
Citation:
Zhang, X and Hu, Y and Yin, A and Deng, J and Xu, H and Si, J (2023) Inferable Deep Distilled
Attention Network for Diagnosing Multiple Motor Bearing Faults. IEEE Transactions on Transportation
Electrification, 9 (2). pp. 2207-2216. ISSN 2332-7782 DOI: https://doi.org/10.1109/tte.2022.3211203

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/10830/

Document Version:
Article (Accepted Version)

c© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/10830/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1

Abstract—Bearing, as a vital component in electric 
powertrains, is increasingly used globally such as in 
electric vehicle (EV). Their damages and faults may bring 
huge cost loss to the industry and even threaten personal 
safety. This paper proposes an inferable deep distilled 
attention network (IDDAN) method which is a self-attention 
mechanism and transfer learning-based method to 
diagnose and classify multiple bearing faults in various 
motor drive systems efficiently and accurately. Compared 
with convolutional networks, the self-attention-based 
network can better extract the global feature information 
and easier to benefit from large amounts of pre-training 
data. Its significance is to accurately classify various faults 
of the target machine when the labeled data of the target 
machine is not enough to directly train the diagnosis model. 
Firstly, this paper attempt to apply the self-attention-based 
network to build an advanced fault diagnosis model. 
Secondly, this paper optimizes the structure of networks 
through knowledge distillation (KD) technique to require a 
lighter and fast model. Thirdly, this paper proposes a new 
data augmentation strategy for 1-D vibration signals to 
provide large-scale pre-training samples for IDDAN. 
Experiments show that the self-attention 
mechanism-based model is more likely to benefit from 
large-scale data. After testing, compared with many 
methods and other exist similar methods, the proposed 
method achieves higher classification accuracy and better 
performance. 
 

Index Terms—Motor bearing, Fault diagnosis, Fault 
detection, Neural network applications, Transfer learning 

I. INTRODUCTION 

HE electric motor drive system has been widely used in 
industry and human life. The reliability and safety of its 
components bear the responsibility of human life and 

industrial cost. The reliability issues of the electric powertrain 
may appear on any components. The bearing plays a critical 
and necessary role in motor drive system. According to 
incomplete statistics, 40-70% motor and electric powertrain 
faults are caused by various degrees of rolling bearing damage 
[1]. Such faults are leading to the higher costs in industrial 
applications and its maintenance. Therefore, real-time 
condition monitoring and bearing fault diagnosis (BFD) in all 
motor drive system is gradually becoming more important and 
higher-priority work. 

The safety and stability of bearings have attracted increasing 
attention in both academic and engineering. Scholars and 
engineers have employed many traditional methods to detect 
which type of bearing fault in some motor drive systems. The 
conventional method of bearing fault diagnosis mainly relies on 
advanced signal processing technology to extract effective 

features for analysis. Paper [2] proposes an adaptive 
morphological filter (AMF) to analyze the vibration and 
acoustical signals of the bearing to determine the fault type. 
Paper [3] proposes the sparse elitist group lasso denoising 
(SEGLD) algorithm to online diagnose bearing faults in 
industry. This is because part of the information contained in 
the motor stator current signal or the bearing vibration signal 
collected by the measurement is not related to the bearing fault, 
such as the supply fundamental and its harmonics, noise, etc. 
The core contributions of the paper [4] and [5] are both to solve 
this problem. On the other hand, judging from the current trend 
of big data, artificial intelligence (AI) can bring about better 
convenience and more advantageous new ideas for bearing 
fault diagnosis. 
 The AI-based BFD methods have characteristics of model 
independence, does not require professional mechanical 
knowledge, and has excellent performance. Paper [6] uses 
graph-mapped spectrum (GMS) to represent fault information 
in bearing vibration signals and applies K-nearest neighbour 
(K-NN) classifier to identify fault types. Paper [7] combines 
information fusion (IF) technology with convolutional neural 
network (CNN) to diagnose bearing faults. Paper [8] is also 
based on supervised learning of AI. The method proposed in 
this paper is based on CNN to identify damage to rotor bearings 
from infrared images. Supervised learning is a classic method 
in AI-based methods. However, for some machines, it is 
difficult to obtain sufficient labeled data for supervised training 
in real situations. People need new ways to solve this problem.  

To solve the above problem, transfer learning technology is 
used in bearing multiple fault diagnosis. It obtains a pre-trained 
model with rich domain knowledge from a machine, and then 
adapts it to the target machine with a small amount of data. Due 
to the difficulty in obtaining bearing fault data, there are many 
similar methods based on transfer learning recently. Paper [9] 
proposes an intelligent bearing fault diagnosis system 
combining AlexNet and transfer learning technology. The deep 
convolutional transfer learning network (DCTLN) proposed in 
paper [10] can make the model still effective in the target 
domain. These methods are almost all proposed based on CNN 
[11], [12]. Paper [13] uses Bayesian network as a fault 
diagnosis model for bearing fault detection and proposes 
varying coefficient transfer learning (VCTL) to obtain 
knowledge and correlation from the resource domain. Paper [14] 
uses the bearing vibration data obtained by computer 
simulation to pre-train the model, and then achieve the general 
effect of the model through transfer learning. However, 
traditional network models such as SVM, CNN have the ability 
of automatic feature learning, but still face many challenges. 
For example, CNN cannot focus on learning to important 
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discriminate features of faults and ignore useless features. 
Furthermore, global information cannot be extracted due to the 
limitation of convolution kernel size. The new type of neural 
network based on self-attention mechanism will improve the 
current situation. 

