by the model. It quantifies 
the ratio of true positive predictions to the total number of positive 
predictions made by the model. In this model (cracked image classifi
cation), precision represents the proportion of correctly predicted 
cracked regions (true positives) among all regions predicted as cracked 
by the model (true positives + false positives). The mean_test_f1_score 
and std_test_f1_score represent the mean and standard deviation of F1 
scores for the precisions, respectively [47]. 

Values of 0.01 for the learning rate, (3, 3) for the kernel size and 
adam optimizer were selected as the best-performing hyperparameters 
for the CNN model. The model is subsequently trained over the main 
dataset (1260 SE(B) test images) and the enhanced values of validation 
and loss can be seen in Fig. 7. It can be seen that the training accuracy of 
the CNN model is improved to approximately 0.91 as a result of 
hyperparameter tuning. 

The training accuracy of 0.91 indicates that the model correctly 
classifies approximately 91% of the images in the training dataset. This 
level of accuracy suggests that the model has learned meaningful pat
terns and features from the training data, enabling it to make reliable 
predictions. A low training loss below 0.10 further reinforces the reli
ability of the model’s predictions. The loss metric quantifies the 
discrepancy between the predicted and actual labels, with lower values 
indicating better alignment between predicted and true values. A loss 
below 0.10 suggests that the model has effectively minimized errors 
during training and is capable of making precise predictions/ 

Fig. 6. Accuracy and loss of the CNN during validation and training: a) Training and validation loss, b) Training and validation accuracy.  

Table 5 
Hyperparameter combinations and model performance metrics.  

Learning rate Optimizer Kernel size test_accuracy std_test_accuracy mean_test_precision std_test_precision mean_test_f1_score std_test_f1_score  

0.001 adam  (3, 3)  0.87  0.012  0.89  0.013  0.86  0.011  
0.001 adam  (5, 5)  0.89  0.011  0.88  0.012  0.88  0.01  
0.001 adam  (7, 7)  0.86  0.014  0.88  0.01  0.86  0.012  
0.001 rmsprop  (3, 3)  0.89  0.013  0.84  0.015  0.89  0.014  
0.001 rmsprop  (5, 5)  0.87  0.011  0.86  0.012  0.87  0.011  
0.001 rmsprop  (7, 7)  0.88  0.013  0.88  0.011  0.88  0.013  
0.01 adam  (3, 3)  0.91  0.011  0.96  0.011  0.90  0.01  
0.01 adam  (5, 5)  0.88  0.012  0.89  0.01  0.87  0.012  
0.01 adam  (7, 7)  0.86  0.015  0.86  0.013  0.86  0.015  
0.01 rmsprop  (3, 3)  0.87  0.013  0.86  0.014  0.87  0.012  
0.01 rmsprop  (5, 5)  0.88  0.011  0.87  0.012  0.88  0.011  
0.01 rmsprop  (7, 7)  0.87  0.012  0.88  0.013  0.87  0.012  
0.1 adam  (3, 3)  0.88  0.014  0.87  0.013  0.88  0.014  
0.1 adam  (5, 5)  0.86  0.013  0.86  0.014  0.86  0.013  
0.1 adam  (7, 7)  0.85  0.014  0.89  0.013  0.85  0.014  
0.1 rmsprop  (3, 3)  0.87  0.012  0.88  0.011  0.87  0.012  
0.1 rmsprop  (5, 5)  0.88  0.013  0.87  0.012  0.88  0.013  
0.1 rmsprop  (7, 7)  0.86  0.015  0.86  0.014  0.86  0.015  
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classifications. The precision of the model’s classification refers to its 
ability to correctly identify positive cases (e.g., images containing crack) 
while minimizing false positives (incorrectly identifying non-cracked 
images as cracked). With a training accuracy of 0.91 and a low 
training loss, the model demonstrates a high level of precision in dis
tinguishing between different classes of images. This precision is crucial 
in as the classified images are cropped (based on the bounding box 
around the cracked area proposed by the model) and exported to the 
image processing module. 