Based on the transfer learning and a new self-attention 
mechanism, an inferable deep distilled attention network 
(IDDAN) is proposed to diagnose bearing multiple faults. The 
network can accumulate the advantage of optimized feature 
mapping across the network through the intervention of the 
self-attention mechanism, which uses global information to 
adaptively enhance more discriminative features and suppress 
irrelevant features. With the proposed data augmentation 
technique, it is possible to explore how much each method 
benefits from large amount of data samples. In addition, the 
knowledge distillation (KD) technique [15] makes the trained 
network lighter and increases the inference speed. The 
contributions of this paper are summarized as follows: 
1) It originally proposed a new data augmentation method of 

1-D vibration signals and applied it in the bearing fault 
diagnosis framework. Models can benefit from data 
augmentation to become more generalizable. Experiments 
show that this strategy cooperates well with the 
self-attention module to obtain accurate diagnosis results 

2) Self-attention mechanism based neural network is 
introduced in transfer learning-based intelligence 
diagnosis method. The types of bearing faults are complex 
and diverse, which poses a higher challenge to the feature 
recognition ability of the diagnosis model. Self-attention 
mechanism based can enhance more discriminative 
features and suppress irrelevant features during training. 

3) An advanced bearing multiple fault diagnosis method, 
IDDAN, is proposed based on data augmentation 
technique and self-attention networks and works under 
various working conditions. The model size of the method 
is lighter than commonly used models so as to increase 
computing efficiency. 

The rest paragraphs are organized as follows. Section II 
introduces related theories for further understanding the 
architecture introduced in Section III. Section III describes the 
proposed method in detail. Section IV presents the case study 
and experiment result. Finally, Section V provides a conclusion 
of this paper. 

II. SELF-ATTENTION MECHANISM AND RELATED THEORIES 

The self-attention mechanism is rarely used in engineering 
and is quite different from the convolution mechanism. These 
related theories will be briefly introduced in this section. 

A. Self-Attention Mechanism 

Self-attention is a special form of attention mechanism. The 
output of attention mechanism (see Fig.1) could be presented as 
(1) [16].  

              𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ை௨௧௣௨௧ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)                (1) 
In (1), 𝑄, 𝐾 and 𝑉 respectively stand for the Query matrix, Key 
matrix, and Value matrix. Let 𝑋 be the input and get 𝑄 = 𝑊ொ𝑋, 
𝐾 = 𝑊௄𝑋 , 𝑉 = 𝑊௏𝑋  ( 𝑊ொ , 𝑊௄  and 𝑊௏  are parameter 
matrixes). 

 
Fig. 1. Diagram of computing process of attention mechanism. 

The scaled dot-product is used in the calculation process as 
shown in (2): 

               𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ൬
ொ௄೅

ඥௗೖ
൰ 𝑉            (2) 

Among (2), the softmax function is a function that turns a vector 
of K real values into a vector of K real values that sum to 1, 
which formula could be presented as (3). The input values can 
be positive, negative, zero, or greater than one, but the softmax 
transforms them into values between 0 and 1, so that they can 
be interpreted as probabilities. It is usual to append a softmax 
function as the final layer of the neural network to convert the 
scores to a normalized probability distribution.  

                                       𝜎൫𝒵൯
௜

=
௘ 𝒵೔

∑ ௘
𝒵ೕ಼

ೕసభ

                                     (3) 

B. Multi-Head Attention Mechanism 
Multi-head attention is to project the ℎ  group 𝑄 , 𝐾 , 𝑉 

through different linear transforms, and connect the final result. 
In self-attention mechanism, each group of 𝑄, 𝐾, 𝑉 is the same. 

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑ଵ, ℎ𝑒𝑎𝑑ଶ , … , ℎ𝑒𝑎𝑑௛)𝑊ை 
(4) 

              𝐻𝑒𝑎𝑑௜ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛൫𝑄𝑊௜
ொ , 𝐾𝑊௜

௄ , 𝑉𝑊௜
௏൯                  (5) 

In both (4) and (5), 𝑊 represents for the parameter matrix of 
linear transforms. In detail, 𝑊௜

ொ ∈ ℝௗ೘೚೏೐೗×ௗೖ , 𝑊௜
௄ ∈

ℝௗ೘೚೏೐೗×ௗೖ , 𝑊௜
௏ ∈ ℝௗ೘೚೏೐೗×ௗೡ  and 𝑊௜

ை ∈ ℝ௛ௗೡ×ௗ೘೚೏೐೗  (𝑑௞ =
𝑑௩ = 𝑑௠௢ௗ௘௟/ℎ).  

C. Classic KD Theory 

Neural network models can solve a variety of complex 
problems, but these models are usually huge and have a large 
number of parameters, making it difficult or impossible to 
deploy to edge devices. KD is a new method of compressing 
neural models. The obtained new smaller network trained 
through KD technology can achieve the same or similar effect 
as the original network [17]. 

 
Fig. 2. Schematic diagram of complete KD process. 

 
Fig. 2 shows that the essence of KD is the process of 

pre-trained larger teacher network teaching smaller student 
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network. The training dataset is applied to both the teacher 
network and the student network at the same time. The soft 
label is the output of the teacher network in each layer. The 
cross-entropy between it and the soft prediction value output by 
the student model is 𝐿௦௢௙௧ . 𝐿௛௔௥ௗ is defined as the cross-entropy 
of the hard prediction value output by the student model and 
data label. Therefore, the objective function of the KD process 
is composed of weighted 𝐿௦௢௙௧  and weighted 𝐿௛௔௥ௗ: 

                                𝐿 = 𝛼𝐿௦௢௙௧ + 𝛽𝐿௛௔௥ௗ                             (6) 
where 𝛼 and 𝛽 are weights of 𝐿௦௢௙௧  and 𝐿௛௔௥ௗ, respectively. 

D.  Transfer Learning Problem 

The essence of the model pre-training is transfer learning 
[18]. To clearly explain the proposed architecture in Section III, 
here it is necessary to introduce two types of domains in 
transfer learning: the source domain 𝐷௦ and the target domain 
𝐷௧ . Both domains are composed of the feature space 𝑋 and the 
probability distribution 𝑃(𝑋) of the data. The category spaces 
of the learning objectives of transfer learning in 𝐷௦ and 𝐷௧  are 
represented by 𝑌௦ and 𝑌௧, respectively. When 𝐷௦ ≠ 𝐷௧, the data 
distribution before and after transfer is also different. Transfer 
learning can improve the performance of the target task 
learning function 𝑓௧  when 𝐷௦ ≠ 𝐷௧  or 𝑇௦ ≠ 𝑇௧ . The following 
Fig. 3 shows the principle of transfer learning to process 
unlabelled data task and what is different process between 
transfer learning and traditional neural networks. 

This paper aims to looking for a multi-fault diagnosis 
architecture that can be quickly deployed on any machine and 
monitor its health conditions. From the perspective of transfer 
learning, the data used for pre-training 𝑋 = {𝑥ଵ, 𝑥ଶ ⋯ 𝑥௡}and 
the corresponding label space 𝑌௦ = ൛𝑦௫భ

, 𝑦௫మ
⋯ 𝑦௫೙

ൟ compose 

source domain 𝐷௦ = {𝑋, 𝑌௦}. The unlabelled data of the target 
machine is 𝑋௧ = {𝑥௧ଵ, 𝑥௧ଶ ⋯ 𝑥௧௡}, where 𝑥௧௡ is the data samples 
of the target task. The more adequate samples in 𝐷௦, the larger 
the category space, the stronger generalization ability, and the 
better performance of the model after pre-training transfer. 

 
Fig. 3. The comparison and difference of the learning process between 

traditional neural networks and transfer learning. 

III. INTELLIGENT DIAGNOSIS FRAMEWORK BASED ON 

INFERABLE DEEP DISTILLED ATTENTION NETWORK (IDDAN) 

The proposed diagnosis method consists of four main 
modules (as shown in Fig. 4): data augmentation, backbone 
network, distillation strategy and transfer inference. Transfer 
inference helps IDDAN become more adaptable to the target 
domain through fine-tuning by the very small amount of data 
after the pre-training stage. Particularly, the first and second 
parts of Fig. 4 show how the bearing vibration signal is 
collected and pre-processed in the context of the current 
application. 

 
Fig. 4. The architecture demonstration of the proposed method. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4

A. Data Augmentation Strategy 

The data augmentation method of IDDAN's pre-training data 
in the source domain adopts multi-scale and multi-timescale 
signal conversion which is a special data augmentation method 
proposed for the collected 1-D bearing vibration signals. 

Multiscale signal conversion is similar to the idea of cropping 
and zoom in computer vision, which can improve the 
generalization ability of pre-trained IDDAN. In other words, the 
domain adaptation ability of the IDDAN can be improved when 
transferring know from the source domain to the target domain. 
Defining the length of each vibration signal as 𝐿௦  and the 
sampling rate of as 𝑓௦, the principle of data enhancement can be 
expressed as Fig. 5. 

 
Fig. 5. The data augmentation strategy diagram of the data used for 

IDDAN pre-training. 
It can be obtained from Fig. 5 that the strategy of data 
augmentation could be presented by equation (7): 

                 ቊ
𝑘 ×

௅ೞ

௞
, 𝑘 ∈ ℕ∗

𝑉௡௘௪(𝑡) = ∑ 𝑉௦(𝑛𝑇)𝛿(𝑡 − 𝑛𝑇)ஶ
௡ୀିஶ

                         (7) 

where 𝑘 is the number of segments after each signal cutting, 
𝑉௡௘௪(𝑡) is down sampled vibration signal, 𝑉௦(𝑡) is the original 
collected vibration signal, 𝛿 represents the impulse function. In 
this data augmentation step, collected 1-D vibration signals are 
mainly processed in two ways:  
1) Each vibration signal used for IDDAN pre-training step is 

segmented multiple parts, and the size of each segment is 
𝐿௦ 2⁄ , 𝐿௦ 3⁄ , 𝐿௦ 4⁄ , 𝐿௦ 5⁄ , etc.  