4.7. Image classification and crack length detection 

The performance of the model can be visualized over a range of SE(B) 
test images. Fig. 8 presents the CNN model’s classification performance 
over sample test data with probabilities ranging from 0.84 to 0.97. The 
images used in this dataset are selected from loaded but uncracked 
samples, tests with IR illuminations, end-of test failed beams, as well as 
beams with propagating cracks. Since the model is trained over a wide 
range of images in SE(B) test setup, robust detection of the cracks can be 
seen in the test images. Additionally, and since the model was trained on 
raw test images, it is capable of seamless detection of the propagating 
crack over a wide range of images with varying configurations. Whereas 
the test fixture and beam surface voids could have been detected as 
cracks in case the model was trained solely on the cracked zone. The 
cropped crack image was then used for crack edge detection and length 
calculations. 

Gaussian blur is applied to the cropped image in the first stage to 
minimize noise interferences. This is particularly useful in reduction of 
the occurring noise from the pores and aggregate/binder surface po
rosities in painted and unpainted specimens leading to improved edge 
detections and length measurements. The varying test conditions 
(painted/unpainted beams, and IR/UTM illuminations) potentially in
duces varying intensity levels in the images. Additionally, during each 
SE(B) test, load increments and further crack propagation induce vary
ing intensity levels around the crack tip. Therefore, the gradient-based 
approach [48,49] allows for capturing intensity changes regardless of 
their levels. In terms of identifying continuous crack contours (Fig. 9), 
application of hysteretic thresholding aids in alleviating false detection 
of weak edges and hence strong edges are reliably differentiated. 

As the loading continues in the SE(B) test, the crack tip extends. The 
growing crack exhibits varying intensity levels around the crack tip. 
Therefore, for the growing crack, this approach can significantly 
enhance continuous crack contour detection and ensure capturing the 
entire length of the crack. Fig. 10 shows the detected crack length in
crements during each test versus the values measured manually. It can 
be seen that the values agree very desirably with each other. 

4.8. R-curve comparisons 

Fracture resistance curves are constructed for all the mixtures using 
manual data pre-processing followed by calculations and the automated 
framework. Fig. 10 presents the R-curves for AC mixtures with limestone 

and siliceous aggregates at T=0 ◦C and T=-15 ◦C having PG58–22 
binder. In terms of the low-temperature fracture performance of the 
mixtures, it can be noted that the R-curves for limestone mixtures stand 
higher than those for the mixtures with siliceous aggregate mixtures. 
This effect of aggregate on the R-curves is due to the lower bond ability 
and weaker bonds in the aggregate-binder interface in the mixture 
matrix for siliceous aggregate [5,10]. The lower R-curves for the sili
ceous aggregates can be noted by comparing Fig. 11 (c) with Fig. 11 (a) 
and (d) with Fig. 11 (b). For each mixture, the fracture resistance curve 
developed by the automated method is potted against the R-curve con
structed using manual crack length measurements. It can be seen from 
the aforementioned temperature range that the machine-derived curve 
is in overall desirable proximity with the manually constructed R-curve 
which indicates the reliability of the proposed method. For each test at 
moderate to low temperatures (prior to T=-15 ◦C), the energy generated 
by load application is dissipated in blunting the notch tip before initi
ation of a mode I crack at the notch tip. This includes the process of 
coalescence of micro-scale voids in the notch tip region and the forma
tion of cohesive surfaces leading to fracture or crack initiation. Looking 
at Fig. 11 (a) and (c), it can be seen that the R-curve is in a vertically 
rising state which corresponds to the energy dissipated for crack tip 
blunting. This phase is addressed as the crack blunting phase [1]. The 
point where the curve is detached from the y-axis is where the initial 
increment of crack extension is captured, and hence can be introduced as 
the cohesive energy [10,11]. Scrutinizing the crack blunting zone and 
the cohesive energy it can be seen that there exists a close agreement 
between the manually constructed R-curve and the AI-driven curve, 
whereas, for the low temperature range (Fig. 11 (b) and (d)), the two 
curves are exhibiting notable proximity in this phase. 