2) Each vibration signal used for IDDAN pre-training step is 
resampled by sampling rate 𝑓௦ 2⁄ , 𝑓௦ 3⁄ , 𝑓௦ 4⁄ , etc. 
Through this data augmentation method, the amount of data 

can be increased efficiently, providing sufficient data for 
IDDAN pre-training to improve the effect of knowledge 
transfer. 
B. Backbone Network 

The bearing health status recognition is realized through 
self-attention based network module as the main body.  

The backbone of IDDAN is a modified transformer network, 
which includes one transformer encoder and a linear classifier. 
The transformer encoder is constructed by one multi-head 
attention module, one feed-forward module and two 
normalization layers, which can automatically learn global 
features with the help of the self-attention mechanism [19]. A 
linear classifier is used to identify and distinguish bearing health 
conditions. As mentioned in Section I, the self-attention 
mechanism can be processed parallelly with global capabilities, 

long-distance information will not be weakened [20]. 
Self-attention could be considered as a CNN with a learnable 
receptive field. In other words, self-attention can learn receptive 
field automatically, but the receptive field of CNN needs manual 
adjustment and optimization of parameters. 

 
Fig. 6. The structure presentation of IDDAN. 

As shown in Fig. 6, the self-attention module includes a 
position embedding module, a transformer encoder (feature 
extraction in Fig.4), and a linear layer. The linear layer can be 
regarded as a condition classifier to classify the global features 
extracted by the self-attention mechanism in the transformer 
encoder.  

The motor signal of a certain length is first converted into the 
time-frequency map representation. For handling these 2D 
signal representations, the transformer encoder reshapes the 
image 𝐱 ∈ ℝு×ௐ×஼  into a sequence of flattened 2D patches 
𝐱௣ ∈ ℝே×൫௉మ∙஼൯ , where (𝐻, 𝑊)  is the resolution of the signal 
representation, 𝐶  is the number of channels, (𝑃, 𝑃)  is the 
resolution of each image patch. The effective input sequence 
length could be calculated through:  
                                           𝑁 = 𝐻𝑊 𝑃ଶ⁄                                    (8) 
where N stands for the resulting number of patches. 
 These patches representing machine health information have 
positions in the original time-series signal. Position embedding 
can achieve the effect of abstracting data in time series and 
represent relative or absolute position information in the input 
sequence. The implementation process of position embedding in 
this paper is as follows: 

               𝐳଴ = ൣ𝐱ୡ୪ୟୱୱ;  𝐱௣
ଵ 𝐄; 𝐱௣

ଶ𝐄; ⋯ ; 𝐱௣
ே𝐄൧ + 𝐄௣௢௦             (9) 

where 𝐄 ∈ ℝ൫௉మ∙஼൯×஽ , 𝐄௣௢௦ ∈ ℝ(ேାଵ)×஽ , 𝐄 is the patch 
embedding projection and is 𝐷 the constant latent vector size 
through all of transformer layers.  

The patches with marked positional information need to 
perform a normalization operation before entering the 
multi-head self-attention (MSA) mechanism. This paper adopts 
layer normalization (LN) [21]. The state at the output of the 
Transformer encoder 𝐳௅

଴ serves as the image representation 𝐲 =
LN(𝐳௅

଴) . Both during pre-training and fine-tuning, a 
classification head is attached to 𝐳௅

଴.  
          𝐳′ℓ = MSA൫LN(𝐳ℓିଵ)൯ + 𝐳ℓିଵ                    (10) 

where ℓ = 1, ⋯ , 𝐿 . MSA is an extension of standard 
self-attention (SA), which runs SA operations 𝑘  times (The 
calculation principle has shown in Section II-A). 
              MSA(𝐳) = [SAଵ(𝑧);  SAଶ(𝑧);  ⋯ ; SA௞(𝑧)]𝐔௠௦௔      (11) 
For calculating MSA in this paper, we set SA(𝐳) = 𝐴𝐯  and 
𝐔௠௦௔ ∈ ℝ௞∙஽೓×஽ ,where 𝐴 = softmax൫𝐪𝐤⊺ ඥ𝐷௛ൗ ൯  ( 𝐴 ∈ ℝே×ே , 
𝐷௛ = 𝐷 𝑘⁄  and [𝐪, 𝐤, 𝐯] = 𝐳𝐔௦௔, 𝐔௦௔ ∈ ℝ஽×ଷ஽೓).  
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 As shown in Fig. 6, LN is employed before both MSA block 
and FFN block, and residual connections after every block. Our 
FFN block contains two layers: one hidden layer at pre-training 
time and by a single linear layer at fine-tuning time: 

  𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊ଵ + 𝑏ଵ) 𝑊ଶ + 𝑏ଶ                 (12) 
where two different parameters 𝑊ଵ and 𝑊ଶ from layer to layer 
are used, and a gaussian error linear unit (GELU) activation 
function is applied between layers [22]: 

𝐺𝐸𝐿𝑈(𝑥) = 𝑥 ⋅
ଵ

ଶ
ቂ1 + erf ቀ

௫

√ଶ
ቁቃ ≈ 0.5𝑥 ቀ1 + tanh ቂඥ2 𝜋⁄ (𝑥 +

0.044715𝑥ଷ)ቃቁ                                                                          (13) 

Both the class and the distillation embeddings of IDDAN are 
associated with linear condition classifier. The final health 
condition prediction result is determined by the addition of the 
softmax [23]outputs of the two routes: 
        𝐶𝑙𝑎𝑠𝑠௣௥௘ௗ௜௖௧ = 𝐿𝑖𝑛𝑒𝑎𝑟[𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑂௖௘) + 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑂ௗ௘)]                                                                         

(14) 
where 𝑂௖௘  and 𝑂ௗ௘  are the output of the two classifiers 
respectively. 
C. Knowledge Distillation Strategy 

Backbone network’s distillation process is carried out 
simultaneously with pre-training. In the output of the softmax 
layer, in addition to positive examples, negative labels also carry 
a lot of information. This training method of KD makes each 
sample bring more information to student model than the 
traditional training method. 

Firstly, in order to improve the recognition accuracy of health 
conditions, the teacher model is chosen as VGG-16. It is a strong 
feature extractor and classifier. In this distillation strategy, the 
hard decisions of the teacher model 𝑦୲ = argmax௖𝑍୲(𝑐) (𝑍୲ is 
the logits of the teacher model) are true labels. The applied 
hard-label distillation objective should be defined as: 

   ℒ௚௟௢௕௔௟
ு௔௥ௗ஽௜௦௧௜௟௟ =

ଵ

ଶ
ℒେ୉(𝜓(𝑍ୱ), 𝑦) +

ଵ

ଶ
ℒେ୉(𝜓(𝑍ୱ), 𝑦୲)         (15) 

where ℒେ୉ represents the cross-entropy, and 𝑍ୱ is the logits of 
the student model (IDDAN). For the image represents of 
machine signal, it is possible that hard labels will change 
according to the DA (Section III-A in this paper). In this 
hard-label distillation loss function, the teacher prediction 𝑦୲ has 
the same role with the true label 𝑦. 
 Fig. 6 demonstrates that the distillation token, the class token, 
and patch tokens interact through the self-attention layers in the 
transformer encoder. The output of the distillation token is the 
hard-label predicted by the teacher model. In this method, the 
class token 𝐰௖௟௔௦௦ and the distillation token 𝐰ௗ௜௦௧௜௟௟  are trained 
by back-propagation algorithm:  

                            𝐰(𝑚 + 1) = 𝐰(𝑚) − 𝜂
డ௃൫𝐰(௠)൯

డ𝐰(௠)
                  (16) 

𝐽(𝐰) represents the training error at any instance, 𝑚 denotes the 
number of iterations, and 𝜂 > 0  is the pre-set learning rate 
before training. This paper employs the gradient-based 
parameter optimizer AdamW, replacing L2 regularization of 
Adam with weight decay. 
D. Transfer Inference Objectives 

The transfer inference stage of IDDAN includes fine-tuning 
and condition classification. Fine-tuning is a pivotal step to infer 
the pre-trained model to the target task through the transfer 
learning method. Condition classification is to use the inference 
completed mode to classify and diagnose fault conditions. 

The backbone network can be divided into feature extractors 
and classifiers. The feature extractor extracts the low-level 

features of the image. In the pre-training stage, the proposed 
vibration signal data augmentation strategy can obtain 
large-scale pre-training samples of the source domain, and the 
pre-model trained with large-scale data has a higher 
generalization ability to extract the underlying features. 
Therefore, during the transfer process, the bottom layer weights 
are frozen, and the high layer weights are opened. In this paper, 
the FFN layers and linear classifier layer in the pre-trained 
IDDAN will be updated with parameters in fine-tuning (has 
been demonstrated in Fig. 4). This is because the previous 
self-attention layers and layer normalization layer are used to 
obtain a general representation from the image, and the latter 
FFN layer and linear classifier are more relevant to downstream 
special fault diagnosis tasks. 

IV. CASE STUDY AND RESULT 

To verify the approach proposed in section III, this paper uses 
three professionally measured bearing datasets.  
A. Experiment Data and Description 
1) Dataset A: KAt-DataCenter bearing dataset [1] contains a 

variety of faults to perform fault diagnosis experiments. 
This dataset focuses on not only artificial bearing damages 
but also real damages. It could prove better than the 
proposed approach in this paper is competent for different 
kinds of bearing fault diagnosis. The tested motor is a 
425W permanent magnet synchronous motor (PMSM) 
which has the nominal torque 𝑇 =  1.35 𝑁𝑚, the nominal 
speed 𝑛 =  3000 𝑟𝑝𝑚 , the nominal current 𝐼 =  2.3 𝐴 
and the number of pole pair 𝑝 =  4. 

2) Dataset B: The IMS bearing dataset is measured by 
provided by the Center for Intelligent Maintenance 
Systems (IMS), University of Cincinnati [24]. Recorded 
vibration signals include normal condition, rolling element 
fault, inner race fault, outer race fault. Each data describes a 
test-to-failure experiment and consists of individual files 
that are 1-second vibration signal snapshots recorded at 
specific intervals. Each file consists of 20,480 points with 
the sampling rate set at 20 kHz and collected by NI DAQ 
Card 6062E. 