As the R-curve deviates from the y-axis, the transition zone starts 
which includes a stable crack growth proceeded by an unstable propa
gation. It can be seen that the two methods are in close agreement in this 
zone while a degree of inconsistency can be seen in Fig. 11 (d) for a 
temperature of − 15 ◦C which will be discussed together with the curves 
for siliceous aggregate and the − 20 ◦C results. 

Fig. 12 presents R-curves for mixtures produced using PG58–28 
binder. It can be seen for this range of temperature that the resistance 
curves developed through the automated method are in desirable 
proximity to the manually derived R-curves. For the medium to low- 
temperature range (Fig. 12 (a) and 12 (c)), the crack blunting phase 
appears to be substantially similar in both methods and the same 
desirable agreement can be seen for T=-15 ◦C as well. All the mixtures 
exhibit a rising R-curve with a distinct cohesive energy followed by a 
stable crack growth zone before the unstable crack propagation phase. 
For each test, the loading continued up to a point of 0.1 kN or breakage 
of the specimen (total failure of the AC beam). Therefore, the y-axis 
value for the last point on the resistance curve corresponds to the total 
fracture energy of the mixtures. Comparing Fig. 11 (b) and (d) with 
Fig. 12 (b) and 12(d), it can be concluded that the mixtures produced by 
PG58–28 binder are exhibiting higher cohesive energy and fracture 
energy magnitudes at lower temperature ranges (-15 ◦C). This is due to 
the lower softening point in the PG58–28 binder (Table 2) which causes 

Fig. 7. Accuracy and loss of the CNN after hyperparameter tuning: a) Training and validation loss, b) Training and validation accuracy.  
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Fig. 8. Sample CNN crack detections.  
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lower brittleness in lower temperatures, and hence exhibiting higher 
energy dissipation characteristics. Excluding the transition zone from 
crack (notch) tip blunting phase to the unstable crack propagation phase 
for the mixture with siliceous aggregate at T=-15 ◦C, it can be seen that 
the automated deep learning-based method has seamlessly determined 
the R-curve. 

Fracture resistance curves at T=-20 ◦C are presented separately in  
Fig. 13 (a) to (d) to scrutinize the performance of the automated 

framework at lower temperatures. Limestone mixtures exhibit higher R- 
curves than siliceous mixtures. However, all the mixtures undergo a 
plateaued resistance curve in the unstable propagation zone which 
means that the crack propagation is highly unstable bringing the 
mixture (and the AC layer in the pavement structure) to an abrupt 
fracture failure. The transition zone between the crack blunting phase 
and the unstable propagation is substantially small in this test temper
ature due to the embrittlement of the binder. As can be seen in Fig. 13 (a) 

Fig. 9. Sample continuous crack contours for calculation of crack length: a) Edge detection on the AC beam, and b) Crack contours over the threshold cropped image 
of the crack. 

Fig. 10. Crack extensions during the test: a) T=0 ◦C, PG58–22, Limestone aggregate, b) T=-15 ◦C, PG58–22, Limestone aggregate, c) T=0 ◦C, PG58–22, Siliceous 
aggregate, d) T=-15 ◦C, PG58–22, Siliceous aggregate. 
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to (d), the R-curve obtained from the automated framework deviates 
notably in the transition zone from the manually constructed R-curve. 
This is mainly due to high noise in the captured images at this temper
ature as well as the rapid transition to the unstable crack propagation 
phase. Due to the abrupt crack initiation, high-noise (including speckle 
and temporal [50,51]) images are usually captured in this phase. For 
crack lengths greater than 0.25 mm, the CNN model is capable of clas
sifying the image as containing a crack while the model drops the image 
if the initial length is lower. Even though, the CNN model detects the 
crack in a majority of the images (at least one image acquired with a 
crack length greater than 0.25 mm for each test), in some cases, the 
crack extension length could not be measured due to excessive 
non-Gaussian noise intensity in the captures image. Hence, the R-curve 
is affected as showing higher magnitudes of cohesive energy in this stage 
of the fracture process. 