3) Dataset C: Experiments of the CWRU bearing dataset were 
conducted using a 2 hp Reliance electric motor, and 
acceleration data were measured at locations near to and 
remote from the motor bearings [25]. Motor bearings were 
seeded with faults using electro-discharge machining. 
Faults ranging from 0.007 inches in diameter to 0.040 
inches in diameter were introduced separately at the rolling 
element fault, inner race fault, and outer race fault. 
Vibration data was collected at 12,000 samples per second, 
and data was also collected at 48,000 samples per second 
for drive end bearing faults. Speed and horsepower data 
were collected using the torque transducer. 

These three bearing datasets include vibration signals while 
they are obtained from different machines and different 
operation conditions. Their detailed information is displayed in 
Table I. 

Table I 
Detailed Information of Various Experiment Bearing Datasets 

Dataset 
names 

Bearings Conditions 
Speed 
(rpm) 

Load 
conditions 

KAt 
PMSM 
bearing 

Normal 1500 0.1Nm, 0.7Nm 
Inner ring fault 1500 0.1Nm, 0.7Nm 
Outer ring fault 1500 0.1Nm, 0.7Nm 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6

IMS 
Rexnord 
ZA-2115 
bearing 

Normal 2000 6000 lbs 
Inner ring fault 2000 6000 lbs 
Rolling element 
fault 

2000 6000 lbs 

Outer ring fault 2000 6000 lbs 

CWRU 
Motor 
bearing 

Normal  1750 0, 1,2,3 HP 
Inner ring fault 1750 0, 1,2,3 HP 
Rolling element 
fault 

1750 0, 1,2,3 HP 

Outer ring fault 1750 0, 1,2,3 HP 

B. Transfer Multiple Fault Diagnosis of the IDDAN 
1)  Experiments Setting 

The planned transfer diagnosis experiment is shown in Fig. 7, 
which includes the use of each dataset and the partition of 
training data and test data. In this experiment, all used data are 
bearing vibration signals collected from different machines or 
devices. Therefore, this experiment put the target on testing the 
ability and performance of inferencing trained IDDAN to a new 
machine. It can be found that the dataset A and B are mixed as 
pretraining data. This is because the dataset A does not include 
vibration signal samples of rolling element fault. In No. 2 
experiments, samples of two damage levels are also not included 
in the dataset B. No.1 experiment tests the accuracy of the 
proposed method with standard data amount (2000) which come 
from two different datasets, while No. 2 experiment tests with a 
larger amount of data (40000).  

In this paper, the percentage of the dataset means that the data 
is picked evenly from each fault and each working condition in 
the dataset. 20% of the target domain dataset is used in this 
section as the fine-tuning dataset. 

 
Fig.7. Diagram of different transfer diagnosis experiments. 

2) Validation 
We evaluate the proposed IDDAN through two designed 

experiments shown in Fig. 7. In the first experiment, B refers to 
the source domain dataset and C refers to the target domain 
dataset. In the second experiment, A plus B turn into the source 
domain data, and C also refers to the target domain dataset. In 
each experiment, the training data includes all the labeled 
samples from the source domain dataset and the fine-turning 
data uses 20% labeled data from the target domain dataset. Then, 
we randomly take 50% of unlabeled samples as the test data. 
 The detailed information of training parameters is 
demonstrated as follows. The CPU and GPU devices for training 
are I9-12900K and RTX 3080Ti respectively. The epoch for 
pre-training and fine-tuning is set to be 500 and 150 respectively. 
In addition, the patch size is set as 32, the number of attention 

heads is 6. This step is trained using the AdamW optimizer with 
a learning rate 3 × 10ିସ. In the fine-tuning step, the dimension 
of the MLP block is set as 2048, the resolution of target domain 
time-frequency maps increases to 256 from 224. The training 
loss of experiments is plotted in Fig. 8. As shown in Fig. 8, the 
initial loss in the fine-tuning stage is significantly lower than in 
the pre-training stage. 

 
Fig. 8. The pre-training loss (500 epoch) and the fine-tuning loss (150 

epoch) carve. 
The No.1 experiment is repeated ten times with those pre-set 

parameters. In each experiment, all accuracies of the transfer 
diagnosis are over 82% and the average accuracy is around 85%. 
For obtaining a baseline testing accuracy, we set a control 
transfer test using the CNN model to condition recognition. In 
this CNN module, the number of convolutional layers is 5, and 
the size of the convolution kernel is set to be 3. The 5 pooling 
layers are followed by each convolutional layer separately and 
the size of the pooling kernel is 2. The CNN model is also 
pre-trained and fine-tuned using the same data samples. 
According to the same experiments times with IDDAN, the 
average accuracy is around 89% and the lowest accuracy is 85%. 
It means that the proposed IDDAN method can effectively 
diagnose the normal condition and three faults of bearing, but 
the accuracy of the CNN-based model is slightly higher than 
IDDAN with a small number of pre-training samples. 

C. Fault diagnosis analysis of the proposed method 
1) Effect Analysis of Data Augmentation 

Due to the difference between the self-attention mechanism 
and the convolutional network, self-attention-based network 
structures benefit more from large-scale data [19]. The 
experiments of this part take the same settings as Fig. 7 and the 
data augmentation strategy in Section III-A is applied in the 
experiment. We use MATLAB (signal processing toolbox) to 
perform the proposed data augmentation method on all vibration 
signals in the source domain dataset, followed by the 
signal-to-image conversion. The samples used in the No. 2 
experiment were expanded from 2000 to 40000, reaching 20 
times the original pre-training samples. 

In this section, the No.2 experiments in Fig. 7 should be 
repeated several times. In these experiments, the amount of data 
used in the fine-tuning stage as a percentage of the total target 
domain data (𝑃் ) is kept as 20%. It can be found that all 
accuracies of the transfer diagnosis are over 92% and the 
average accuracy is around 95%. To provide visual insights into 
the effects of features transferring from the source datasets and 
target dataset, we use the t-distributed stochastic neighbor 
embedding (t-SNE) technique to map the high-dimensional 
features into a 2-D space. Fig. 9 demonstrates the feature 
recognition ability of the last layers before softmax layer when 
we completed the fine-tuning step. 
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Fig. 9. t-SNE visualization of features after fine-tuning (𝑃்=20%). (a) 
Before training. (b) Small amount of pre-training samples. (c) CNN 
method with large amount of pre-training samples. (d) IDDAN with large 
amount of pre-training samples. 
2) FLOPs and Parameters Analysis of KD 
 When deploying the model in a device such as an electric 
vehicle (EV), the floating point operations (FLOPs) of the 
method must be considered. FLOPs describe the computing 
power required by the deployed device, and the number of 
parameters describes the required memory size. 
 In this paper, the KD strategy is used to further reduce the 
model parameters and required FLOPs, reducing the burden on 
equipment and memory. Fig. 10 illustrates FLOPs of IDDAN, 
which compares the number of model parameters and FLOPs 
between IDDAN and common deep learning frameworks. 

 
Fig. 10. t-SNE visualization of features after fine-tuning (𝑃்=20%). 
As shown in Fig. 10, the IDDAN achieves a relatively 

minimum requirement for FOLPs and parameter quantities 
compared to some commonly used frameworks. In detail, the 
required FLOPs of IDDAN are 2.8GFLOPs and the number of 
parameters is 22.1M, which is obviously less than the teacher 
model VGG-16. 
D.  Test Results comparison 
1)  Multiple methods comparison 

The dataset of bearing vibration signals under various 
working conditions is shown in Table II. Therefore, a very harsh 
transfer learning test environment is formed, which can well 
detect the performance of the proposed method. However, the 
number of labeled samples provided by the target domain is also 
the key to performance. We divide nine grades according to 𝑃்  
from less to more: 1%, 5%, 10%, 15%, 20%, 25%, 30%, 40% 
and 50%. The test data is still 50% unlabeled data of the target 
domain. It is necessary to compare the performance of the 
different methods. In this comparison, the historically 
outperforming classical algorithms support vector machine 
(SVM) and CNN are replaced with IDDAN, and short-time 
Fourier transform (STFT) and Hilbert-Huang transform (HHT) 
will be replaced with continuous wavelet transform (CWT). 
Data augmentation (DA) is also added as a controllable 
condition. Results of all tests are summarized in Table II, which 
shows that the proposed method can achieve the best 
performance if 𝑃் ≥ 10% .

 
Table II 

Fault Diagnosis Results of Various Methods 

               𝑷𝑻 
Methods 

1% 5% 10% 15% 20% 25% 30% 40% 50% 

STFT+SVM 69.8% 73.9% 75.5% 77.2% 78.8% 82.7% 83.2% 87.3% 88.6% 
STFT+CNN 67.9% 71.7% 78.4% 79.7% 85.3% 90.9% 91.0% 91.5% 92.4% 

STFT+IDDAN 66.4% 66.8% 77.6% 78.1% 80.7% 84.4% 86.6% 93.2% 92.6% 
HHT+SVM 71.6% 74.0% 80.9% 82.5% 80.4% 83.2% 81.5% 84.1% 89.8% 
HHT+CNN 66.9% 75.5% 80.2% 84.6% 87.9% 91.3% 91.9% 90.7% 92.7% 

HHT+IDDAN 60.1% 64.9% 77.1% 79.4% 84.2% 85.3% 90.6% 92.5% 93.6% 
CWT+SVM 71.0% 79.4% 82.2% 83.7% 86.1% 87.8% 88.9% 90.5% 90.4% 
CWT+CNN 69.9% 75.9% 80.3% 82.2% 89.5% 92.3% 92.2% 93.2% 93.9% 

CWT+CNN+DA 71.4% 79.3% 86.7% 90.9% 94.1% 95.6% 95.7% 96.1% 96.2% 
CWT+IDDAN 67.5% 69.2% 76.0% 80.5% 84.4% 87.9% 92.2% 92.7% 93.2% 

CWT+IDDAN+DA 70.4% 85.5% 87.2% 92.2% 95.9% 96.7% 97.3% 99.0% 99.5% 

2)  Comparison with other methods 
To demonstrate the performance of the proposed IDDAN, 

three different existing bearing diagnosis methods are used for 
comparison. Table III shows the comparison of the diagnostic 
results of other methods collected from the paper with the 

proposed IDDAN in transfer fault diagnosis experiments 
(𝑃்=50%). All methods are tested on CWRU dataset.  
 