Fig. 14 shows fracture resistance curves for the rubberized mixtures 
at T=-20 ◦C. Comparing the fracture resistance curves at this tempera
ture, it can be deduced that the incorporation of crumb rubber has 
contributed to rising the R-curve in the crack blunting phase, and hence 
the cohesive energy is greater. Additionally, while a notable transition 
zone is formed again in the curves, the unstable crack propagation zone 
is also rising and not flat. As this reshaping of the R-curve is attributed to 
the enhanced temperature insensitivity of the rubberized mixtures, the 
automated framework has been able to construct the resistance curves 
more precisely. In the transition zone from crack blunting to stable crack 
growth, as well as the unstable crack propagation, lower temperature 
sensitivity of the rubber particles causes further energy dissipations in 
advancing the crack tip or forming cohesive surfaces. It can be 
concluded that for mixtures modified with crumb rubber, incorporating 
crumb rubber enhances the resistance of the mixtures to temperature 

reduction, resulting in a significant and distinct transition zone within 
the R-curves. Additionally, within the zone where crack propagation is 
unstable, the R-curve continues to ascend, instead of remaining flat 
(compared to the control mixtures as shown in Fig. 13), signifying that 
energy is being dissipated in this area to further advance the crack tip 
(indicating resistance). Consequently, a higher number of low-noise 
images could be acquired during this phase, as the crack develops 
gradually, allowing the automated system to process them more effec
tively. Thus, the R-curves of crumb rubber modified mixtures are closely 
aligned. 

This will allow the CNN model to detect more reliably the images 
containing cracks, with higher number of captured low-noise images 
input for crack extension measurement. 

Three crack propagation parameters: cohesive energy, fracture en
ergy, and energy rate are extracted from the R-curves to quantitatively 
assess the performance of the automated framework versus the manual 
method. Fig. 15 (a) presents the magnitudes of the cohesive energy in an 
equality chart plot. The x-axis represents the values obtained from a 
manually constructed R-curve while the y-axis corresponds to the 
automated framework outputs. As previously discussed, inconsistencies 
in initial crack extension detections may occur due to substantial noise 
and unstable propagation at the lowest test temperatures where either 
the CNN model may drop the image containing small low-quality images 
or the extension could not be measured due to excessive non-Gaussian 
noise. A notable scatter can be observed in this figure for the cohesive 
energy magnitudes of 450 J/m2 to 550 J/m2 which correspond to 
specimens tested at − 20 ◦C. However, the Pearson correlation coeffi
cient of r=0.8144 (above 0.5) shows that the automated framework is 
giving favorably meaningful values, and the trend complies entirely 
with the manually measured values. Fracture energy magnitude of the 

Fig. 11. R-curves for mixtures with PG58–22 binder: a) Limestone aggregate at 0 ◦C, b) Limestone aggregate at − 15 ◦C, c) Siliceous aggregate at 0 ◦C, d) Siliceous 
aggregate at − 15 ◦C. 
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mixtures, as the most widely used parameter for low-temperature 
cracking characterization of bituminous mixtures [52–54] is compared 
in Fig. 15. Fig. 15 (b) shows a substantially condensed plot of fracture 
energy magnitudes around the equality line. This along with the Pearson 
correlation coefficient of r=0.98641 shows very close determination of 
fracture energy magnitudes by the automated framework to those 
manually obtained. Therefore, the proposed framework could robustly 
be utilized for fracture energy determination of the mixtures under a 
broad range of temperatures. Furthermore, a desirable agreement be
tween energy rate magnitudes can be seen from Fig. 15 (c) unless slight 
scatter around high magnitudes. The energy rate, indicating energy 
dissipation rates in the unstable crack propagation phase, encompasses a 
large zone in the R-curve in the post-peak region. Therefore, it can be 
concluded that the CNN model is capable of detecting images with 
growing cracks seamlessly and the low-noise images can then be pro
cessed with desirable precision. This can further be confirmed from 
Fig. 11 to Fig. 14 where the unstable crack propagation zones of the 
R-curves are in significant proximity. 