Table III 

Fault diagnosis results compared with other existing methods (𝑃்=50%) 
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Methods Transfer method 
Target 
domain 
dataset 

Average 
accuracy 

CNN Fine-tuning CWRU 93.9% 
CNN-DA Fine-tuning CWRU 96.2% 
DDC [26] Maximum mean discrepancy CWRU 78.2% 
DCTLN [10] Multiple domain adaptation CWRU 86.8% 
DANN [27] Domain adversarial CWRU 80.9% 
IDDAN  Fine-tuning CWRU 93.2% 
IDDAN-DA  Fine-tuning CWRU 99.5% 

 
The results demonstrate that fine-tune-based methods 

outperform all compared methods. The accuracy of the CNN 
model is better than IDDAN in experiments without DA. 
However, IDDAN overtakes the CNN model after going 
through DA supporting. According to application conditions, it 
could be divided into two categories:  

1) There is not any labeled data collected from the target 
domain machine. In this condition, domain 
adaptation-based methods are widely used for solving 
transfer learning problems. The most advanced research is 
based on the maximum mean discrepancy (MMD) of data 
samples. For example, the deep domain confusion (DDC) is 
to add an adaptation layer and an MMD module to the 
traditional CNN structure [26]. The domain adversarial 
training of neural networks (DANN) is the use of deep 
neural networks capable of domain discrimination [27]. 
The deep convolutional transfer learning networks 
(DCTLN) add two domain adaptation losses to the CNN 
loss function to optimize the MMD distance between the 
source domain and target domain [10]. However, this 
method will not reach the highest accuracy when 
diagnosing faults in the target domain.  

2) There are a few labeled data collected from the target domain 
machine. Fine-tuning is currently widely used in computer 
vision to further adapt to the target domain after pre-training. 
And the accuracy of the model after fine-tuning is often 
related to the amount of pre-trained data. The application 
scenario that requires the target domain can provide a small 
amount of label data. At the same time, the self-attention 
mechanism included in IDDAN is proved to be more 
dependent on large-scale pre-training samples. 

E. Multi-Level Fault Detection and Results 
For further testing the ability of the proposed diagnostic 

method to identify fault features, we set two damage levels of 
inner ring fault and outer ring fault. In detail, the inner fault and 
the outer fault in CWRU bearing dataset are divided into 0.007 
inches and 0.021 inches, while the inner fault and outer fault in 
KAt bearing dataset are also subdivided into two severity levels: 
within 2mm, between 2mm and 4.5mm. 
 The experiments are repeated several times with the 
proposed data augmentation process in the pre-training stage. 
The result shows that faults recognition accuracies of the 
CNN-based transfer method and IDDAN are around 84% and 
92% ( 𝑃் =50%). The t-SNE features visualizations are 
demonstrated in Fig. 11. According to the information from 
parts C, D and E, we can further compare and analyze the 
effectiveness of IDDAN and other methods. We can observe 
the following points: 
1) Compared with the classical CNN based transfer learning 

method, IDDAN achieves higher classification accuracy 

when given enough pre-training data. This means that 
transfer learning-based diagnosis accuracy has been further 
improved. Its purpose is to accurately classify various faults 
of the target machine when the labeled data of the target 
machine is not enough to directly train the diagnosis model. 

2) When classifying the inter ring fault and outer ring fault 
among the four fault types into two damage levels, the 
classification accuracy of the transfer learning-based 
diagnosis model decreases significantly. This is due to the 
high similarity between features of different damage levels. 
As can be intuitively seen in Fig. 11, the classification model 
produces confusion between different fault types and levels. 

 
Fig. 11. t-SNE visualization of features after fine-tuning (𝑃்=50%). (a) 
CNN-based transfer method with large amount of pre-training samples. 
(b) IDDAN with large amount of pre-training samples. 

V. CONCLUSION 

This paper proposes the self-attention mechanism in the field 
of online fault diagnosis of motor bearing with higher accuracy 
and proposed a new diagnosis framework based on IDDAN for 
solving the problem that it is hard to obtain enough labeled data 
to train a diagnosis model for a new target machine. Our 
experiment results present that the fine-tune-based transfer 
learning method could get better accuracy on the same dataset 
and the IDDAN has a better performance by pre-training using 
large-scale data. The mentioned DA method provides sufficient 
pre-training samples for IDDAN. Meanwhile, when IDDAN 
consumes large-scale data for pre-training, its diagnostic 
accuracy could surpass the CNN-based transfer learning model. 
The following points could conclude from this paper:  
1) The paper proposes a self-attention mechanism-based 

intelligent fault diagnosis method IDDAN for deploying on 
new machines with a small number of labeled data by 
transfer learning.  

2) The proposed DA method in Section III-A effectively 
expands the number of pre-training samples and has an 
excellent effect on IDDAN.  

3) The IDDAN obtain a higher recognition accuracy of multiple 
bearing fault conditions with a large amount of pre-training 
data than the classic CNN-based method. 
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