5. Conclusions 

In this research, an AI-driven automated framework was developed 
using convolutional neural networks to generate fracture resistance 
curves of asphalt concrete mixtures. The CNN model was trained over a 
dataset of about 1260 images acquired from SE(B) testing of asphalt 
concrete mixtures with varying temperatures, mixture properties, notch 
patterns and surface characteristics. Selected images of the AC beam 
with detected propagating crack were processed and the crack exten
sions were obtained for the tests establishing the R-curves of each 
mixture. The following conclusions can be drawn:  

• The CNN model consisting of several convolutional layers with 
increasing filters has exhibited a reliable performance in classifying 
the images containing the propagating crack and specifying the 
cracked region in the image. The training accuracy of the model 
reached beyond 0.84 and the loss remained below 0.15 for the last 30 
epochs. A high validation accuracy of 0.97 in the last 30 epochs in
dicates a desirable performance of the model in classifying SE(B) test 
images.  

• Gaussian blur application and processing of CNN-classified images 
has shown high accuracy of the crack length measurements. A 
comparison of crack extensions conducted using this method indi
cated approximately analogous values of crack growth versus test 
time while small differences exist due to excessive non-Gaussian 
noise in captured images in the unstable crack propagation phase.  

• For control AC mixtures, as the test temperature is dropped to − 20 
◦C, due to high embrittlement of the binder and mixture, and the 
greater tendency of the mixtures for unstable crack propagation, 
initial crack detection by the framework differs slightly from the 
manually measured values. Therefore, the crack blunting zones in 
the R-curves resulted from the automated framework are higher in 
this zone which translates into greater cohesive energy magnitudes. 

• As the temperature is reduced in the specimens with siliceous ag
gregates, the height of the R-curves are reduced significantly in 
comparison with the limestone mixtures while the curves plateau in 
the post-peak phase indicating high unstable crack propagation 
tendency. This effect is more pronounced at − 15 ◦C and − 20 ◦C due 
to lower bond strength between siliceous aggregates and the binders. 
For these mixtures, even though a degree of discrepancy is observed 
for the cohesive energy values determined by the framework and the 
manually calculated one, however, fracture energy and energy rate 

Fig. 12. R-curves for mixtures with PG58–28 binder: a) Limestone aggregate at 0 ◦C, b) Limestone aggregate at − 15 ◦C, c) Siliceous aggregate at 0 ◦C, d) Siliceous 
aggregate at − 15 ◦C. 
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Fig. 13. R-curves for mixtures tested at − 20 ◦C: a) Limestone aggregate with PG58–22 binder, b) Siliceous aggregate with PG58–22 binder, c) Limestone aggregate 
with PG58–28 binder, d) Siliceous aggregate with PG58–28 binder. 

Fig. 14. R-curves for rubberized (20% CR) mixtures tested at − 20 ◦C: a) Limestone with PG58–22 binder, b) Siliceous aggregate with PG58–22 binder, c) Limestone 
aggregate with PG58–28 binder, d) Siliceous aggregate with PG58–28 binder. 
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values obtained from the automated framework are in very close 
agreement with the calculated ones.  

• As the mixtures are rubberized, further temperature insensitivity is 
induced in the mixture due to the introduction of crumb rubber 
particles in the binder. Therefore, notable magnitudes of energy 
dissipation would be required for an initial crack to extend even at 
the lowest test temperatures i.e. − 20 ◦C. Moreover, the unstable 
propagation phase is also energy dissipating which will result in 
seamless determination of fracture resistance curves by the auto
mated framework. 

Depending on the temperature level and mixture properties, test 
specimens could potentially undergo quasi-brittle to brittle fracture. In 
this state, crack propagation is abrupt and significantly unstable which 
results in notable numbers of high-noise images complicating automated 
classification and extension calculations. AI-driven noise reduction and 
image enhancement techniques with crack propagation pattern pre
dictions can be developed and embedded into he framework to enhance 
such images prior to the binary classification stage. 
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